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Abstract
Lysophosphatidic acid (LPA), a glycerophospholipid, 
consists of a glycerol backbone connected to a 
phosphate head group and an acyl chain linked to 
sn-1 or sn-2 position. In the circulation, LPA is in sub-
millimolar range and mainly derived from hydrolysis 
of lysophosphatidylcholine, a process mediated by 
lysophospholipase D activity in proteins such as 
autotaxin (ATX). Intracellular and extracellular LPAs 
act as bioactive lipid mediators with diverse functions 
in almost every mammalian cell type. The binding of 
LPA to its receptors LPA1-6 activates multiple cellular 
processes such as migration, proliferation and survival. 
The production of LPA and activation of LPA receptor 
signaling pathways in the events of physiology 
and pathophysiology have attracted the interest of 
researchers. Results from studies using transgenic and 
gene knockout animals with alterations of ATX and 
LPA receptors genes, have revealed the roles of LPA 
signaling pathways in metabolic active tissues and 
organs. The present review was aimed to summarize 
recent progresses in the studies of extracellular and 
intracellular LPA production pathways. This includes the 
functional, structural and biochemical properties of ATX 
and LPA receptors. The potential roles of LPA production 
and LPA receptor signaling pathways in obesity, insulin 
resistance and liver fibrosis are also discussed.
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Core tip: Lysophosphatidic acid (LPA) is mainly 
derived from hydrolysis of lysophosphatidylcholine, 
a process mediated by lysophospholipase D activity 
in proteins such as autotaxin (ATX). The binding of 
LPA to its receptors LPA1-6 activates multiple cellular 
signaling pathways and leads to changes. Studies using 
genetically modified animals have begun to reveal 
the roles of LPA pathways in metabolic active tissues 
and organs. The present review summarized recent 
progresses in the studies of extracellular and intracellular 
LPA production pathways; the functions, structural 
and biochemical properties of ATX and LPA receptors. 
Furthermore, the potential roles of LPA production 
and LPA receptor signaling pathways in obesity, insulin 
resistance and liver fibrosis are discussed.
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INTRODUCTION
Lysophosphatidic acid (1- or 2-acyl-sn-glycerol 
3-phosphate/radyl-glycerol-phosphate, LPA) is one type 
of water-soluble glycerophospholipid with molecular 
mass about 430-480 Da. All LPA molecules contain a 
glycerol backbone linked to a phosphate head group 
at sn-3 position and an acyl chain esterified to sn-1 or 
sn-2 position. Due to variation of the fatty acyl chain, 
LPA molecules are in different forms and derived from 
multiple sources, such as membrane lipids[1]. The LPA 
molecules produced extracellularly exert a variety of 
physiological responses after binding to their receptors 
as shown in Figure 1. 

LPA was first identified as an active ingredient of 
Darmstoff by Vogt in 1957[2,3]. The term Darmstoff 
was used to describe a smooth-muscle-stimulating 
substance which was first observed with bath fluid 
of isolated intestine preparations[4]. The substance 
was acidic and soluble in many organic solvents, 
properties that distinguish Darmstoff from amines and 
polypeptides[5]. Results of acidic hydrolysis and paper 
chromatography showed that the smooth-muscle-
stimulating activity of Darmstoff was due to a mixture 
of acidic phospholipids (PLs), one of which is an acetal 
phosphatidic acid[2,3]. In the 1960s, studies on smooth 
muscle and blood pressure suggested that LPA had 
biological activities[6,7]. Later on, various molecules 
of LPA species were isolated and identified from soy 
beans. It was shown that intravenous injection of LPA 
from crude soybean lecithin caused hypertension in rats 
and guinea pigs, but hypotension in cats and rabbits[8]. 
This raised intriguing questions regarding the activation 
mechanism of this lipid specie. Since then, the myriad 

biological effects of LPA have drawn attention of 
biomedical scientists. 

Subsequently, LPA in incubated serum at 36 ℃ 
for 18-24 h was shown to cause aggregation of feline 
and human platelets[9]. Whether LPA acts through its 
detergent-like physical property or its interaction with a 
specific receptor remained a critical question. Later, LPA 
was shown to stimulate cell proliferation in a pertussis 
toxin-sensitive manner[10]. This finding suggested that 
LPA acts through G protein-coupled receptor (GPCR). 
This information led to the cloning and identification of a 
GPCR, which is now known as LPA receptor 1 (LPA1)[11]. 
It is known now that as a bioactive lipid mediator, LPA 
activates at least 6 specific GPCRs, named as LPA1-6. 
These GPCRs are coupled with several Gα proteins 
such as Gα12/13, Gαq/11, Gαi/o, and Gαs. The binding of LPA 
to these receptors stimulates the activations of small 
GTPases, Ras, Rho, and Rac, and induces downstream 
actions[12]. 

The existence of extracellular LPA indicates its 
production outside a cell. Since autotaxin (ATX) was 
first identified from human plasma and found to be a 
lysophosphatidic acid-producing enzyme in 2002[13], the 
ATX-LPA receptor signaling pathway has been implicated 
in a variety of disease processes including the vascular 
and neural development, hair follicle development, tumor 
progression, lymphocyte trafficking, bone development, 
pulmonary fibrosis, fat mass regulation, cholestatic 
pruritus, neuropathic pain, embryo implantation, 
obesity and glucose homeostasis, spermatogenesis, 
fetal hydrocephalus, chronic inflammation, cellular 
proliferation, and smooth muscle contraction during 
development[14-18]. Both ATX and LPA have attracted the 
interest of researchers in an effort to understand their 
roles in pathophysiology and to develop new agents to 
treat above-mentioned pathological conditions. 

