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We propose an approach to represent neuronal network dynamics as a prob-

abilistic graphical model (PGM). To construct the PGM, we collect time series

of neuronal responses produced by the neuronal network and use singular

value decomposition to obtain a low-dimensional projection of the time-

series data. We then extract dominant patterns from the projections to get

pairwise dependency information and create a graphical model for the full

network. The outcome model is a functional connectome that captures how

stimuli propagate through the network and thus represents causal dependen-

cies between neurons and stimuli. We apply our methodology to a model of

the Caenorhabditis elegans somatic nervous system to validate and show an

example of our approach. The structure and dynamics of the C. elegans ner-

vous system are well studied and a model that generates neuronal

responses is available. The resulting PGM enables us to obtain and verify

underlying neuronal pathways for known behavioural scenarios and detect

possible pathways for novel scenarios.

This article is part of a discussion meeting issue ‘Connectome to

behaviour: modelling C. elegans at cellular resolution’.
1. Introduction
A probabilistic graphical model (PGM) is a statistical model in which a graph

maps the conditional dependence structure between multiple random variables

[1–3]. Construction of a PGM has been shown as an effective methodology

for retrieving dominant trends and analysing events with very large numbers

of dependent variables. Applications of graphical models has revolutionized

a number of fields such as medical diagnosis, natural language processing

and computer vision. The nodes of the PGM correspond to variables in a

domain, and edges correspond to probabilistic interactions (conditional depen-

dencies) between the variables. The most commonly used graphical models are

Bayesian networks and Markov random fields. Bayesian networks are directed

graphs parameterized by conditional probability distributions (CPDs), whereas

Markov random fields are non-directed graphs parameterized by factors.

PGMs were successfully applied to problems for which direct inference is

intractable [2]. It is thereby appealing to apply them in the context of neuronal net-

work functionality. However, classical approaches for learning PGM structure are

designed for discrete variables and are not compatible with neuronal networks

consisting of dynamic neurons interacting through dynamic connections. Both

neurons and their connections are typically modelled as nonlinear processes.

A possible adaptation of a neuronal network to a statistical model, which captures

functionality, is to consider each neuron as a random variable that takes values

representing the states of the neuron. For simplicity it is often assumed, and here

we assume it as well, that each neuron activity is binary-valued, with 0 being the

inactive state and 1 being the active state. The PGM of a neuronal network is thereby
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a graph with neurons being the nodes and their dependencies

being the edges (as demonstrated in figure 1).

There are two main difficulties in learning a graphical model

from dynamics. (i) Difficulty in estimating input–output corre-

lations for a network whose responses are time-dependent.

(ii) High dimensionality and complexity of neuronal networks

typically incorporating recurrent structures. These factors

make statistical inference hard to realize. Relevant work has

been done in dynamic networks using either experimental

data, such as [4–6], or simulated data, such as [7]. In both

cases, ‘snapshots’ that record network dynamics are used to

analyse time-series data. For estimating input–output corre-

lations, statistical methods are applied to measure pairwise

node correlation. For example, Honey et al. [7] proposed to

use transfer entropy to capture patterns of directed interaction

and information flow between pairs of nodes. Butte & Kohane

[8] used entropy of gene expression patterns and the mutual

information between RNA expression patterns for each pair

of genes to compute pairwise mutual information. To address

the problem that the network responses are time-dependent,

works assuming that the underlying network is time-invariant,

such as [4,9], or that estimate a sequence of graph structures

such as [5,6], have been proposed.

It is also possible to use a machine learning approach,

such as to sample the neuronal network multiple times as

training data, and to evaluate candidate models according

to a scoring function and search for the optimal model [1].

One of the drawbacks of score-based approaches is that in

high-dimensional and cyclic neuronal networks, the problem

of finding an optimal solution becomes NP-hard. Additional

approaches have been employed for Bayesian network model-

ling for human functional network analysis. Zhang L. et al.
and Zhang J. et al. introduced Dynamic Bayesian Networks,

the Dynamic Bayesian Variable Partition Model and Dynamic

Causal Modelling for fMRI time-series snapshots [10,11]. In

these models, an underlying assumption for the time series

is a Gaussian model, which does not apply for attractor

neural dynamics generically appearing in the neuronal net-

works and require extensive computational cost. While more

efficient approaches have been introduced, they still incorpor-

ate non-generic assumptions such as low-rank and sparsity of

the responses [12].

Here, we propose a different approach that circumvents

these complexities. As neurons are random variables, math-

ematically our approach is based on the concept that if we

stimulate them using independently and identically distribu-

ted process, then the construction of the dependencies would

be based on measuring how network response deviates from

the stimuli distribution. Here, we use a simple distribution,

the delta distribution, which is single neuron excitation,

and record network response to each stimulus. Such an

approach is simple to implement with simulated neural

dynamics and potentially realizable with the rapid advance

of optogenetic technologies to record and stimulate networks

at a single neuron resolution [13]. While we employ a single

excitation in our proposed algorithm, theoretically the

approach is not limited to this stimulation and other distri-

butions of the stimuli can be used. The required

assumption is that stimulation of each neuron is independent

and the outcome PGM superimposes response dynamics to

independent experiments into a model.

To construct the graph, our key idea is to learn the depen-

dencies from low-dimensional projections of time series
instead of learning from sampled data directly. The low-

dimensional representations capture the dominant dynamics

of the network and thus reduce the complexity of the learning

algorithm and the computational cost. To be able to capture

the dominant patterns, we sample the network over a suffi-

ciently long period such that we have captured the typical

and dominant dynamics, i.e. the network converged to attrac-

tor dynamics, if such dynamics exist. Using this approach, we

construct a PGM (a Bayesian network) that maps the func-

tional connectivity between the neurons. The model can be

used to ‘query’ the system given evidence regarding activity

of some neurons or infer typical relation between activity

of neurons. We define these concepts and explain the

procedures for these tasks in §2 (figure 1).

We apply our method to the neuronal network of Caenor-
habditis elegans to validate the PGM. Caenorhabditis elegans
is a well-studied organism; the somatic nervous system of

C. elegans consists of 279 neurons and the wiring diagram

between these neurons was compiled by Varshney et al. con-

sisting of 6393 chemical synapses, 890 gap junctions and 1410

neuro-muscular junctions [14]. In addition, experimental elec-

trophysiological and optogenetic techniques for stimulating

and recording neural activity in vivo and in situ have been

introduced for C. elegans [15–17]. The connectome repre-

senting weights of dynamic interactions between neurons

combined with a biophysical model of neural dynamics

and their interactions enables us to simulate the full nervous

system model [18–21]. In the following sections, we construct

a Bayesian network that represents the functional connec-

tivity of the neuronal network of C. elegans and verify the

results with experimental data.
2. Construction of probabilistic graphical model
from neuronal network dynamics

We first introduce the components of the Bayesian network

in the context of neuronal networks. We then illustrate how

conditional probabilities are assigned from the simulated

neural dynamics. Finally, we show how computed proba-

bilistic dependencies are used for the construction of a

Bayesian network.

