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The OpenWorm Project is an international open-source collaboration to

create a multi-scale model of the organism Caenorhabditis elegans. At each

scale, including subcellular, cellular, network and behaviour, this project

employs one or more computational models that aim to recapitulate the cor-

responding biological system at that scale. This requires that the simulated

behaviour of each model be compared with experimental data both as the

model is continuously refined and as new experimental data become avail-

able. Here we report the use of SciUnit, a software framework for model

validation, to attempt to achieve these goals. During project development,

each model is continuously subjected to data-driven ‘unit tests’ that quanti-

tatively summarize model-data agreement, identifying modelling progress

and highlighting particular aspects of each model that fail to adequately

reproduce known features of the biological organism and its components.

This workflow is publicly visible via both GitHub and a web application

and accepts community contributions to ensure that modelling goals are

transparent and well-informed.

This article is part of a discussion meeting issue ‘Connectome to

behaviour: modelling C. elegans at cellular resolution’.
1. Introduction
The OpenWorm Project (http://openworm.org) is an initiative to develop a

multi-scale model of the roundworm Caenorhabditis elegans with contributions

from more than 80 individuals working in over a dozen countries.

The computer code defining the model is spread across sub-projects that

each defines specific aspects of the organism, such as cellular ion channels or

motor behaviours. Each of these spatial and conceptual scales is typically mod-

elled independently, with multi-scale integration being a long-term goal of the

project. These scales vary in spatial extent (nanometre to millimetre) and in

level of abstraction (tracking of ion concentrations versus body wall dynamics).

Each sub-project is organized as a public repository on GitHub, a web-based

software development platform that serves as the de facto location for collabora-

tive, open-source software projects, including those defining biological models.

Each sub-project also has distinct success criteria, which all have in common a

goal of reproducing empirical stylized facts associated with a biological

subsystem using biologically inspired dynamical models.

(a) Unit tests
In practice, formalizing these success criteria requires producing a checklist of

experimental observations and then assessing how well a single model can

reproduce them when simulated with the appropriate parameters and stimulus

conditions. Here we implicitly assume that the ability to reproduce experimen-

tal results is an indicator of model fitness, and that models which reproduce

more such results are, ceteris paribus, superior to those that reproduce fewer.

This is analogous to the ubiquitous practice of unit-testing in software
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development, where the progress and status of a piece of soft-

ware is determined by how many unit tests are passed. These

unit tests are mini-programs that report whether the larger

piece of software successfully implements a particular

operation or functionality [1].

For example, a program aiming to list prime numbers

between user defined values a and b, and to throw an appro-

priate exception when a or b has an unexpected value, might

be assessed using a suite of unit tests. Some of these tests

would check the response of the software to different possible

values of entries for variables a and b against a known list of

true prime number values. Other tests might check for edge

cases such as negative values of a, values where a . b, or

non-numeric values for a and b, and verify that the program

returns the correct list of primes (or none at all). When the pro-

gram passes all of these tests (i.e. when each test confirms that

program output is as expected), the program is considered to

be valid and to provide a satisfactory solution for the task.

Unit-testing is widely considered to be essential for the

development of any program of sufficient complexity. One

strong argument in its favour is that formalizing and auto-

mating success criteria makes it easy to identify when any

change to the program or its external dependencies causes

one of those criteria to no longer be met—known as a

‘regression’ in the program. This enables developers to

repair the offending sections of the program to make it

meet the success criteria once again.
(b) SciUnit
The analogy to scientific modelling is clear and compelling:

a successful scientific model should pass unit tests which

encode specific empirical outcomes that investigators believe

adequately characterize the experimental system. A success-

ful model for classical mechanics, for example, should

pass unit tests corresponding to the measured trajectories

of fired projectiles, collisions of billiard balls and rotations

of spinning tops. While the number of potential, reasonable

unit tests might be vast, it may be sufficient to deploy a

few suites of tests that together cover a broad number of deci-

sive experimental results and that collectively summarize the

state of empirical knowledge in the field.