EXTRACELLULAR AND INTRACELLULAR 
PRODUCTION AND DEGRADATION OF 
LPA
LPA and its common precursor lysophosphatidylcholine 
(LPC) can be found both extracellular and intracellular 
as signaling mediators and membrane components, 
respectively. Structurally, LPA is an acyl group esterified 
to the sn-1 or sn-2 position of the glycerol backbone. 
Due to the differences of acyl chain length, saturation 
and backbone position, various LPA chemical forms can 
be found in tissues and cells. Extracellular LPA is thought 
to mediate bioactive effects through LPA receptors[19]. 
Intracellular LPA is an important intermediate for the 
de novo biosynthesis of complex glycerolipids, including 
mono-, di-, and triglycerides, as well as PLs[20]. In addition, 
it has been thought that LPA can function as a ligand 
for transcription factor peroxisome proliferator-activated 
receptor γ (PPARγ)[21]. This indicates that LPA may play 
important roles in the regulation of gene expression. 
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Pathways for LPA production 
As shown in Figure 2, there are five major pathways 
for LPA production, (1) the lysophospholipids-ATX 
(LPLs-ATX) pathway, (2) the phosphatidic acid - 
phospholipase A1 or A2 (PA-PLA1/PLA2) pathway, (3) 
the de novo glycerophosphate acyltransferase (GPAT) 
synthesis pathway, (4) the monoacylglycerol kinase 
(MAGK) pathway, and (5) the oxidative modification 
of low-density lipoprotein (LDL) pathway. Despite 
recent advances in the identification of the enzymes 
responsible for LPA production, the regulation of these 
enzymes still remains obscure. 

LPLs-ATX pathway
In the first pathway, LPLs generated from PLs by 
PLA1 or PLA2 are converted to LPA by a plasma 
enzyme ATX[22,13], which we will describe in later part 
of this article. A major source of extracellular LPA is 
LPC, other LPLs such as lysophosphatidylserine and 
lysophosphatidylethanolamine can also be enzymatically 
processed to produce LPA. This pathway accounts for 
the majority of circulating LPA.

PA-PLA1/PLA2 pathway
LPA is also produced intracellularly as an intermediate 
for the synthesis of other glycerolipids[20]. LPA can be 
produced enzymatically from intracellular organelles 
such as mitochondria and endoplasmic reticulum. 
Phosphatidic acid (PA) is first generated from PLs or 
diacylglycerol by phospholipase D enzymes (PLD1 
and PLD2) and diacylglycerol kinase (DGK) activities, 

respectively. Then, one acyl group is removed from the 
sn-1 position by PLA1 or at the sn-2 position by PLA2 
enzymes to generate LPA. This pathway may be more 
important in specific tissues with expression of DGK 
such as the brain and skin[23].

De novo GPAT synthesis pathway
GPATs catalyze the first step in glycerolipid synthesis, 
i.e., the conversion of glycerol-3-phosphate (G3P) to 
LPA by the transfer of fatty acids from acyl-CoA. Since 
GPAT exhibits the lowest specific activity of enzymes 
in the de novo triacylglycerol (TAG) and PLs synthesis 
pathways, it has been considered to be the rate limiting 
enzyme for them[24]. Many studies have been published 
on the regulation of TAG synthesis and its relevance 
to obesity and insulin resistance. GPAT activity in 
mitochondria was shown to be regulated by fatty acid-
binding protein (FABP)[25,26]. It has been shown that 
mitochondrial GPAT activity was inhibited by LPA. FABP 
reversed the inhibition of LPA through the binding and 
extracting LPA from the mitochondrial outer membrane. 
The extracted LPA was converted to PA by microsomes, 
where acylglycerophosphate acyltransferases (AGPATs) 
are located[25,26]. These results suggested that FABP 
regulated the de novo synthesis of PA through the 
stimulation of mitochondrial GPAT and transport of LPA 
from mitochondria to microsomes. 

MAGK pathway
Lipid phosphate phosphatases (LPPs) are also involved 
in the LPA turnover. LPPs can be found extracellularly 
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ATX (gene name ENPP2) was a number of ENPPs      2005
ENPP2-/- mice died with vascular defects in yolk sac      2006

Plasma LPA level was positive related with liver fibrosis      2007
Cloning of ATX isoforms (α b and γ)      2008

Uncovered the crystal structures of ATX      2011
          ENPP2-/- mice fed a high-fat diet gained higher fat mass

Cloning of ATX isoforms (d and e)      2012

1996    Cloning and identification of LPA1

2000    Lpar1 -/- mice exhibit approximately 50% perinatal lethality

2002    Discovered the LPA2 and LPA3

2003    Identified LPAR4

           Ki16425, a potent antagonist for LPA1/LPA3

2004    ATX induced cell motility through LPA and 
           Gαi/o -mediated LPA1 signaling

2006    Identified LPAR5

2007    Identified LPAR6

2014    Nomenclature of LPA receptors

LPA and ATX                                    LPA receptors

Figure 1  Chronological events related the identifications of lysophosphatidic acid, ecto-nucleotide pyrophosphatase/phosphodiesterase/autotaxin and 
lysophosphatidic acid receptors. On the left side, it shows the events associated with the identifications of LPA molecules and ATX for its production. On the 
right side, it shows the cloning events of LPAR1-6. LPA: Lysophosphatidic acid; ATX: Autotaxin; LPA1-6: Lysophosphatidic acid receptor 1-6; ENPP2: Ectonucleotide 
pyrophosphatase/phosphodiesterase family member 2.
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a Rho/Rho kinase signaling pathway, which leads to 
platelet shape change and subsequent aggregation. The 
biologically active LPA-like products generated by this 
non-enzymatic oxidation co-migrated with an authentic 
LPA standard in thin layer chromatography. LPA was 
found to be accumulated in atherosclerotic plaques, 
which might act to activate platelets. The level of LPA 
is very high in the human carotid atherosclerotic lesion, 
suggesting the roles in thrombogenesis and rupture[28,29]. 
An alternative explanation to the generation of LPA 
from oxidized LDL is that ATX might be activated. The 
acyl/alkyl composition, the precursor of LPA and the 
mechanism responsible for LPA generation in the oxidized 
LDL remain to be addressed in the future.

or intracellularly in endoplasmic reticulum or Golgi, 
where they dephosphorylate LPA, which leads to the 
formation of monoacylglycerol (MAG)[27]. MAG may then 
be phosphorylated by MAGK and thus participate in 
another round of LPA signaling[20]. Thus, the production 
of LPA is regulated by the availability of precursors as 
well as the expression of catalytic enzymes.