(a) Representing neuronal distributions with Bayesian
networks

A Bayesian network is a representation of a joint probability

distribution using a graph structure G ¼ (V, E) and CPDs u.

The graph structure G is a directed acyclic graph whose ver-

tices, V, correspond to random variables fX1, X2, . . .Xng, and

edges, E, correspond to connections between random variables,

i.e. conditional dependencies. For each variable, u describes the

CPD given its parents in G. By applying the probability chain

rule and using properties of conditional independence,

joint probability distribution can be decomposed into the

product form

P(X1, . . . ,Xn) ¼ Pn
i¼1P(Xi jPaG(Xi)),

where PaG(Xi) is the set of parents of Xi in G.

PGM is based on this property and graphically reformats

probability distributions into a graph with parent and children

nodes. For neuronal networks, each Xi corresponds to an indi-

vidual neuron where each of them takes discrete values. Thus,
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Figure 1. Representation of a neuronal network as a graphical model. (a) Example of structural/anatomical connectivity map in which nodes denote neurons and
edges map connections, e.g. chemical synapses and electrical gap junctions. Interactions between neurons produce a nonlinear network that dynamically transports
stimuli to neuronal behaviours. (b) Example of PGM constructed from the neuronal network governed by the structural connectivity map and nonlinear dynamics. In
the PGM, nodes are random variables corresponding to neuronal states and edges are conditional probabilities. PGM structure captures functionality of the network
and hence is typically different from the anatomical connectivity map. (Online version in colour.)
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we can represent P(XijU1, . . ., Uk) as a table that specifies the

probability of values for a neuron Xi for each joint assignment

to its parent neurons U1, . . ., Uk [4]. In the simplest case, we

only consider pairwise conditional probability P(Xi ¼ sl jXj ¼

sk), where neuron Xj receives input that drives it to a neural

state sk out of a set of states s ¼ fs1, .., sk, .., smg, and we would

like to estimate the probability of neuron Xi being in state sl sub-

ject to evidence that Xj is in state sk.

The structure of the PGM is designed to conveniently map

the statistical dependencies to allow us to ‘query’ the graph in

an efficient way. The query procedure, called posterior inference,
uses the constructed PGM to provide information about prob-

abilities of particular variables and their states, taking

into account evidence regarding the states of other variables,

i.e. conditional probability. In particular, there are two types of

posterior inference tasks in the context of network pathways

that can be answered using a graphical model. The first task is

to infer conditional probabilities of the type P(Y j E ¼ e), where

the probability distribution over the values y [ Y, conditioned

on E¼ e is inferred. For example, in such a case, functional path-

ways from upstream neurons (E) to downstream neurons (Y) can

be inferred. The second task is to infer the maximum a posteriori
(MAP) probability: arg max�Y P(Y ¼ y jE ¼ e), where the most

probable assignment to the variables in Y is sought given the

evidence E¼ e. In this task, functional pathways can be inferred

through an inverse process, where downstream neurons (E)

states are provided (E ¼ e) and inference provides most probable

upstream neurons (Y) with states (Y ¼ y). PGM is capable of

discovering the unstructured information within the distribu-

tions as it turns complex distributions into structured

information that can be analysed effectively and efficiently

using statistical tools. The benefit of using a PGM as the func-

tional connectome is that posterior inference can be performed

efficiently and circumvent the complexities in direct inference

of response pathways in dynamic neuronal networks. In particu-

lar, posterior inference reveals the relations and pathways

between known stimuli and downstream neurons or allows us

to discover the stimuli that would trigger downstream neurons.
(b) Collecting data from simulated dynamics
We propose to find conditional probabilities for all pairs of

neurons by simulating the network and recording data in
snapshot matrices. The snapshot matrix represents finite

time series of whole network dynamics for a particular

input to a single neuron. The matrices are computed by inject-

ing a constant input into every neuron in the network

independently, thus resulting in a total of n matrices for the

network of n neurons. Network dynamics are modelled by

a set of dynamic equations, e.g. conductance-based model,

which describe the biophysical processes of neurons and

interactions between neurons. A snapshot matrix has the

structure S ¼ [S(t0) S(t1) . . . S(T )] of dimensions n � T, where

n is the total number of neurons in the network and T is the

length of the time span.
(c) Dimension reduction
We process the time-series data by projecting it into a lower-

dimensional space using singular value decomposition

(SVD). The benefits of SVD include reducing dimensionality

and thus reduction of computational cost and robustness to

noise [22]. Furthermore, when the SVD-based approach is

applied to multi-node time-series network dynamics, it decom-

poses the data into spatial modes and their associated

time-dependent coefficients. The spatial modes are orthogonal

vectors representing activity patterns of the nodes [23]. When

the recorded data have been conditioned on a particular

event, each spatial mode vector is effectively a vector contain-

ing a response score for each node. As the spatial modes are

ranked by singular values to reflect their dominance, the com-

bination of dominant modes will include the most dominant

combination of scores as a response to the event. This is the

property that we use here to estimate dependence between

stimulation and network response. Such an approach is more

beneficial than direct estimate of statistical dependence (e.g.

correlation) as it separates spatial and time-dependent data

and ranks the spatial modes. Furthermore, these properties of

SVD ensure that the estimation of the dependencies is robust

with respect to sample time as long as they have captured

the full dynamics to which the network converges.

More precisely, SVD of an n � p matrix S has the form

S ¼ U � S � V�,

where U and V are n � n and p � p unitary matrices, with the

columns of U spanning the column space of X (spatial



Algorithm 2. Constructing trees.

maxLayer maximum layer of the tree

2: threshold the threshold for a node being considered

as a child

function EXTENDTREE(parent,PList,count)

4: if count . maxLayer then

count ¼ 0

6: return

if parent [ PList then

8: return

if parent � PList then

10: PList . add(parent)

count countþ1

12: for i [ (0, n) do

if i � PList and Prob [parent, i] .

threshold then

14: childList . add(i)
for child [ childList do

16: ExtendTree(child,Plist,count)

Algorithm 1. Constructing dependencies.