SciUnit is a Python framework which realizes this ana-

logy and enables the rapid construction and deployment of

data-driven unit tests for scientific models [2]. In SciUnit,
each type of scientific model is a class (in the programming

language sense), where an instance of the class represents a

particular realization of the same kind of model but with

specific parameters. Sustaining the classical mechanics ana-

logy, Newton’s Laws could be encoded as a model class,

and instances of that class might represent different values

of parameters such the gravitational constant. Each type of

test is also a class corresponding to a kind of empirical obser-

vation, and an instance of the class represents a particular

value for that observation. In classical mechanics, one test

class might generically encode the path of a projectile, and

specific instances would encode specific projectile attributes

and path observations. When a test instance judges a model

instance, it determines whether the output of the model

under those parameters adequately matches the observation.

This judgement is represented as a test score, which can be

qualitative (e.g. pass/fail) or quantitative (e.g. a Z-score of

1.26). The ensemble of test scores across all the tests in a suite
summarizes the validity of one particular parameterization

of a scientific model.

Importantly, SciUnit is designed so that testing does

not require specific knowledge about how a particular

model implements the generation of predictions (i.e. model

output). In other words, tests do not need to be written to

match the specific implementations of models. Instead, each

test simply enumerates which capabilities (i.e. methods

with specific signatures) a model is required to have, and

then the model must implement those capabilities in what-

ever way it can. For example, a projectile path test might

require models to implement a function that takes an initial

velocity vector as input and returns a time series of projectile

locations as output. How the model does so, internally,

is irrelevant to the test. More details on this model/test

interface and how it is realized are given elsewhere [2,3].
2. Material and methods
We describe partial testing of three OpenWorm sub-projects:

ChannelWorm for cellular ion channels (http://github.com/

openworm/ChannelWorm), c302 for neural circuits (http://

github.com/openworm/c302), and Sibernetic for worm body

motion (http://github.com/openworm/sibernetic). Testing

involves installation of part or all of the corresponding sub-project

and its dependencies, and is described in the documentation in

the ‘test repository’ (http://github.com/openworm/tests).

(a) Tools
Python 3.6 is used for execution of all code except where

described below. Simulations are controlled directly from tests,

and use a variety of simulator backends (depending on the sub-

project), including jNeuroML (https://github.com/NeuroML/

jNeuroML) and NEURON [4] for ion channel and neuron simu-

lations, and Sibernetic [5], for calculating the dynamics of the

muscle fibres and the elastic body and interactions with the

surrounding fluid. In order to test the robustness of the SciUnit
framework, we deliberately re-run model tests where the

model, observations and simulation protocols are held constant,

but the simulator backend varies. Under these conditions, for

example simulating with NEURON versus jNeuroML, test results

do not depend on the choice of simulator.

SciUnit is a discipline-independent framework; however, an

extensible library for a particular scientific discipline is needed

to provide an interface to the simulators, data repositories and

analysis tools specific to that discipline. NeuronUnit is one such

SciUnit-driven library, developed for the investigation of ion

channel, neuron and neural circuit models [6]. NeuronUnit was

used to organize models and tests for ChannelWorm and c302.

Through its interactions with the tools above, NeuronUnit
generates simulator code for these models from their original

simulator-independent representations in NeuroML [7,8], an

extensible markup language for simulator-independent descrip-

tions of neuroscience models. While SciUnit is agnostic to model

representation, and NeuronUnit does not impose any hard

model description requirements, several convenience functions

are available in NeuronUnit for models described using NeuroML.

For worm movement models, Sibernetic was used to produce

whole-worm movement trajectories due to muscle contractions

driven by activity modelled using c302. In other words, the

motor output was controlled by a neural circuit model acting on

a musculoskeletal model, representing a multi-scale simulation.