Oxidative modification of LDL
LPA was found as an active molecule on oxidized and 
modified LDL, in where it may contribute to platelet 
activation, endothelial cell stress-fiber and gap 
formation[28,29]. LPAs on these lipoproteins activate 
platelets through G-protein coupled LPA receptors and 

Figure 2  Biochemical pathways of lysophosphatidic acid synthesis and degradation. LPA can be produced extracellularly and intracellularly as signaling 
mediators and membrane components, respectively. There are five major pathways for LPA production, (1) the lysophospholipids-ATX (LPLs-ATX) pathway, (2) 
the phosphatidic acid - phospholipase A1 or A2 (PA-PLA1/PLA2) pathway, (3) the de novo glycerophosphate acyltransferase (GPAT) synthesis pathway, (4) the 
monoacylglycerol kinase (MAGK) pathway, and (5) the oxidative modification of low-density lipoprotein (LDL) pathway. In the upper right corner of the figure, there are 
catalytically active isoforms (ATXα, ATXb, ATXγ, ATXd and ATXe), which are expressed in different tissues. PLs: Phospholipids; PLA1/PLA2: Phospholipase A1/2; LPLs: 
Lysophospholipids; ATX: Autotaxin; ATXα-d: Protein structure scheme of the domains of ATX; LPA: Lysophosphatidic acid; DAG: Diacylglycerol; DGK: Diacylglycerol 
kinase; PLD1/2: Phospholipase D1/2; PA: Phosphatidic acid; AGPAT: Acylglycerophosphate acyltransferase; MAG: Monoacylglycerol; MAGK: Monoacylglycerol kinase; 
LPP: Lipid phosphate phosphatase; G3P: Glycerol-3-phosphate; lyso PL: Lysophospholipase; GPAT: Glycerophosphate acyltransferase; LDL: Low-density lipoprotein; 
i: Intramembrane domain; SMB: N-terminal somatomedin B-like domains; L1: L1 linker region; PDF: Phosphodiesterase domain; L2: L2 linker region; NUC: C-terminal 
nuclease-like domain; LPA1-6: Lysophosphatidic acid receptor 1-6. 
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Pathways for the degradation of LPA
There are three major pathways that degrade LPA as 
shown in Figure 2. The first is the removal of phosphate 
to form MAG by LPPs[30]. LPA has a half-life of 3 min 
when it is added to cells expressing LPP[31]. Four isoforms 
of LPP have been cloned and characterized in mammals, 
LPP1/PAP-2α/PAP-2α1[32], LPP1α/PAP-2α2[33], LPP2/
PAP-2c/PAP-2α[34] and LPP3/PAP-2b/PAP-2b[32]. The 
second LPA degradation pathway involves the action 
of AGPAT enzymes, also known as lysophosphatidic 
acid acyltransferase. These microsomal enzymes 
catalyze the transfer of an acyl group from acyl-CoA to 
LPA to form PA. Proteins with AGPAT activity include a 
family of transmembrane enzymes[35], and membrane 
associated proteins involved in membrane fission 
such as endophilin[36] and C-terminal-binding protein/
brefeldin A-ADP ribosylated substrate[37]. The third 
pathway for LPA degradation involves the hydrolysis of 
the acyl group from the G3P head group by the action 
of lysophospholipases. The majority of characterized 
lysophospholipases act on LPC[38].

ECTO-NUCLEOTIDE PYROPHOSPHATASE/
PHOSPHODIESTERASES 
The ecto-nucleotide pyrophosphatase/phosphodiesterase 
(ENPP) family contains seven members with structurally 
similar catalytic domains that hydrolyze phosphodiester 
bonds in various substrates, including nucleoside 
triphosphates, LPLs, and choline phosphate esters[39,40]. 
ATX, or ENPP2, is the best-characterized member of ENPP 
family. ENPPs are defined by their ability to hydrolyze 
phosphodiester bonds of various nucleotides in vitro[41-43]. 
ATX/ENPP2 was originally identified as a tumor cell-
motility-stimulating factor from the conditional medium 
of A2058 human melanoma cells[44]. Since the addition 
of pertussis toxin reduced cellular motility, ATX’s effects 
were thought to involve Gi/o-mediated signaling[39,44]. ATX 
can be secreted as a 100 kDa glycoprotein. It is produced 
by multiple tissues including adipose tissue[45,46]. It is 
believed that the circulated ATX/ENPP2 is degraded by 
the liver[47]. Extracellular LPA was found to be present 
in sub-micromolar ranges. The responsible enzyme 
was identified to be ATX[13,22]. ATX-mediated autocrine 
signaling induces cell motility through LPA production and 
Gi/o-mediated LPA receptor signaling[48].

From both a structural and evolutionary point of 
view, ENPP family members have been categorized 
into two subgroups, ENPP1-3 and ENPP4-7[39]. ENPP1-3 
all have two N-terminal somatomedin B-like (SMB) 
domains, a central phosphodiesterase (PDE) domain 
and a C-terminal nuclease (NUC)-like domain as shown 
in Figure 2. ENPP4-7 only have similarity in the PDE 
domain. The crystal structures of mouse[49] and rat[50] 
ATX show loops on both sides of the catalytic domain, 
which may help to determine the binding specificity. The 
SMB and PDE domains are connected by the first loop (L1 
linker region), whereas the PDE and NUC domains are 

connected by the second loop (L2 linker region)[49]. 
The secreted ATX is a constitutively active glyco-

protein with a N-terminal signal peptide sequence 
containing a furin cleavage site[46]. The other ENPPs are 
transmembrane or anchored proteins. In addition to its 
pyrophosphatase/phosphodiesterase activities, ATX has 
lysophospholipase D (lysoPLD) activity. The N-terminal 
signal peptide of the ATX precursor is removed first, 
and then, the remaining part is cleaved by proprotein 
convertases before the active ATX with lysoPLD activity 
is released into the extracellular environment, which 
converts LPC into LPA and choline[47]. The structure of 
PDE domain has a lipid binding pocket and a nearby 
tunnel allowing entry of substrates and release of 
products[51]. The NUC domain has been thought to 
maintain the rigidity of the PDE domain, and the two 
N-terminal SMB domains mediate binding of ATX to 
integrin[52]. This binding brings ATX to the cell membrane, 
which allows the production of LPA in a location close to 
its receptors[51,53,54].

The structures of ATX in complex with diverse LPAs 
show distinct conformations after different acyl chains 
occupy the binding pocket[49]. LPAs with saturated chains 
bind in the hydrophobic pocket in a more elongated 
fashion, whereas LPAs with unsaturated chains have a 
bent conformation due to the presence of carbon-carbon 
double bond(s). For LPA (22:6), the acyl chain shows 
a U-shaped conformation in the binding pocket[49]. ATX 
prefers LPC species with shorter and unsaturated acyl 
chain as substrates, and the rank order is 14:0 > 16:0 > 
18:3 > 18:1 > 18:0. All these show that ATX is able to 
hydrolyze LPCs with different lengths and saturations of 
acyl chains to produce the corresponding LPAs. 