1: n number of neurons
2: t0 starting time
3: T final time
4: k time step
5: for i [ (0, n) do

6: input[i] ¼ 1

7: X ¼ run_network(t0, T, k, input)

8: [U,S,V ] ¼ SVD(X )

9: mode ¼
P

j jUjj
SjP
k S2

k

10: probability ¼mode/mode [i]
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neuronal modes) and the columns of V spanning the row

space (time-dependent coefficients) [24]. S is assumed to

have diagonal entries sj which are non-negative and

in descending order, i.e. s1 � s2 � . . . s � sm � 0, where

m ¼ min (n, p). Once the original matrix S is decomposed, Uj

(column vector of U) and Vj (column vector of V) record the

mode corresponding to singular value and temporal coeffi-

cients corresponding to the sj, respectively. Each singular

value sj in S corresponds to the significance of the correspond-

ing mode. Using SVD, we can find a lower-dimensional

representation for the matrix S, which captures the dominant

features of neural dynamics. Dimension reduction is per-

formed by retaining k-dimensional subspace, where k , n,

spanned by k-modes corresponding to top k singular values.

When using SVD to obtain a low-dimensional represen-

tation of the data, we need to retain enough modes to

approximate the data. In practice, an energy criterion on

singular values is often used as it specifies the amount of

energy included in the chosen modes. For example, a typi-

cal energy criterion requires 95% of the energy in S. That is,

the sum of the squares of the retained singular values

should be at least 95% of the sum of the squares of all singu-

lar values. For a snapshot matrix whose network responses
reach a fixed point, the first dominant mode would be suf-

ficient to represent the fixed point. For oscillatory networks,

the first two modes together represent oscillatory dynamics.

Instead of using the classical k-rank approximation, we pro-

pose a new approach that takes the linear combination of

the modes according to their significance, which results

in a one-dimensional column vector. Specifically, we

use the sum of all modes weighted by singular values

as a one-dimensional representation of the original Rn�p

data (figures 2 and 3).

Xn

i¼1

s2
iPn

j¼1 s
2
j
jUij [ Rn:

(d) Construction of a Bayesian network
The features extracted from snapshot matrices are used to

obtain pairwise dependencies. Each snapshot matrix cor-

responds to a stimulation of a single neuron. We assume

the stimulated neuron is driven into an active state and

thus the snapshot matrix reflects the response of other

neurons, which we transform to probabilities, conditioned

on the stimulated neuron being activated. We achieve this

by normalizing each mode according to the response of its

input neuron, Xi. We interpret the result as the conditional

probability P(Xj ¼ 1 jXi ¼ 1) and store it into the ith column

of the conditional probability table. The PGM itself consists

of probabilities and thus does not indicate whether it is

positive causality or negative (anti-)causality. Additional

descriptive states of neuron activity could be added in the

future by extending neural states, for example, each node

state would be active, anti-active and inactive. P(Xj ¼ 0 j
Xi ¼ 1) can be calculated by 1 2 P(Xj ¼ 1 jXi ¼ 1), and we

assume that P(Xj ¼ 0 jXi ¼ 0) ¼ 1 and P(Xj ¼ 1 jXi ¼ 0) ¼ 0,

i.e. a node cannot be active if there is no input into

the network.

The resulting table is an n � n dependency matrix, which

records the complete pairwise dependencies for the entire

neuronal network (see figure 2). The matrix itself contains

useful information about the network, and by constructing

the PGM we can further extract and visualize this infor-

mation. As any joint distribution can be decomposed into a

product of conditional probabilities, the dependency matrix

when transformed into pairwise conditional distributions

records the full joint distributions encoded by the PGM. A

natural graphical representation of a neuronal network is a

directed cyclic graph as the majority of networks incorporate

multiple pathways and recurrence. Inference on such graphs

is hard to perform as the existence of cycles often leads to

non-convergence of the probabilities [2]. We, therefore,

choose to eliminate cycles and propose a restricted iterative

deepening (RID) algorithm that builds a tree for each pos-

terior inference problem on the graph (algorithm 2). The

tree structure ensures that each neuron has at most one

parent and therefore is acyclic by construction. A directed

spanning tree can be constructed by choosing an arbitrary

root and direct edges away from the root [2]. As our goal is to

identify functional sub-circuits within the network and their

component neurons, a tree-structured graph allows us to

capture the propagation of neural pathway subject to stimuli.

For constructing the tree, the RID algorithm that we

implement starts with designated input neuron and extends
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Figure 2. Construction of dependencies between nodes. By injecting input stimuli into each neuron, we obtain a series of snapshot matrices that record network
dynamics. By decomposing the snapshot matrices using SVD, we obtain the decomposition modes and compress them into a single vector for each matrix. We then
normalize the vector according to its input neuron and obtain pairwise responses, which constitute the adjacency matrix of pairwise conditional probabilities.

input node

extend (G1)
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G1
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select
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Figure 3. Tree construction from adjacency matrices. We start with the input
node, and sort the other nodes according to their probabilities conditioned on
the input node. We ignore nodes with conditional probabilities lower than
the threshold, and select the top nodes with the highest conditional prob-
abilities. A constraint can be imposed to limit the number of children that
a node can have. From there we extend each node recursively, until it
either reaches the maximum tree depth, or reaches neurons in a particular
set (e.g. motor neurons). The threshold, maximum tree depth and maximum
number of children are pre-set parameters to limit the size of the tree.
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the tree according to pairwise conditional dependencies.

The process continues until the tree either reaches the

desired set of output neurons, e.g. motor neurons, or

reaches the maximum depth of the tree, which can be

imposed. We restrict the width of the tree (the number of

children that a parent can have) by imposing a threshold

on the conditional dependencies. For each parent neuron

Xi, we explore all of its children neurons Xj that have pair-

wise dependencies P(Xj jXi) exceeding the threshold

probability in descending order (see figure 3).
3. Examples of three node neuronal network
motifs

To illustrate our methodology, we consider example motifs

with three units. Neurons’ dynamics are set by a continuous

time-recurrent neural network [25]:

dui(t)
dt
¼ � ui(t)

ti
þ
Xm

j¼1

w jis(uj(t))þ Ii(t), i ¼ 1, . . . ,m,

where ui(t) is the internal state of the ith unit, ti is the time

constant of the ith unit, wji are the connectivity signed weights
(þ activation, 2 inhibition), and Ii(t) is the input into ith unit.