Output trajectories were encoded using Worm Commons Object

Notation (WCON) files (https://github.com/openworm/

tracker-commons), and movement features were extracted
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Figure 1. Testing overview. The C. elegans research community, including members of OpenWorm, produce models using standards such as NeuroML and optionally
tune their parameters. The community also produces abundant experimental data, which OpenWorm has taken the lead in annotating and curating into easily
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from these files using the Open Worm Analysis Toolbox (http://

github.com/openworm/open-worm-analysis-toolbox). Corre-

sponding features were obtained for experimental data from the

Open Worm Movement Database (http://movement.open-

worm.org), which contains over 4 TB of C. elegans behavioural

data, including videos, extracted movement trajectories and

corresponding movement features.

(b) Reproducibility
Software described here is available in the test repository on

GitHub at http://github.com/openworm/tests (OpenWorm

specific tests and infrastructure) and at the SciDash website

(http://www.scidash.org). Jupyter notebooks [9] (http://jupy-

ter.org) reproducing all figures shown here are available in the

test repository. Installation and execution of all code is continu-

ously tested on Travis-CI (https://travis-ci.org), which verifies

that all components of the test repository (and their dependen-

cies) are running correctly. We also provide a Docker image in

the test repository, which implements all tests in all sub-projects

without the need for local installation of SciUnit, NEURON and

the NeuroML tool chain. Analogous to an image on a virtual

machine, a Docker image (http://www.docker.com) is a compart-

mentalized operating system which is frozen in a pre-configured

state. Docker removes a large technical burden from the user by

shifting package management complexity from users to develo-

pers [10]. Consequently, the Docker image is guaranteed to run

and reproduce all results on any machine with no additional

configuration.
3. Results
SciUnit is currently applied to three OpenWorm sub-projects:

(i) ChannelWorm, for ion channel models in excitable cells;

(ii) c302, for models of neurons, myocytes and their connec-

tivity; and (iii) Sibernetic, for simulating the locomotor

behaviour of the intact organism. Here we describe the infra-

structure common to these projects and then describe tests

and test performance in each project individually. It is
important to note that this manuscript is not a demonstration

of commendable performance on these tests, nor of exhaus-

tive testing of each project, but rather of the existence and

integration of this test infrastructure into the project. We

expect that new tests will be added, and performance on all

tests will improve as each model continues to develop, now

that quantitative project goals, represented by test scores,

are being made concrete.

(a) Common infrastructure
The testing workflow is schematized in figure 1. The research

community (much of which is actively involved in the Open-

Worm project) produces both models and datasets. A great

deal of standardization, annotation and integrity checking

is performed by OpenWorm contributors via both manual

curation and automated tools, yielding curated databases of

empirical observations (from experiments on the biological

worm) and structured, machine-readable models at several

scales. Summaries of observations are extracted from these

databases, representing stylized facts about experiments.

Models are simulated to produce corresponding predictions,

and these predictions are compared with observations to

yield test scores. Models may then be tuned based on the ade-

quacy of these scores in order to produce better-performing

models.

(i) Testing
All common infrastructure for OpenWorm model validation

(at any scale) is handled in the test repository (see 2). Installa-

tion of this repository’s package makes testing and examining

test scores for specific OpenWorm sub-projects possible. This

common infrastructure includes SciUnit, NeuronUnit, dozens

of others software tools and several other OpenWorm sub-

projects. All project tests can be executed and visualized

either by installing the testing package and running the

main script or, to guarantee platform independence and
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avoid configuration hassles, by launching the provided

Docker container. Subsets of projects can also be tested with

the appropriate configuration options. Testing is realized

using three layers as shown in figure 2.

(1) The outer layer invokes Python’s unittest module

from the console to run all tests on demand or whenever

changes to the underlying models are made.