The cDNA of ATX/ENPP2 was cloned in 1994[55]. 
After that, its homology with phosphodiesterases was 
revealed, and the cloning and tissue distribution of the 
three human and mouse isoforms (α, b and γ) were 
determined in 2008[50]. Two more isoforms (d and e) 
were identified in 2012[56]. The ATX gene is located on 
mouse chromosome 15 and on human chromosome 
8. The human and mouse ATX gene structures are 
conserved[50]. The mouse ATX gene spans more than 80 
kb and contains at least 27 exons. The three splicing sites 
in exons 12, 19 and 21 can theoretically result in eight 
isoforms, in which five were detected. These isoforms are 
catalytically active (ATX α-d) and expressed in different 
tissues. They are ATXα (ATXm), ATXb (ATXt), ATXγ (PD-
Iα)[50], ATXd and ATXe[56]. ATXb and ATXd, which are the 
most and second most abundant isoforms, respectively, 
share similar biochemical characteristics (Figure 2). 
Houben et al[53] characterized that a 52-residue polybasic 
insertion corresponding to exon 12 in ATXα isoform 
confers specific binding to heparan sulfate proteoglycans 
thereby targeting LPA production to the plasma 
membrane. This is another potential mechanism for 
localizing ATXα to cell membranes and for LPA production 
in close proximity to LPA receptors. Exon 12 encodes a 
52-amino acid insertion of the mouse ATXα and ATXe 
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isoforms (amino acids 324-375), whereas exon 21 
encodes an additional 25-amino acid of the murine ATXγ 
isoform (amino acids 593-617). Novel isoforms ATXd 
and ATXe have a 4-amino acid deletion on exon 19. This 
complex way of exon arrangement has been maintained 
through evolution. Human ATX exhibit 93% sequence 
identity with rodent ATX while all important residues are 
highly conserved[49].

ATX has a broad profile of tissue expression, with 
relatively high levels in the blood, brain, kidney, and 
lymphoid organs[57-59]. Secretion of ATX leads to high 
concentration in cerebrospinal fluid and in the endothelial 
venules of lymphoid tissues[60-62]. The cellular sources of 
plasma ATX are incompletely understood. Nevertheless, 
adipocytes may be a source[63,64]. ATX is also stored 
in platelets and released during their activation[65,66]. 
Circulating ATX is rapidly taken up by the scavenger 
receptors of liver sinusoidal endothelial cells, and then 
degraded by the liver[46]. Thus, like insulin, ATX is largely 
removed from the circulation through first passage by 
the liver. For the ATX isoforms, high expression levels 
of ATXb and ATXγ mRNA were detected in peripheral 
tissues and the brain, whereas ATXα was shown the 
lowest expression level in both the central nervous 
system and peripheral tissues among the three isoforms 
in human. In mice, ATXb is widely expressed in the brain 
and peripheral tissues, and ATXγ and ATXα showed little 
variation in their distribution[50]. Human brain and retina 
showed relatively higher expression level of ATXα than 
that of ATXb and ATXγ, whereas the expression levels 
of ATXd and ATXe in the small intestine and spleen are 
higher than that in other tissues[56].

LPA has been quantified in a variety of species, 
tissues, and fluids, including neural tissue, cerebrospinal 
fluid, fertilized hen white, seminal fluid, tears, plasma, 
serum, urine, saliva, and aqueous humor[67-69]. The 
formation of LPA species depends on the precursor 
PLs, which can vary by acyl chain length and degree 
of saturation. The term LPA most often refers to 18:1 
oleoyl-LPA (1-acyl-2-hydroxy-sn-glycero-3-phosphate), 
as it is the most commonly one. Other chemical forms 
of LPA can be observed in various biological systems 
that have concentrations ranging from low nanomolar 
to micromolar levels[67,70]. LPA concentrations in human 
and rat blood can range from 0.1 μmol/L in plasma 
and up to 10 μmol/L in serum, which is well over 
the apparent nanomolar kDa of LPA1–6

[71-74]. The LPA 
molecules containing 18:2, 20:4, 16:1, 16:0, and 18:1 
acyl chains are particularly abundant in plasma[75-77]. 
Current methods to detect LPA include indirect enzymatic 
assays[73], TLC-GC, LC-MS, and LC-MS/MS[78-80]. 

LPA RECEPTORS-MEDIATED LPA 
SIGNALING
LPA acts as a potent mitogen, which was previously 
known as “ventricular zone gene-1 (vzg-1)” due its 
high level in the embryonic neuroproliferative layer of 

the cerebral cortex[11,12]. The cloning and functional 
identification of LPA1 led to determination of other 
receptor genes based upon sequence homology[81-83]. 
This is particularly true for the “endothelial differentiation 
gene” (EDG) members[84] that include LPA and 
sphingosine 1-phosphate receptors. Then, two other 
LPA receptors, LPA2 and LPA3 (also known as EDG4, and 
EDG7), were subsequently discovered based on shared 
homology with LPA1(EDG2)[85]. Later on, LPA4 (P2RY9, 
GPR23)[86], LPA5 (GPR92)[87] and LPA6 (P2RY5, GPR87)[88] 
were identified. They share 35% amino acid homology 
to the purinergic (P2Y) family of GPCRs, as compared 
to less than 20% homology to LPA1, suggesting that 
LPA4-6 are more closely related to the P2Y receptors[52]. 
Here, LPA1-LPA6 are for proteins, and their gene symbols 
are LPAR1-LPAR6 for human and Lpar1-Lpar6 for non-
human[89].