The term s(ui(t)) specifies the output of the ith unit, with s

being the output function. Here, we use s(x) ¼ tanh(x). We

use random variables X, Y, Z to denote the three nodes in

the respective PGM; each takes binary values f0, 1g.
In the case of three units, there are several ways to

connect them. We choose four distinct connectivity con-

figurations that provide distinct functionality, shown in

figure 4a. The configurations are: (i) A simple chain from X
to Y to Z, with weights wXY ¼ wYZ ¼ 1

2; (ii) A simple loop,

with weights wXY ¼ wYZ ¼ wZX ¼ 1
3; (iii) Inhibition edge

from Y to Z, with weight wYZ ¼ � 1
3, wXY ¼ wXZ ¼ 2

3;

(iv) Three edges that constitute a directed acyclic network,

with weights wXY ¼ wYZ ¼ wXZ ¼ 1
3. All other unassigned

weights are 0. We call these static connectivity maps connec-

tomes. Our goal is to infer functional connectivity based on

the connectome and the network dynamics.

To simulate the dynamics, we inject a constant input of 1

unit into a specific neuron and record network response in a

snapshot matrix. We then apply SVD on the snapshot matrix

and extract the dominant modes, as described in the previous

section. For example, in case 2, the network is simulated for a

sufficiently long time with stimuli fI1, I2, I3g set to f[1, 0, 0], [0,

1, 0], [0, 0, 1]g independently. Applying the method yields the

pairwise dependency matrix P

P ¼
1 0:0817 0:2507

0:2507 1 0:0817
0:0817 0:2507 1

2
4

3
5:

The elements of P are used as approximations to

conditional probabilities:

P(Y ¼ 1 jX ¼ 1) ¼ 0:2507, P(Z ¼ 1 jX ¼ 1) ¼ 0:0817,

P(X ¼ 1 jY ¼ 1) ¼ 0:2507, P(X¼ 1 jX ¼ 1) ¼ 0:0817,

P(X ¼ 1 jZ ¼ 1) ¼ 0:2507, P(Y ¼ 1 jZ ¼ 1) ¼ 0:0817:

If we add Gaussian noise to the simulation, we obtain a

slightly perturbed pairwise dependency matrix P̃:

~P ¼
1 0:0832 0:2498

0:2503 1 0:0825
0:0824 0:2498 1

2
4

3
5,

which demonstrates that the SVD-based approach is robust to

noise.

Owing to the simplicity of the motifs, we can validate

the PGM via an analytical dynamical systems approach

by calculating the fixed points. For case 2, the fixed point
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Figure 4. Construction of PGMs for three-unit motifs. (a) Connectomes of four examined motifs. (b) Network responses when external input is injected into each
unit (indicated by diagonal arrow). The colour of the units indicate the activation level of each unit, i.e. darker colour indicates a more active node. (c) Constructed
PGM structures. If there is an edge from X to Y, then the conditional probability P(Y j X ) . 0.1. Stronger arrows correspond to higher probability.
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induced by input into node X is (u*1, u*2, u*3) � (1, 0.2507,

0.0817), which is exactly the value of the conditional prob-

abilities we computed using the PGM construction

approach. Because all edge weights are identical, the same

fixed point will be induced by input into the other two

nodes up to shuffling of the indices.

We also calculate the correlation coefficients directly from

the time series, and obtain a correlation matrix Q:

Q ¼
1 0:9705 0:9625

0:9705 1 0:8781
0:9625 0:8781 1

2
4

3
5:

With the same Gaussian noise added to the system, the cor-

relation matrix is greatly perturbed, resulting in a matrix Q̃:

~Q ¼
1 �0:0028 0:0017

�0:0028 1 0:0043
0:0017 0:0043 1

2
4

3
5:

Notably, the matrix Q̃ does not represent the functional

connectivity of the underlying system; particularly note

the negative correlation between X and Y . In addition,

the matrices Q and Q̃ are substantially different, indicating

the sensitivity of the correlation approach to noise. In sum-

mary, these examples demonstrate that our proposed SVD
approach is more appropriate to capture the intrinsic dynamics

and statistical dependency between nodes.

A similar validation process can be used for other con-

figurations. We include their analysis in the Appendix. To

infer the functional connectivity graph, we apply the RID

algorithm to the dependency matrix P and set the threshold

to be 0.1 and the maximum depth of the tree as 3, because

there are only three nodes. Three individual trees are con-

structed for each case. Combination of them into one graph

is shown in figure 4c. Comparing figure 4a (connectome)

with 4c (PGM), we observe that the PGMs have different

structures from their corresponding connectomes. Indeed,

the edges in the PGM represent the conditional dependencies

instead of weights and reflect how the motif processes inputs.

In particular, in case 1 the PGM shows that Y strongly

depends on X, and Z strongly depends on Y, which corre-

sponds to the chain structure of the motif. It also

demonstrates weaker dependence of Z on X, which is not tri-

vially seen in the connectome. In case 2, the PGM indicates

symmetry and interdependence between all the nodes.

Thereby input injection into any node will produce an equiv-

alent response, a characteristic of a circular structure of the

motif in this case. Notably, the motif’s connectome shows

propagation in one direction, while the PGM estimates
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Figure 5. Two layers of the neuronal network of C. elegans. (a) An example of forward locomotion induced by two layers of the neuronal network of the
worm (image credit http://www.connectomeengine.com/). The first layer (b): connectome of C. elegans, consisting of 297 somatic neurons, 6393 chemical
synapses and 890 gap junctions. The connectome shows (i) the chemical synapses between neurons and (ii) the gap junctions. The second layer (c): neural
dynamics modelled by differential equations. Here, we show voltage oscillations of the motor VB group. Combining the two layers we achieve the dynome, a
dynamically evolving network, which is the foundation for constructing the PGM.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170377

7

symmetric behaviour. In case 3, there is an inhibitory edge

between Y and Z, resulting in a negative dependence, and

we consider two approaches here: one is to set the conditional

probability to zero and eliminate the edge between Y and Z in

the functional connectome (as shown in figure 4). Another way

is to take the absolute value of the dominant modes (as

described in algorithm 1), and show a positive dependence

from Y to Z. The first approach ignores the negative causality:

while the second approach retains some information of the

causality; therefore we adopt the second approach in the C. ele-
gans study described below. Also, even though the weights

wXY and wXZ are the same in the connectome, the dependency

from Y to X in the PGM is stronger than the dependency from

Z to X. Such an effect is due to inhibition of stimulus propa-

gation from X to Z through Y. In comparison, in case 4,

where the inhibitory edge between Y and Z is replaced by an

excitatory edge, the PGM indicates that Y enhances the propa-

gation of stimulus from X to Z, even though the weights wXY

and wXZ are all identical. These exemplary cases demonstrate

that PGM structure is different from the motif’s connectome

and captures the functional dependencies between the nodes.