(2) The middle layer consists of either simple code blocks

(less common) or graphical Jupyter notebooks (more

common). Jupyter has emerged as the premier approach to

producing reproducible, interactive workflows, and supports

embedded graphical elements such as figures, tables and

HTML [9]. Through the core Jupyter technology of notebooks

that can be edited, executed and viewed in the browser, inter-

ested parties can examine the test workflow and any artefacts

(e.g. membrane potential traces) it produces without diving

deep into the code. Jupyter notebooks can also be executed,

with possible exploratory modifications in the browser,

independently from the outer layer. These notebooks can

provide graphical insights into the causes of successful or

failed tests, as well as a reproduction workflow for a single

test or test suite that can be shared independently of the

outer layer. This middle layer involves querying databases

for experimental observations, loading or downloading

model files and importing libraries needed for test execution

and visualization, such as SciUnit and NeuronUnit. Any of

these tasks can be performed using simple code blocks,

but is enhanced when using Jupyter due to its support for

inline HTML and javascript outputs that can produce,

for example, sortable tables of test scores. A grand summary

of test results is displayed at the end, and an output file

is generated containing these results as well as metadata

about the current software environment. This information

can also be optionally uploaded back to the test repository

or to a test tracking dashboard (3aii, see below).

(3) The inner layer is the execution of the SciUnit test.

All such tests use SciUnit, and, depending on the sub-project
being tested, they may also use NeuronUnit, MuscleUnit,
MovementUnit, or some other auxiliary SciUnit-based helper

library. From the perspective of the middle layer, they are

all invoked with a simple method invocation on a test or

test suite like suite.judge(models), which subjects a

list of models to a suite of tests. Most of the runtime complex-

ity lies in this step, as it may require that large simulations be

executed. A subset of the tools used here provide features to

accelerate these simulations, such as parallelization in

NeuronUnit or GPU-support in Sibernetic.

(ii) SciDash test dashboard
The SciUnit developers provide a web-based test dashboard

(http://dash.scidash.org) to which SciUnit test scores can

be uploaded and then searched, filtered, sorted, and

visualized. By filtering for OpenWorm related tests, this

dashboard can be used as a master project progress tracker,

allowing the community to evaluate progress towards a

model of C. elegans that is concordant with experimental

data (figure 3). In some cases, satisfactory agreement between

model output and experimental data may be measured using

least square error comparisons of waveforms. In other cases,

such as tests based on higher-order features like interspike

interval histograms, the mean and standard deviation of

interspike intervals are compared across model and exper-

iment. Selection of appropriate tests is an important step in

the validation process.

(b) Ion channels
Several ion channel models have been developed that aim to

mimic channels expressed in C. elegans neurons. These channel

models are based on known physics of ion channels, with

voltage-gated conductances modulated by the states of mul-

tiple gating state variables. Channel dynamics can be probed

in a number of ways, including measuring kinetics in response

to step changes in trans-membrane voltage or measuring

steady-state currents at multiple voltages (IV curves). Exper-

imental data for the corresponding biological channels can

be found in a variety of journal articles, and many such data

are curated in a database associated with the ChannelWorm
repository. This database admits easy programmatic access

to its contents via a Python API. Consequently, ion channel

tests can be constructed by programatically extracting channel

data corresponding to a given experiment from this database,

and then using the data to parameterize the test. Each test can

subject a model for the corresponding ion channel to the same

experiments, extract model output (the prediction) and com-

pare it to the experimental observation drawn from the

database. An example of an IV Curve test for the EGL-19

ion channel is shown in figure 4.

While many tests could be made, here we show the

results for one test based on IV curve measurements for

the biological channel reported in [11]. With the correspond-

ing model simulated using the same parameters as in the

experiment, the agreement between model and data IV

curves can be assessed. In this test, goodness-of-fit is assessed

using the sum-squared-error between the curves, with lower

numbers representing better fit. Two values are reported:

first, the raw goodness-of-fit; and second, a pass/fail Boolean

score (the default SciUnit score type) indicating whether

this value is above a goodness-of-fit threshold. While this

threshold is arbitrary, for practical purposes a particular
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goodness-of-fit may be considered ‘good enough’, and so

model variants which all have values on the ‘passing’ side

of the threshold might be considered equally good.