All LPA receptors signal through at least one of the 
four heterotrimeric Gα proteins (Gα12/13, Gαq/11, Gαi/o, and 
Gαs)[12,90], resulting in downstream signals that produce 
diverse physiological and pathophysiological effects 
(Figure 3). Gα12/13-mediated LPA signaling regulates 
cytoskeletal remodeling, cell migration and invasion 
through activation of Rho pathway proteins[91]. Rho 
signals to c-jun N-terminal kinase (JNK) and p38 through 
Rho-associated kinase (ROCK) and protein kinase N. 
The LPA-coupled Gαq/11 protein primarily regulates Ca2+ 
homeostasis through phospholipase C (PLC), which 
generates the second messengers IP3 and diacylglycerol 
(DAG)[92-94]. Gbγ and Gαi/o subunits mediate the activation 
of phosphatidylinositol 3-kinase (PI3K) which results 
in the stimulation of the Akt pathway and increase of 
protein translation after the activation of the mammalian 
target of rapamycin (mTOR) signaling pathway. Activation 
of PI3K by Gbγ subunits also stimulates the activity of 
Rac, leading to cell migration and JNK regulation of pro-
inflammatory gene expression, and Ras activity, leading 
to the stimulation of Raf- mitogen-activated protein 
kinase (MEK)-extracellular signal-regulated kinase (ERK) 
pathway to promote the expression of genes involved 
in proliferation and invasion. Gαi/o, besides PI3K, also 
stimulates the Ras-Raf-MEK-ERK pathway promoting 
cell survival and other functions[95,96]. Gαs can activate 
adenylyl cyclase and increase cAMP concentration upon 
LPA stimulation[97]. However, the same enzyme is also 
inhibited by Gαi/o, showing the complexity of signaling 
pathways after the activation of LPA receptors[98].

All six LPA receptors can be stimulated by 1-acyl-
LPAs, which show different potencies. LPA3 and 
LPA6 prefer unsaturated 2-acyl-LPA, while LPA5 likes 
ether-linked 1-alkyl-LPA species[99,100]. In addition, 
lysophosphatidylserine, lysophosphatidylinositol, and 
lysophosphatidylethanolamine, have been thought 
to activate these receptors as well[101]. Different LPA 
molecules may have preference to different subtypes 
of LPA receptors[102]. Table 1 summarizes PLA receptors 
expression profiles and their known physiological 
functions in humans and mice.
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LPA1

LPA1 is the first LPA receptor identified based on studies 
of LPA in the brain[11]. LPA1 couples to three Gα proteins - 
Gα12/13, Gαq/11, and Gαi/o, which can result in the activation 
of downstream pathways including Akt, Rho, Ras, and 
PLC (Figure 3). These pathways mediate many cellular 
responses initiated by LPA1 such as neurodevelopment 
regulation, cell proliferation, differentiation, apoptosis 
and survival, cell-cell contact through a variety of 
mechanisms[68,84,103-106]. Lpar1-/- mice exhibit about 50% 
perinatal lethality, which was attributed to the defective 
development of olfaction. The survived ones had 
reduction of body size, craniofacial dysmorphism, and 
loss of Schwann cells[107]. Dysregulation at glutamatergic 

synapses was observed in Lpar1-/- mice[108]. When 
the original Lpar1-/- mouse line was expanded, a 
spontaneous variant named “Málaga LPA1” arose. They 
showed more severe brain defects than the original 
Lpar1-/- line mice did[109]. The loss of LPA1 in animals 
seems to modulate the development of several diseases 
including cancer, obesity, neuropathic pain, fibrosis and 
male infertility[110].

LPA2

The amino acid sequence of LPA2 is about 50% identical 
to that of LPA1, and it associates with Gαi/o, Gαq/11, and 
Gα12/13, the same as LPA1

[106] (Figure 3). These G proteins 
use Ras, PI3K/Rac, PLC/DGA and Rho to mediate their 

Nanomolar concentration
High concentration
Up to 10 μmol/L

1-acyl-LPA       1-acyl-LPA          2-acyl-LPA         1-acyl-LPA     1-alkyl-LPA           2-acyl-LPA

1-acyl-LPA                            1-acyl-LPA            1-acyl-LPA

LPA1

LPA2
LPA3 LPA4

LPA5

LPA6

Gα12/13
Gαq/11 Gαi/o Gαs

bγbγbγbγ

Rho PLC PI3K AC

cAMPAktRacRasDAGIP3SRFROCKPKN

p38 JNK Ca2+ PKC Raf

MEK

ERK

JNK mTOR

Figure 3  Summary of lysophosphatidic acid activated intracellular signaling pathways via the six cognate lysophosphatidic acid receptors. PLC: 
Phospholipase C; PI3K: Phosphatidylinositol 3-kinase; AC: Denylyl cyclase; PNK: Polynucleotide 5'-hydroxyl-kinase; ROCK: Rho-associated kinase; JNK: c-jun 
N-terminal kinase; SRF: Serum response factor; IP3: Inositol 1,4,5-triphosphate; DAG: Diacylglyerol; PKC: Protein kinase C; MEK: Mitogen-activated protein kinase; 
ERK: Extracellular signal-regulated kinase; Akt: Protein kinase B; Mtor: Mammalian target of rapamycin.
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Table 1  Expression pattern of lysophosphatidic acid receptors and their known physiological functions in humans and mice

Name Information Previous orphan 
names

Major expression tissue 
(high to low level)

Knockout effects in 
mouse

Biological functions Ref.

LPA1 Human 
chromosome locus 
9q31.3; 41.1 kDa1; 
364 aa2; Identity3 

97.3%

vzg-1, edg-2, 
39.4 kDa; 344 aa 

mrec1.3, lpA1

Brain, placenta, urinary 
bladder, uterus, testis, 
lung, small intestine, 

heart, stomach, kidney, 
spleen, thymus, and 

skeletal muscle.

Perinatal lethality, 
retarded growth, 

defective olfaction, 
reduced body 

size, craniofacial 
dysmorphism with 
blunted snouts, and 

increased apoptosis in 
sciatic nerve Schwann 

cells.

Neurodevelopment 
regulation, cell 
proliferation, 

differentiation, 
apoptosis and survival, 
cell-cell contact through 

serum-response 
element activation, 

cell migration 
and cytoskeletal 

organization, Ca2+ 
homeostasis, cAMP-

regulated cellular 
processes and adenylyl 

cyclase inhibition

Yung et al[68], 2014; 
Archbold et al[138], 2014; 

Choi et al[139], 2008; 
Anliker et al[103], 2013; 
Sakai et al[104], 2013; 

Wittpoth et al[98], 1999; 
An et al[82], 1998; 

Contos et al[107], 2000; 
Contos et al[106], 2000; 

Fukushima et al[84], 2001.

Mouse chromosome 
locus 4, 32.2 cM; 
41.1 kDa; 364 aa

Brain, heart, lungs, 
stomach, intestine, 
placenta, kidneys, 

spleen, uterus, testes.

LPA2 Human 
chromosome 

19p13.11; 39.1 kDa; 
351 aa; Identity 

83.5%

edg-4, lpA2 Leukocytes, testis, 
prostate, spleen, 

thymus and pancreas.