These dependencies are not trivial to conclude from the con-

nectome structure alone and become more complex as the

dimension of the motif and ratio of connections change.
4. Application to neurobiological dynamic
connectome

(a) Neuronal network of Caenorhabditis elegans
The nematode Caenorhabditis elegans nervous system is a

well-studied system, consisting of 302 neurons identifiable

and consistent across individuals. The connections between

the neurons are composed of chemical synapses and gap
junctions, whose wiring diagrams, i.e. connectomes, are

nearly fully resolved from serial section electron microscopy

[14]. In addition to the connectomes, the dynamic model that

describes the biophysical processes between neurons has

been introduced [20]. Specifically, the dynamical model of

the nervous system is governed by a system of nonlinear

differential equations (figure 5):

C _Vi ¼ �Gc(Vi � Ecell)� IGap
i (V)� ISyn

i (V)þ IExt
i ,

where C is the whole-cell membrane capacitance, Gc is the

membrane leakage conductance and Ecell is the leakage

potential. IExt
i is the external input current injected to the

ith neuron. IGap
i and ISyn

i correspond to the input currents

modelling gap junctions and synapses, respectively. More

details on the biophysical model can be found in [20] and

in the Appendix.

Combining the connectome and the dynamical model con-

stitute the dynome of C. elegans. Incorporating both the layers

of connectivity and dynamic biophysical processes, the C. ele-
gans dynome models the nervous system functionality and

processing of stimuli that it performs. Indeed, when provided

with arbitrary input stimuli, the C. elegans dynome is capable

of producing various forms of characteristic dynamics such as

static, oscillatory, non-oscillatory and transient voltage pat-

terns consistent with experimentally observed ones [20,26].

These simulated dynamics indicate that the C. elegans
dynome is a valuable model for the worm’s nervous system

and thus a suitable foundation for the construction of its

probabilistic graphical model.

(b) Constructing dependencies
We apply our method to the neuronal network of the

C. elegans nematode by injecting scaled input current into

each of the n ¼ 279 neurons independently using the

http://www.connectomeengine.com/
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Neural Interactome platform (see [21,27] for further details).

We run the simulations for 15 s with a time step of 0.01 s

and record the dynamics of all neurons in snapshot matrices

with each snapshot matrix S of dimensions n � T ¼ 279 �
1501. We then subtract the activation threshold for each

neuron from the simulation and exclude the initialization

phase of the network (1 s). We then obtain 279 response

vector representations of all neurons to the stimulation of

the input neurons by performing SVD on each snapshot

matrix and taking the weighted sum of all modes as described

in §2. Each of these vectors is normalized according to input

neuron response, which yields the conditional probability

P(Xj ¼ 1 jXi ¼ 1) as elements of the vector. The vectors are

stored as column vectors of the conditional probability table,

resulting in a 279 � 279 dependency matrix, which records

the complete pairwise dependencies of the nodes in the

C. elegans neuronal network.
5. Caenorhabditis elegans functional connectome
represented by probabilistic graphical model

(a) Anatomical connectomes compared with probabilistic
graphical model functional connectome

We compare the dependency matrices (functional connec-

tome) obtained from our PGM construction with the
anatomical (gap and chemical connectomes) in figures 6

and 7. Figure 6 compares top connected (hub) neurons in

each group type (sensory, inter and motor) across the three

different connectomes. The definition of connectivity for

synaptic and gap connectomes is straightforward and we

use the number of incoming edges as a count for connectivity.

The connectivity in the PGM is expressed through probabilis-

tic interaction and thereby top connected neurons are the

neurons with the highest conditional probability. Notably,

the PGM identifies a vastly different set of hub neurons

compared with those identified by synaptic and gap connec-

tomes. In particular, we observe that ‘hub’ neurons in the

synaptic and gap connectomes, such as AVA and AVB, are

not listed in PGM’s top connected neurons. Furthermore,

top sensory and motor neurons in PGM receive far more con-

nections than neurons from the same group in the synaptic

and gap connectomes.

From sensory neurons, PGM highlights ASJ, PLNL,

URAVR and AFDR as the neurons with the most probabilistic

interactions. These neurons are reported to be associated with

avoidance behaviours under different circumstances in the

environment. ASJ neurons take part in light sensation and

promote reversals [28] while PLN neurons are part of the sen-

sory group associated with oxygen sensing [29]. URA

neurons are generally considered as sensory neurons but

also innervate head muscles via the nerve ring [30]. AFD

neurons are considered as thermo-sensors and promote
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turns on encounters with high temperature [31]. It is particu-

larly intriguing to find ASJ neurons as top functional neurons,

as they are anatomically sparsely connected sensory neurons.

We investigated the reason for such discrepancy by looking at

the incoming neurons related to ASJ and comparing them

with ASK neurons, which have the reverse property: they

are anatomically well connected neurons but not functionally

(figure 6d ). Our comparison shows that the majority of incom-

ing edges (60%) into ASJ in the PGM are motor neurons,

whereas for ASK, despite being connected to ASJ, there are

significantly fewer functional interactions with motor neur-

ons and consequently a smaller number of incoming

edges. These results suggest that ASJ may have substantial

interactions with motor neurons and possibly a particular

role in motor coordination, e.g. proprioceptive feedback,

where motor neurons interact with sensory neurons. Further

analysing the PGM, we discovered that the AVA, DB01,

PVC, VA motor group and DVC neurons have the highest

probabilities of triggering ASJ neurons. As many of these

neurons are associated with backward locomotion, one can

speculate that, despite its low connectivity, ASJ could be

more widely implicated in reversal and avoidance beha-

viours than previously known in the literature. Similar

observation can be made with respect to PLNL, URAVR
and AFDR. These neurons are not particularly well connected

in the anatomical connectomes, but have a high number of

probabilistic interactions with neurons associated with back-

ward motion.

Inter neurons associated with avoidance and locomotion

appear to be functionally dominating. PGM identifies LUA,

PVN, SDQ, AIM, AIB neurons as the top connected ones.

While the exact functions of LUA and PVN are not very well

known, LUA is suggested to function as a connector cell

between PLM touch receptors and ventral cord, suggesting

its potential role in locomotion [32]. While AIM neurons are

speculated to modulate the locomotion circuit via regulating

extra-synaptic serotonin [33], SDQ and AIB neurons, on the

other hand, are known to be associated with high oxygen

avoidance and promotion of turn, respectively [29].