This example represents the performance of one parame-

terization of the EGL-19 channel model; alternatively, one

may wish to retain exact goodness-of-fit information as part

of an explicit model optimization routine. Optimization of

the model parameters using this test (i.e. changing par-

ameters until the model and data IV curves were very

similar) could produce a version of the EGL-19 model that

more closely reproduces experimental data collected from

the biological channel. NeuronUnit supports this kind of

optimization [12]; however, it may be better to develop

many more tests (based on other measurements from the

EGL-19 ion channel) first, and then execute a multi-objective

optimization of this test ensemble. NeuronUnit also supports

this kind of multi-objective optimization [13], yielding a

manifold of parameter sets, but this kind of optimization
has not yet been performed for the ChannelWorm project.

At press time, the project has designated ChannelWorm to

be the OpenWorm ‘Project of the Month’ for August 2018,

where an effort to perform these optimizations and update

ten such ion channel models is planned.

(c) Neurons and neural circuits
c302 is a sub-project of OpenWorm, so named because C. ele-
gans has 302 neurons, that aims to model these neurons and

their synaptic connectivity. Here we show how one model in

this sub-project is tested. This model contains one modulating

or command motor neuron (AVAL) and a synaptically

connected myocyte (body wall muscle cell, MDR01). The

model is simulated in a fashion similar to the ion channel

model in the previous section, although the repertoire of simu-

lation parameters is far greater. Several groups of simulation

parameters (each group based on specific experimental con-

ditions or assumptions about the system, and representing

one point in ‘parameter space’) are available for use. Here

we show several tests applied to the model under one of

these simulation parameter groups (figure 5).

In contrast with the ion channel model in the previous

section where only one test was made, here we apply a

suite of several tests reflecting a variety of measurements of

the experimental system. Each of these measurements is

associated with the membrane potential dynamics of the

myocyte under the selected conditions. Many of these reflect

spiking behaviour, including firing patterns and action

potential waveforms. Corresponding tests of the motor

neuron are also possible, but since that neuron is non-spiking,

these would need to reflect sub-threshold dynamics. The tests

are parameterized using electrophysiological data from

body-wall muscle cells reported by Liu et al. [14].

In figure 5, we show the performance of the model on this

test suite. In contrast with the previous section, here scores are

reported as Z-Scores (another built-in SciUnit score type).

These Z-Scores can be interpreted as a measurement of
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model output (e.g. mean action potential width) normalized

to the mean and standard deviation of the corresponding

experimental measurement. This allows the results of tests

corresponding to heterogeneous measurement types with a

variety of units to be compared on a single principle: how

well do they conform to the empirical data distribution?

These Z-Scores show that the inter-spike-interval (ISI)

distributions in the model are within the corresponding

empirical data distribution, but the shapes of the action

potentials are not. This shortcoming is probably due to the

use of a minimal complement of ion channels in the model.

Improvements to the ion channel models and an emphasis

on including channels that can produce the rich dynamics

observed during the action potential may lead to improved

action potential shape in future versions of the model.

(d) Locomotor behaviour
Sibernetic is a sub-project of OpenWorm that aims to model

the movement of C. elegans via detailed fluid mechanics

simulations. Among its outputs are time series corresponding

to every position on the external surface of the worm’s body.

These can be reduced to the two-dimensional coordinates

(as viewed dorsally) of dozens or hundreds of body seg-

ments, summarizing moment-to-moment changes in body
position and orientation over time. When coupled with

simulations from c302 (used to determine the activity of the

muscles that drive the body), a multi-scale model can be rea-

lized that could in principle produce realistic worm-driven

motor activity.

In order to determine if this simulated motor activity

corresponds to that observed in the real organism, many

thousands of video recordings of swimming C. elegans have

been curated into a large database (greater than 4 TB) avail-

able at http://movement.openworm.org, and corresponding

time series of body segment positions have been extracted.