Normal Cell migration, viable 
and healthy, nervous 
system development 
and immune system 

regulation.

Yung et al[68], 2014; 
An et al[82], 1998; 

Contos et al[106], 2000b; 
Archbold et al[138], 2014; 
Ohuchi et al[111], 2008; 

Choi et al[110], 2010; 
Valentine et al[140], 2008; 

Xu et al[113], 2004; 
Lai et al[112], 2005; 

Contos et al[115], 2002; 
Choi et al[139], 2008.

Mouse chromosome 
8, 33.91 cM; 38.7 

kDa; 348 aa

Kidney, testis, uterus, 
lung, stomach, spleen, 

thymus, postnatal 
brain, and heart.

LPA3 Human 
chromosomal locus 

1p22.3; 40.1 kDa; 
353 aa; Identity 

91.2%

edg-7, lpA3 Heart, testis, prostate, 
pancreas, lung, ovary, 

and brain.

Delayed embryo 
implantation, embryo 

crowding, and reduced 
litter size for female 

null mutants.

Male and female 
reproductive 
physiology, 

inflammation, cell Ca2+ 
homeostasis and cAMP 
regulation, vertebrate 
left-right patterning 

during embryogenesis.

Yung et al[68], 2014; 
Bandoh et al[83], 1999; 

Im et al[116], 2000; 
Contos et al[107], 2000a; 

Zhao et al[117], 2015; 
Ye et al[118], 2010; 

Hama et al[119], 2010; 
Lai et al[120], 2012

Mouse chromosome 
locus 3, 71.03 cM; 
40.3 kDa; 354 aa

Lung, kidney, uterus, 
testis, small intestine, 
brain, heart, stomach, 
placenta, spleen, and 

thymus.
LPA4 Human 

chromosome 
Xq21.1; 41.9 kDa; 
370 aa; Identity 

98.4%

P2Y9/GPR23 Ovaries, thymus, 
pancreas, brain, heart, 
small intestine, testis, 
prostate, colon, and 

spleen.

Inhibition of its 
differentiation into 

osteoblasts in human 
mesenchymal stem 
cell line; For mouse: 
increased trabecular 

bone volume, number, 
and thickness; 

pericardial effusions, 
severe edema 

and hemorrhage, 
abnormally dilated 

blood and lymphatic 
vessels and lymph sacs, 
and impaired pericyte 

recruitment.

ROCK-dependent 
cell aggregation and 

N-cadherin-dependent 
cell adhesion, cAMP 

accumulation, 
differentiation 

of immortalized 
hippocampal 

progenitor cells, 
negatively cell motility 

regulation and 
osteogenesis.

Yung et al[68], 2014; 
Ohuchi et al[111], 2008; 

Choi et al[110], 2010; 
Liu et al[123], 2010; 

Mansell et al[124], 2010; 
Liu et al[125], 2009; 

Sumida et al[126], 2010; 
Yanagida et al[71]; 
Lee et al[97], 2007; 

Rhee et al[121], 2006; 
Lee et al[122], 2008

Mouse chromosome 
X region D; 41.9 

kDa; 370 aa

Heart, ovary, skin, 
thymus, and bone 

Marrow.

LPA5 Human 
chromosome 

12p13.31; 41.3 kDa; 
372 aa; Identity 

79.0%

GPR92 Spleen, heart, small 
intestine, placenta, 

colon, and liver.

Reduced lung 
metastasis by 

melanoma cells.

Neurite retraction, 
stress fiber formation, 

receptor internalization, 
water absorption, Ca2+ 

mobilization and cAMP 
accumulation, LPA-
induced release of 

chemokine ligand 4 in 
mast cells.

Yung et al[68], 2014; 
Lee et al[87], 2006; 
Lee et al[141], 2015; 

Amisten et al[142], 2008; 
Lundequist et al[129], 2011; 

Araki et al[130], 2014; 
Lin et al[128], 2010; 

Yanagida et al[143], 2013

Mouse chromosome 
6, 59.21 cM; 41.4 

kDa; 372 aa

Small intestine, lung, 
heart, stomach, colon, 
spleen, thymus, skin, 
liver, platelets, mast 
cells, gastrointestinal 

lymphocytes, and 
dorsal root ganglia.
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down-stream signals, which may regulate cell survival 
and migration[107]. LPA2 regulates cell survival and 
cell migration in the development of nervous system 
and functions of immune system[68,90,106,110,111]. The 
focal adhesion molecule thyroid receptor-interacting 
protein 6[112,113] and several PDZ-domain and zinc finger 
proteins[114] interact with LPA2. The PDZ-binding domain 
of LPA2 regulates Na+/H+ exchanger regulatory factor 
2 activity, and activates PLC-3 and Akt/ERK signaling 
pathways. These pathways stimulate cell migration, 
enhance survival, and alter gene expression, accounting 
for the functions attributed to LPA2. Lpar2-/- mice are 
viable and healthy, while those null for both Lpar1 and 
Lpar2 show features essentially consistent with those of 
Lpar1-/-[115]. These data suggest functional redundancy of 
LPA2 with LPA1. 

LPA3

LPAR3/Lpar3 was cloned based upon homology to 
already identified LPA receptor genes using degenerated 
primers in a PCR-based cloning strategy[83,116]. LPA3 
couples with Gαq/11 and Gαi/o to mediate adenylyl cyclase 
inhibition, PLC activation and Ca2+ mobilization, and 
Ras activation[105] (Figure 3). LPA3 prefers 2-acyl-LPAs 
containing unsaturated fatty acids[83]. It mediates the 
activation of a series of physiological processes such as 
male and female reproductive physiology, inflammation, 
cell Ca2+ homeostasis and cAMP regulation[107,117-119]. LPA3 
appears to determine vertebrate left-right patterning 
during embryogenesis as downregulation of Lpar3 or 
inhibition of LPA3 activity disrupted patterning process in 
zebrafish[120]. Lpar3-/- mice are viable with no reported 
neural deficits, even though LPA3 is found in the frontal 
cortex, hippocampus, and amygdala[83,116]. On the other 
hand, female Lpar3-/- mice have a delayed embryo 
implantation, and reduced litter size[117].