As in other groups, within the motor neurons group we

find that the top connected neurons are associated with turn-

ing/locomotion behaviours. Both RIV and SMD neurons

innervate neck/head muscles that modulate avoidance/

escape behaviours such as omega turns [34], and both DD06

and DB07 neurons are components of main modulators con-

trolling turns and locomotion, respectively, in the dorsal cord

upon their activation [35]. Furthermore, we observe that the

majority of the neurons that have probabilistic interactions
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with DD06 and DB07 in the PGM are members of body wall

motor neurons such as the A, B and AS groups. The results

suggest that DD06 and DB07 may serve as hub neurons

within the array of motor neurons distributed throughout

the worm’s body wall. Indeed, some studies propose

repeated network motifs within the body wall motorneuro-

nal connectivity as a mechanism that facilitates locomotion

[36]. Taken together, our results provide new insights into

the worm’s neural function by (i) suggesting the importance

of avoidance/turning behaviours to the organism, and (ii)

suggesting the potential functional importance of neurons

whose roles are currently unclear.

In figure 7, we visualize side-by-side the PGM dependency

matrix and the anatomical connectomes with the direction of

the connectivity being ( from, to) and the neurons are ordered

by location (anterior to posterior), similar to the order in [14].

This visualization shows the unique characteristics of each con-

nectome. Gap connections appear to be mostly local, i.e.

clustered around the diagonal, in which physically neighbouring

neurons have gap junctions. Also there are a few horizontal and

vertical ‘chains’ in inter and motor neurons, which correspond to

single neurons having gap junctions with multiple neurons.

Synaptic connections incorporate dense connectivity patterns

(inter–inter, sensory but not functionally inter) in addition to

local structure and a few connectivity chains. Furthermore, sen-

sory! inter and inter!motor connections are well established

in the anatomical connectomes, while sensory!motor connec-

tions are rarer.

PGM connectivity appears to be structured differently

from the anatomical connectomes, with local responses

being less profound. Most of the dominant patterns appear

to be vertical chains. Each chain corresponds to a receiving

neuron triggered by stimulation of multiple neurons across

groups. Triggering neurons are also distant neurons with

no gap or synaptic connections. Most of the vertical chains

appear in inter and motor neuron groups. In addition, we

observe that excitation of sensory neurons leads to excitation

of motor neurons, and motor neurons in reverse also impact

sensory neurons. Such observations could be related to the

known ability of sensory neurons to trigger motor behaviours

and motor neurons to influence sensation. Another obser-

vation from PGM visualization is that there are no

dominant horizontal chains indicating that a single neuron

response is triggered by only a few input neurons. To under-

stand how each anatomical connectome contributes to the

PGM structure we constructed PGMs by including only a

single anatomical connectome (gap or synaptic) in the

neural dynamics simulator (see figure 10). The PGM associ-

ated with the synaptic-only dynamical model results in a

graph with extremely sparse dependencies, indicating that

only trivial dynamics persist. In particular, we do not observe

outgoing edges from ALML/R, PLML/R known to be func-

tional in locomotion behaviour. On the other hand, the PGM

constructed from the gap-only dynamical model turned out

to be extremely dense, with many distinct and additional

functional connections not present in the PGM constructed

from the full dynamical model. For example, for the

ALML/R PLML/R neurons, we note that a different set of

motor neurons is activated. These experiments indicate that

both anatomical connectomes are required to produce ade-

quate neural dynamics. In terms of contribution to the

PGM construction, we observe that the synaptic connectome

serves as a selective filter to gap-only functional connections.
(b) Inference of functional sub-circuits
While global features of functional properties could be obtained

through visualizing the PGM dependency matrix, additional

analysis is needed to retrieve specific features such as pathways

of neural information flow from a neuron of interest or a clus-

ter of neurons. Such pathways can be inferred through

posterior inference traversing the PGM. We pose two types

of inference queries on the pairwise conditional table. (i)

Given a set of input neurons: What is the set of downstream

neurons most likely to be activated? For example, such infer-

ence is relevant to identify inter and motor neurons activated

by a set of sensory neurons. (ii) Given a set of downstream

neurons: What are the subsets of upstream and midstream

neurons most likely to activate these downstream neurons?

Such inference can reveal, for example, inter neurons and sen-

sory neurons that are most probably to activate motor

neurons. Both of these questions can be answered by con-

structing a graphical model for the network and performing

posterior inference. While the first problem follows stimulus

propagation forward, the second problem is an inverse

problem, often called the MAP problem, and requires exam-

ination and optimization over many probable inverse

propagation sequences. We summarize our key results

below and include individual neuron trees in the Appendix.

To infer downstream neurons, we start with a set of input

nodes and use the RID algorithm to construct a response tree

for each input node in the set. For each parent node, we explore

all of its children that have conditional dependency exceeding

0.1 in descending order. For simplicity, we restrict the tree to

having a maximum depth of 3—one layer each of sensory,

inter and motor neurons—to keep the flow from sensory to

motor neurons straightforward. In particular, we focus on

well-known experimental scenarios such as forward and

backward locomotion, as shown in figure 8. Specifically, we

investigate forward locomotion triggered by posterior touch:

activation of sensory PLML/R neurons results in the activation

of the DB and VB groups, associated with forward locomotion.

We investigate this sub-circuit by constructing a tree with input

nodes PLML and PLMR (labelled PLM). Both neurons activate

the same set of inter neurons, LUA, PVR, PVW, AVJ, DVA,

i.e. these neurons have the highest probabilities conditioned

on the activation of PLML and PLMR sensory neurons and

lead to motor neurons. Other inter neurons do not lead to

any immediate motor neurons. The DVA neuron leads

to the DB01 motor neuron in group B (motor neurons

group associated with forward movement [32]), which in

turn activates most of the motor neurons in the DB and VB

groups. These results are consistent with functional stimulus

propagation flow reported in the literature.

We also examine anterior touch, triggered by stimulation of

ALML and ALMR (labelled ALM) neurons, which leads to

backward locomotion. ALM activation leads to a larger set of

inter neurons. The set contains all inter neurons associated

with forward locomotion and additionally includes AVD,

ADA, PVC, PVQ and BDU, most of which are indeed associ-

ated with backward movement. Indeed, AVD is

experimentally known to be associated with backward loco-

motion, and PVC plays an important role in both forward

and backward motion [18,30]. Stimulus flows from the PVC

neuron to several motor neurons, especially neurons in

group A, i.e. DA, VA (experimentally identified as associated

with backward movement), as well as in DB and VB groups.
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Compared with the circuit extracted from the synaptic

and gap connectomes in figure 8a from [18], the PGM suc-

cessfully recovers neurons participating in this circuit and

separates them into two functional sub-circuits. In each of

the sub-circuits, motor neurons are reached to induce loco-

motion. As can be seen from the circuit sketch, separation

into independent circuits is nontrivial. The PGM also ident-

ifies inter neurons such as AVD, PVC and DVA, while the

hub neurons AVA and AVB are missing. A possible expla-

nation is that individual activation of ALM or PLM is

insufficient for AVA/AVB to reach a strong state of excitation

and they are activated through another stimulation/process.