Sibernetic model validity is assessed by comparing features

of those time series to corresponding features in simulation

output. The OpenWorm movement validation team ident-

ified ten ‘core” features that provide especially important

information about real or simulated worm posture and

movement. We extracted eight of these features from a repre-

sentative Sibernetic model simulation and compared them to

distributions of the same features extracted from the video

recordings and curated in the database (figure 6).

For some of these features, functions for feature extraction

on the model do not yet exist, and so there is insufficient data

to make a comparison with experimental data. However,

other model output features were not substantially different

from those computed based on experiments on real worms.
4. Discussion
Here we demonstrate the beginnings of data-driven vali-

dation testing at three model scales for a large, collaborative

effort to model C. elegans. The results of such tests inform

current modelling efforts by pointing developers to model

deficiencies, as judged by discordance with observations

from laboratory experiments on C. elegans. While agreement

with empirical studies is an end goal of The OpenWorm

Project, this report is not meant to demonstrate that this

goal has been achieved, or that it is close at hand. Rather it

is meant to report that the infrastructure for assessing

model validity has been developed, that these assessments

are on-going, and that model refinement towards a realistic

simulation of C. elegans now has a clear task list: achieving

passing scores on several suites of SciUnit tests. Future

model development will proceed accordingly.

(a) OpenWorm as an experiment in test-driven
model development

As far as we are aware, OpenWorm is the largest (and perhaps

only) open source, community-driven, biological modelling

project that has begin to utilize such a test-driven infrastruc-

ture. The completely open nature of the project facilitates

such test integration, for at least four reasons. First, the

OpenWorm model development cycle is one of continuous

public delivery, rather than infrequent public versions

released after internal, private development. This means that

regressions—changes to models that might lead to decreased

model fitness—are likely to be both common and publicly vis-

ible. Identifying these regressions by means of continuous

validation tests can help direct modelling effort towards

repairing them. Second, OpenWorm consists of several largely

separate modelling projects produced by independent teams

which do not have the same level of design integration as

http://movement.openworm.org
http://movement.openworm.org
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length test

backward_frequency test

head_tip_speed_abs test

midbody_speed_abs test

midbody_bend_mean_abs test

paused_frequency test

forward_frequency test

max_amplitude test

0.1 mm
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Z = –0.03
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Z = 1.88

Z = –0.60
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Figure 6. Data-driven validation testing of a C. elegans motor behaviour model: Sibernetic. (a) Scores for each of eight tests representing core movement and
posture features are shown. In some cases, test results are unavailable because the corresponding features cannot be computed for simulation output in the current
state of the model. In all other cases, scores indicate that model output is within two standard deviations of the experimental data distribution. (b) Graphical
depiction of the contents of a WCON file constructed from segmentation of a video of C. elegans locomotor behaviour. One frame is shown, with the body orientation
in blue, the head location in red and head locations from previous frames shown in grey.
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they might in, say, a single research lab. When these separate

models are linked (e.g. when neural circuit models drive

behaviour models), validation tests provide the only measure

of successful integration. Third, all modelling tools and vali-

dation datasets are based on open source components, so

anyone from inside or outside the project can add and execute

validation tests without the need to access proprietary

code. Fourth, OpenWorm does not have any public relations

requirements that would discourage the public advertisement

of test failures during development. Other large projects that

currently receive substantial funding (and media scrutiny)

might be reluctant to be so transparent with provisional

test failures, even though they are a natural part of any

modelling project.

The decision to model the nervous system of C. elegans, as

opposed to that of a more complex organism (e.g. a mammal),

may also have resulted in synergies with test-driven develop-

ment. Caenorhabditis elegans offers experimental tractability, a

superior understanding (relative to other organisms) of its

wiring diagram, and the ability to link stereotyped anatomy

and physiology to a set of simple behaviours. These features

should lead to both multi-scale models with relatively few

free parameters and rich, decisive, reproducible experimental

datasets that can—through validation testing—adjudicate

between competing realizations of such models.
(b) Model failures
Poor performance on SciUnit tests can result from misparame-