LPA4

The first so-called non-EDG LPA receptor was identified 
in 2003, and named as LPA4. It shares homology 
(approximately 20%) with LPA1-3, and it is more closer 
to the P2Y receptor family[86]. LPA4 was identified by 
screening orphan receptors using calcium mobilization as 
a readout for ligand-induced signals. LPA4 couples with 
Gα12/13, Gαq/11, Gαi/o and Gαs

[97], and activates Rho/ROCK to 
induce neurite retraction and stress fiber formation[71,97] 
(Figure 3). It induces ROCK-dependent cell aggregation 

and N-cadherin-dependent cell adhesion[71]. LPA4 is only 
LPA receptor that activates Gαs to induce cAMP level[97]. 
The activation of LPA4 was thought to regulate the 
differentiation of immortalized hippocampal progenitor 
cells[121]. In addition, the activation of LPA4 could inhibit 
LPA-induced cell migration, but LPA exposure increased 
lamellipodia formation and transwell movement of 
LPA4 null cells, indicating an increased sensitivity[122]. 
It shows the ability of LPA4 to negatively regulate cell 
motility and indicates that differential effects may be 
achieved by simultaneously expressing multiple LPA 
receptors. LPAR4-deficient human mesenchymal stem 
cells lost ability to differentiate into osteoblasts[123]. 
While adult Lpar4-/- mice appear grossly normal[122], 
they exhibit increased trabecular bone volume, number, 
and thickness[124,125]. LPA4 pathway seems to inhibit 
osteogenesis. Lpar4-/- mice had reduction of prenatal 
survival rate during embryo development, which is 
accompanied by changes such as pericardial effusions, 
severe edema and hemorrhage[126].

LPA5

LPA5, the fifth LPA receptor, was identified in 2006[87,127]. 
It shares about 35% homology with LPAR4, and 22% 
homology with LPAR1-3[87]. LPA5 couples with Gα12/13 
and Gαq/11, which mediate neurite retraction, stress fiber 
formation, and receptor internalization in LPA5-expressing 
cell lines[87] (Figure 3). It also activates Gαq/11 to increase 
intracellular calcium mobilization, and cAMP accumulation 
via a non-Gαs mechanism, suggesting the involvement 
of other G-proteins[87,127]. LPA5 signaling may also affect 
intestinal water absorption[128]. This is achieved through 
the LPA-induced recruitment of Na+/H+ exchanger 3 to 
the microvilli mediated by the interaction between LPA5 
and Na+/H+ exchanger regulatory factor 2. Additionally, 
LPA5 is the main LPA receptor responsible for LPA-
induced release of chemokine ligand 4 in mast cells[129]. 
Interestingly, LPA5 in B16 melanoma cells, prefers alkyl-
LPA (18:1) to acyl-LPA (18:1)[99]. Lpar5-/- null mice exhibit 
reduced lung metastasis by melanoma cells compared 
with wild type ones[130].

LPA6

The most recently identified LPA receptor is LPA6. It was 
first isolated from a chicken T cell library and named 
receptor 6H1 in 1993[131], and then, renamed to P2Y5 
because of sequence homology with P2Y receptors in 

LPA6 Human 
chromosome 

13q14.2; 39.4 kDa; 
344 aa; Identity 

93.0%

P2Y5 Hair, skin. Hypotrichosis Hair development, 
increased intracellular 

Ca2+, reduced forskolin-
stimulated cAMP 
accumulation, and 
ERK1/2 activation

Yanagida et al[144], 2011; 
Yanagida et al[143], 2013; 

Raza et al[135], 2014; 
Dong et al[145], 2014; 
Lee et al[141], 2015; 
Lee et al[133], 2009Mouse chromosome 

14, region D3; 39.4 
kDa; 344 aa

Hair, immune cells.

1Molecular mass were obtained from UniProt[146]; 2aa means amino acids; 3Identities between human and mouse lysophospholipid receptors were calculated 
in UniProt[146]. vzg-1: Ventricular zone gene-1; edg: Endothelial differentiation gene. 
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1996[132]. LPA6 couples with Gα-protein Gα12/13 (Figure 
3). Its activation by LPA causes cAMP accumulation, 
changes in cell morphology, and guanosine 5′-3-O-(thio) 
triphosphate binding[71]. When LPA6 was expressed 
together with a Gα protein, LPA stimulation increased 
intracellular Ca2+ level, and decreased forskolin-induced 
cAMP level and ERK activation in intestinal cells[133]. 
LPA6 has been thought to be involved in familial hair 
loss[134,135]. Mutations of lipase member H and LPA6 in 
patients with hypotrichosis are respectively associated 
with a decrease in LPA production and abnormal LPA6 
activation in cells[134,136,137]. These findings demonstrate 
the roles of LPA6 and LPA signaling may be therapeutic 
targets for the treatment or prevention of human hair 
loss[138-146].

LPA RECEPTOR SIGNALING IN OBESITY 
AND INSULIN RESISTANCE
Recently, obesity has become major public health 
concern, particularly in the United States. According 
to 2015 Center of Disease Control and Prevention 
estimates, more than one-third of adults (34.9% or 
78.6 million) and 17% of youth in the United States 
were obese in 2011-2014[147]. Obesity is associated 
with the development of chronic metabolic diseases 
including diabetes, heart disease, stroke, and some types 
of cancer. The long-term effects of being overweight 
correlate with premature death, cardiovascular disease, 
metabolic morbidities, and asthma, among other 
problems[148]. Both environmental factors and genetic 
factors contribute to the obesity development. Many 
factors modulate the propensity to accumulate fat in 
cells, including an increased ratio of adipocyte precursor 
cells to differentiated adipocytes[149].

LPA receptor signaling regulates adipogenesis
Obesity is associated with adipocyte hypertrophy and 
hyperplasia. Hypertrophy results in excessive TAG 
accumulation in adipocytes. Hyperplasia results in 
recruitment of new adipocytes via proliferation and 
differentiation. LPA was found to induce proliferation 
of 3T3F442A preadipocytes, indicating the role of LPA 
signaling in fat storage[150]. LPA stimulation increases the 
growth of 3T3F442A cells via LPA1, which activates the 
Ras-Raf-MEK-ERK pathway, and of the focal adhesion 
kinase[20,151].

It has been reported that Lpar1-/- mice exhibited 
greater adiposity than the control mice without 
alteration of feeding behavior, despite of lowered body 
weight[107]. Interestingly, Lpar1-/- mice were resistant to 
diet-induced obesity that may result at least in part from 
alterations in leptin production[64]. Mature adipocytes 
express more ATX than preadipocytes. When secreted 
from adipose tissue, ATX may promote preadipocyte 
proliferation. Its expression was up-regulated during 
adipocyte differentiation, and in db/db mice[44,45]. 