We use MAP inference to perform reverse tracking of acti-

vating neurons of motor neurons associated with locomotion.

We, thus, choose motor neurons in the ventral cord members

of A and B groups shown as triangles in figure 9 and labelled

as DA, VA, DB, VB, DD, VD. Posterior MAP inference finds

inter and sensory neurons, which are most likely to activate

the given motor neurons. Specifically, we apply the RID
algorithm and flipped conditional probabilities. Instead of

sorting P(Xi jXj), we sort P(Xj jXi), with Xj being the parent

node. As in forward RID, we limit the depth of the tree to

be 3 and keep one layer each of motor, inter and sensory

neurons. We find ten inter neurons and six sensory neurons

that most frequently appear in the reverse traversal paths.

We list these neurons in figure 9 as circles (inter) and rec-

tangles (sensory). Notably, most of sensory and inter

neurons that MAP inference produces were indeed exper-

imentally associated with locomotion, and these are

neurons that we identified in PLM and ALM pathways in

figure 8. Furthermore, additional neurons known to partici-

pate in locomotion are identified. Inferred inter neurons

now do include AVA and AVB, which were not present in

forward inference from ALM and PLM (see figure 8),

emphasizing that when additional paths are considered,

these neurons do play a role in sensory–motor neural inte-

gration, but not in direct stimulation of ALM and PLM. The

power of MAP inference is in its ability to associate
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additional neurons with the designated motor neurons,

without any prior biological knowledge of the network.

For example, additional inferred sensory neurons include

AQR and PQR, known experimentally to influence loco-

motion. Their function is currently being studied and

conjectured to be associated with oxygen sensation and

avoidance [37]. Using MAP inference in PGM we, thereby,

are able to support this conjecture. The posterior inference

from these neurons would provide more detail about

which pathways the stimulus from AQR and PQR is

following to reach locomotion motor neurons.

6. Discussion
We presented a new approach to forming a graphical model

(PGM) for a neuronal network. Two key components in our

approach allow us to construct the PGM that captures net-

work functionality. The first component is the underlying

dimension reduction technique to obtain a low-dimensional

projection of network responses to stimuli. The second

component is that we capture network responses to inde-

pendent stimuli (single neuron stimulation). We thus consider

pairwise dependencies instead of full dependencies on the

whole network and greatly reduce the number of par-

ameters. This constraint-based approach is computationally
efficient and allows posterior inference when combined

with a method for traversing the PGM to produce response

trees (RID).

We describe how to apply these techniques to simple

motif examples and to a neuronal model of the C. elegans ner-

vous system whose anatomical connectomes and dynamics

have been resolved. The application to C. elegans neuronal

activity identified key neurons and sub-circuits without any

prior knowledge of their functionality. In particular, our find-

ings prompt additional examination of functional roles for

some of the neurons outlined by PGM. Ultimately, determi-

nation and validation of the roles of these neurons should

be performed in experimental settings or by coupling

neural dynamics with biomechanical models of muscles

and body. Furthermore, the constructed PGM can be used

for extraction of additional pathways associated with stimuli

and behaviours that we did not consider here. Notably, the

pathways inferred using the PGM indicate that if a particular

neuron is excited electrophysiologically or optogenetically,

the neurons included in the associated pathway tree will be

most responsive to this excitation. While we applied the

methodology to construct the PGM from simulation-

driven data, a similar approach could be implemented in

an experimental setting using single-neuron clamping and

multi-neuron imaging network dynamics. Likewise, the



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170377

13
methodology introduced here can be applied to other

network models and organisms.

Our framework assumes that the underlying network

structure remains isotropic over simulation time, that is, the

anatomical connectomes and pairwise conditional probabilities

P(BjA) remain similar if the simulation is continued for a

longer time, unlike networks that undergo rewiring

during simulation time, studied in previous works [5,6].

From a dynamical point of view, we expect our approach

to perform best when the simulated network dynamics con-

verge to low-dimensional attractors. Indeed, for the C.
elegans network, stimuli-induced low-dimensional attractors

were shown to exist in the network and simulation of the

network for an efficiently long period (15 s) is expected to

capture attractor dynamics [20].

The dimension reduction employed here is based on

SVD. We collapse all SVD modes into a single vector by com-

puting a weighted sum according to singular values of all

modes. A plausible reduction is to retain the modes compos-

ing 90% or more of the total energy. In many simulations of

C. elegans, the first two modes indeed take up more than 90%

of the energy and the first four modes take up more than

99%. This is consistent with the observation that behavioural

manoeuvres are spanned by several modes [38]. Indeed, we

observe only a minor difference between taking the weighted

sum of all modes and with taking the weighted sum of the

first two modes. As expected, we do see a significant differ-

ence between using the weighted sum of the first two modes

and just the dominant mode, indicating that attractors are

spanned by at least a two-dimensional space. Notably, it is

also possible to use other approaches to compress the

modes into a single vector, for example, a combination of

k-rank approximation with methods such as Exclusive

Threshold Reduction and Optimal Exclusive Threshold

Reduction, introduced in [39].

By independent stimulation and activation of each neuron

followed by construction of pairwise response probabilities,

our approach assumes that responses could be superim-

posed, i.e. the response probability caused by two or more

stimuli is the sum of the responses that would have been

caused by each stimulus individually. While, in general, the

assumption is not guaranteed to hold in nonlinear neuronal

systems, networks that have input induced attractors, such

as the C. elegans system and other attractor systems where

there are many functionalities, are an aggregate of response

patterns to individual stimulations. Theoretically, it is poss-

ible to construct a Bayesian network D(G, u) with ui ¼ P(Xi j
X1, . . ., Xn), in which we go beyond the pairwise conditional

probabilities and explore all the possible assignments to all

the variables in the set. Specifically, we either activate each

node in the network, or force it to be inactive. However,

doing so requires us to specify 2n distributions and would

require much more simulations such that for large n the

construction will become computationally intractable.

Our approach for measuring probabilistic dependen-

cies in dynamic processes is different from previously

introduced approaches. Alternative approaches propose

constructions which are based on measuring correlations

or causality that collapse time and can possibly lose valuable

information. In this realm, another possibility is to consider

time-dependent PGMs. However, the posterior inference

becomes ill-defined and inefficient as for the original dyna-

mical model from which the PGM is constructed. Our
approach is therefore considered as a hybrid of the two

aforementioned approaches because it uses spatio-temporal

dimension reduction with pairwise probabilities constraint

to produce a static PGM for which posterior inference is fast

and well defined.