terized models, from models that lack important components

of the corresponding experimental system, from incomplete

metadata leading to context-less simulations, or from sum-

mary statistics that fail to adequately capture the essence

of the observation. Several of these factors are likely in play

in some of the model failures shown here. For example, the

EGL-19 ion channel model is probably misparameterized,

whereas the c302 myocyte model lacks ‘realistic looking’

action potentials due to insufficient model complexity; in

particular, it was not built from a complement of validated

ion channel models.
(c) Perils of test-driven development
Are there any drawbacks to using test scores to drive develop-

ment of scientific models? There is a risk in overemphasizing

small test score improvements at the expense of conceptual

simplicity. This is one reason why we have avoided blindly

optimizing models in advance, instead letting domain experts

work on models first, and only then assessing (and hopefully

improving) their performance on a suite of validation tests.

Other features like computational complexity, cyclomatic

complexity of code, memory consumption, etc. could also

be incorporated into the objective function to privilege simpli-

city against over-fitting. None of these have currently been

implemented. Another concern is that models might be

engineered to pass tests without concern for the realism of

the underlying components. This can be avoided by ensuring

that models are based upon known physical laws—so-called

ab initio modelling—and by ultimately building models

hierarchically from validated lower-level components, as

discussed in the next section.
(d) Hierarchical model validation
In a multi-scale model, high-level outputs such as behaviour

may be under the control of lower-level model components

such as neural circuits. One limitation of testing these high-

level outputs is that, when they do not match corresponding

experimental observations, it is difficult to know for certain

which system in the multi-scale hierarchy has been modelled

incorrectly, or whether the coupling between models is

implemented incorrectly (see below). Although all success-

fully tested C. elegans locomotor model features were within

two standard deviations of the corresponding experimental

data distribution, it is not clear how to change the model

components to further improve the correspondence. Should

the next step be to model the neural activity more accurately,

or should the hydrodynamics simulation be further

improved? We believe that improving test scores for Siber-

netic worm movement behaviour output will require the

former rather than the latter, in part because the physiological

data to constrain the neural activity is incomplete, whereas
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the physics to implement the hydrodynamics simulation is

well-understood.

In any case, if the multi-scale model is constructed hierarchi-

cally, such that the higher-level model components depend

directly on the output of the lower-level components (i.e. ion

channel activity determines neuron activity and neuron activity

determines motor output), then optimizing the lower-level

components will help reduce test uncertainty in higher-level

components. In other words, ion channel models which pass

all tests can be used to construct neuron models which have

a chance to pass all tests; similarly, neural circuit models

which pass all tests can be used to drive motor behaviour

models which have a chance to pass all tests.

Coupling scales or domains (e.g. inserting validated ion

channels into neurons, or using neural activity to drive

muscle contraction) is itself also modelling; however, this is

not yet tested in the same way as the models being coupled.

Instead, decisions about coupling implementation have been

based either on qualitative knowledge about C. elegans
anatomy and physiology, such as which channels have been

identified in which cells. Technically, we could construct

SciUnit tests that validate these coupling implementations.

For example, we could construct a test to see if direct stimu-

lation of a motor neuron produced the expected pattern of

body wall movement. This would require a corresponding bio-

logical dataset to parameterize the test, for example, from an

experiment in which that neuron is under optogenetic control.
5. Conclusion
Inverting the usual workflow of computational modelling—

using test scores to steer model development rather than
simply assessing the entire model post hoc—constitutes a

paradigm shift. Continuous, automated validation has the

potential to accelerate the successful development of large,

collaborative, multi-scale models of biological systems. The

Royal Society’s motto Nullius in verba – ‘take nobody’s

word for it’ can be realized only when the validity of each

model component can be validated transparently against

publicly available experimental data. Applying SciUnit to

the OpenWorm Project allows model developers to assess

their progress and identify key areas where models can be

improved. As SciUnit testing of the project expands, it will

become possible to assess the epistemic state of each subpro-

ject—and the project as a whole—at a glance, regardless of its

complexity.
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