The posterior inference could also be performed in real

time, by incorporating simulations as the inference occurs,

i.e. simulate the network and construct probabilities from

time-series snapshot matrices. Such an extension will allow

us to relax the pairwise probabilities constraint and potentially

lead to the more accurate representation of information flow.

We did not choose such an approach because it is time-

consuming and requires performing network simulations for

every inference task. In practice, for a network with more

than a few nodes, real-time inference becomes intractable.

We thereby pre-process network responses as pairwise depen-

dencies and construct a pre-processed PGM for which

inference is a standard procedure in a statistical model.
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Appendix

(a) Analytical validation of motif examples
For case 1, a simple chain, we set the weights wXY ¼ 1

2,

wYZ ¼ 1
2, and all other weights to be zero. Then the network

dynamics are as follows:

f 0X(t) ¼ �fX þ IX ¼ f1,

f 0Y(t) ¼ �fY þ
1

2
tanh (fX)þ IY ¼ f2,

f 0Z(t) ¼ �fZ þ
1

2
tanh (fY)þ IZ ¼ f3:

(1) Fixed point:

(y�1, y�2, y�3) ¼
�

1,
1

2
tanh (1),

1

2
tanh

�
1

2
tanh (1)

��

� (1, 0:3808, 0:1817):

(2) Linearization:

J(y�1, y�2, y�3) ¼
�1 0 0

0:5 sech2(y�1) �1 0

0 0:5 sech2(y�2) �1

2
64

3
75,

L ¼
�1 0 0

0 �1 0

0 0 �1

2
64

3
75:

As all eigenvalues are negative real numbers, the system is

stable at the fixed point.
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Using algorithm 1, the conditional probabilities obtained

from simulated data are as follows:

P(y ¼ 1 j x ¼ 1) ¼ 0:3808, P(z ¼ 1 j x ¼ 1) ¼ 0:1817,

P(z ¼ 1 j y ¼ 1) ¼ 0:3808, P(x ¼ 1 j y ¼ 1) ¼ 0,

P(x ¼ 1 j z ¼ 1) ¼ 0, P(y ¼ 1 j z ¼ 1) ¼ 0,

which is consistent with the analytical results. If we add

Gaussian noise to the system, we get approximately the

same result, which validates that our approach is robust to

noise.

For case 3 with feedforward inhibition, suppose wXY ¼ 2
3,

wXZ ¼ 2
3, wYZ ¼ � 1

3, and all others are zero. Then the network

dynamics are as follows:

f 0X(t) ¼ �fX þ IX,

f 0Y(t) ¼ �fY þ
2

3
tanh (fX)þ IY,

f 0Z(t) ¼ �fZ þ
2

3
tanh (fX)� 1

3
tanh (fY)þ IZ:

(1) Fixed point:

(y�1, y�2, y�3) ¼
�

1,
2

3
tanh (1),� 1

3
tanh

�
2

3
tanh (1)

��

þ 2

3
tanh (1)

� (1, 0:5077, 0:3517)

(2) Linearization:

J(y�1, y�2, y�3) ¼

�1 0 0

2

3
sech2(y�1) �1 0

2

3
sech2(y�1) � 1

3
sech2(y�2) �1

2
666664

3
777775

,

L ¼
�1 0 0

0 �1 0

0 0 �1

2
64

3
75:

As all eigenvalues are negative real numbers, the fixed point

is stable.

Using algorithm 1, the conditional probabilities obtained

are as follows:

P(y ¼ 1 j x ¼ 1) ¼ 0:5077, P(z ¼ 1 j x ¼ 1) ¼ 0:3517,

P(z ¼ 1 j y ¼ 1) ¼ 0, P(x ¼ 1 j y ¼ 1) ¼ �0:2539! 0,

P(x ¼ 1 j z ¼ 1) ¼ 0, P(y ¼ 1 j z ¼ 1) ¼ 0:

For case 4 with feedforward excitation, suppose wXY ¼ 1
3,

wXZ ¼ 1
3, wYZ ¼ 1

3, and all others are zero. Then the network

dynamics are as follows:

f 0X(t) ¼ �fX þ IX,

f 0Y(t) ¼ �fY þ
1

3
tanh (fX)þ IY,

f 0Z(t) ¼ �fZ þ
1

3
tanh (fY)þ 1

3
tanh (fX)þ IZ:
(1) Fixed point:

(y�1, y�2, y�3) ¼
�

1,
1

3
tanh (1),

1

3
tanh

�
1

3
tanh (1)

��

þ 1

3
tanh (1)

� (1, 0:2539, 0:3367):

(2) Linearization:

J(y�1,y�2,y�3) ¼

�1 0 0

1

3
sech2(y�1) �1 0

1

3
sech2(y�1)

1

3
sech2(y�2) �1

2
666664

3
777775

,

L ¼
�1 0 0

0 �1 0

0 0 �1

2
64

3
75:

As all eigenvalues are negative real numbers, the fixed point

is stable.

Using algorithm 1, the conditional probabilities obtained

are as follows:

P(y ¼ 1 j x ¼ 1) ¼ 0:2539, P(z ¼ 1 j x ¼ 1) ¼ 0:3367,

P(z ¼ 1 j y ¼ 1) ¼ 0:2539, P(x ¼ 1 j y ¼ 1) ¼ 0,

P(x ¼ 1 j z ¼ 1) ¼ 0, P(y ¼ 1 j z ¼ 1) ¼ 0:
(b) Caenorhabditis elegans dynamics
The dynamic model of the neuronal network is governed by a

system of nonlinear differential equations:

C _Vi ¼ �Gc(Vi � Ecell)� IGap
i (V)� ISyn

i (V)þ IExt
i ,

IGap
i ¼

X
j

Gg
ij(Vi � Vj),

ISyn
i ¼

X
j

Gs
ijsj(Vi � Vj),

where Gg
ij is the total conductivity of the gap junctions

between i and j, and Gs
ij is the maximum total conductivity

of synapses from j to i. The synaptic activity variable, si, is

governed by

_si ¼ arf(vi; b,Vth)(1� si)� adsi,

where ar and ad correspond to the synaptic activity’s rise and

decay time s, Vth is voltage at equilibrium, and f is the sig-

moid function with width b:

f(vi; b,Vth) ¼ 1

1þ exp (� b(vi � Vth))
:
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