The serum levels of LPC, the precursors of LPA, 

increases gradually in rabbits fed a high-cholesterol 
diet for 12 wk. The levels of individual LPAs formed 
after the incubation of serum for 24 h elevated with 
the increase of the length of time that rabbits were fed 
a high cholesterol diet[152]. These studies indicate that 
feeding of a high-fat diet can cause an increase in the 
circulating level of LPA. Preadipocytes mainly express 
LPA1

[153], and the mRNA level of Lpar1 expression in 
preadipocytes is higher than that in mature 3T3-L1 
adipocytes[154]. However, in human adipose tissue, 
obesity does not influence on LPAR1 expression[155]. 
This discrepancy of LPA1 expression levels between 
human and mouse adipose tissues suggest that obe-
sity promotes LPA synthesis rather than activation in 
adipose tissue.

The LPA-induced proliferation of preadipocytes[20,153,154] 
has been thought to be mediated through LPA1 and the 
activation of the Ras-Raf-MEK-ERK pathway[154,156,157]. LPA 
inhibits differentiation of white and brown preadipocyte 
cell lines, which include porcine preadipocyte cell line; 
mouse preadipocyte cell line, 3T3-L1 and 3T3F442A; and 
human Simpson-Golabi-Behmel Syndrome preadipocyte 
cells[153,154,158,159]. This inhibition is mediated by LPA1 via 
the Rho-ROCK pathway[160,161]. All these result in a down-
regulation of PPARγ, and impaired responses of PPARγ-
targeted genes to its ligands, which leads to reduced 
TAG accumulation, and expression levels of adipogenic 
genes[153,154].

The activation of Rho-ROCK pathway delayed 
the activation of the Wnt-signaling pathway, which 
has been partially attributed to the inhibited PPARγ 
expression and adipogenesis. When mice with the 
adipocyte-specific knockout of ATX gene (FATX-KO) 
were fed a high-fat diet, they had more fat mass and 
larger adipocyte size, but not adipocyte number, than 
the control mice did in the absence of any change of 
food intake. The deletion of ATX in mice appeared to 
lead sensitivity to diet-induced obesity, which might 
be due to elevated expression levels of PPARγ and its 
down-stream adipogenic genes in subcutaneous white 
adipose tissue. Interestingly, those knockout mice had 
improved glucose tolerance and less systemic insulin 
resistance than the control mice fed the same diet[63,161]. 
LPA stimulation seems to have anti-adipogenic effect 
in white adipocytes[153] and in brown preadipocytes[159]. 
Aforementioned experiments seem to indicate that 
ATX-LPA receptor signaling pathway may inhibit the 
development of adipose tissue (Figure 4).

On the other hand, others reported that ATX 
promotes preadipocytes proliferation and differentiation 
into adipocytes, thereby promoting adipocyte hyperplasia 
and obesity. It was showed that deletion of ATX results 
in smaller body weight gain, smaller fat pad weights 
and adipocyte numbers, less insulin resistance and 
glucose tolerance in heterozygous Enpp2+/- mice 
and adipocyte-specific FATX-KO mice fed a high-fat 
diet than their littermates controls[162]. Moreover, the 
FATX-KO improved brown adipose tissue function, 
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increased energy expenditure, and improved systemic 
metabolism. Transgenic mice expressing the human 
ATX/ENPP2 gene under the control of α1 antitrypsin 
gene promoter became sensitive to diet-induced obesity 
due to reduced expression of brown adipose tissue-
related genes in peripheral white adipose tissue and 
accumulated significantly more fat without any change of 
locomotor activities, thermogenic profiles, and systemic 
metabolism[159]. In mice, ATX is highly expressed in 
visceral white adipose tissue and brown adipose tissue 
and is downregulated in adipose tissue hypertrophy[162]. 
In human, ATX expression is higher in subcutaneous than 
in visceral fat, and the latter fat pad in obese subjects 
has higher ATX expression level than that in non-obese 
subjects, which is correlated with leptin expression[155]. 
The circulating ATX levels correlated negatively with body 
mass index, and mRNA levels of ATX were reduced in 
subcutaneous fat from obese subjects[162]. Moreover, ATX 
expression in adipose tissues may be negatively regulated 
by LPA through a feedback regulatory mechanism, which 
may involves inflammatory cytokines such as tumor 
necrosis factor α (TNF-α) and interleukin-1b[163].

ATX-LPA receptor signaling axis exerts a negative effect 
on glucose homeostasis in obesity
Earlier studies found that increases in adipocyte size 
correlated with insulin resistance, and increased risk 
of type 2 diabetes[164,165]. The expression of ATX is 
increased in the adipose tissue of obese and insulin-
resistant subjects and mice[44,155,166]. It has been shown 
that LPA also regulates glucose metabolism[167,168]. 

LPA was found to enhance glucose uptake in a dose-
dependent manner in both GLUT4myc L6 myotubes and 
3T3-L1 adipocytes, a process that was attributed to the 
increase of GLUT4 translocation in a PI3K dependent 
manner. Moreover, the effect of LPA on glucose uptake 
was completely inhibited by pretreating cells with LPA1/3 
receptor antagonist Ki16425 and Gi inhibitor pertussis 
toxin[169]. LPA significantly lowered blood glucose levels 
in normal mice and streptozotocin-induced diabetic 
mice, suggesting the promotion of glucose usage, but 
not stimulation of insulin secretion[169].

The elevation of ATX expression in adipocytes of db/
db mice occurred simultaneously with the development 
of hyperglycemia, and only 3 wk after the emergence 
of hyperinsulinemia in them[166]. ATX expression was 
up-regulated by treatment with TNFα, and down-
regulated by rosiglitazone in 3T3F442A adipocytes[166]. 
The upregulation of ATX expression in adipocytes of 
db/db mice seems to be associated with the emergence 
of hyperglycemia rather than fat accumulation or 
hyperinsulinemia[166]. 

The plasma levels of LPC, as the precursor of 
LPA, are reduced in obese and type 2 diabetic mice, 
suggesting that it may regulate blood glucose level. This 
reduction may contribute to the impairment of glucose 
homeostasis[170]. Interestingly, adipocyte specific ATX 
knockout mice fed with a high-fat diet showed greater 
adiposity and better tolerance to glucose challenge than 
control mice[63], suggesting a negative effect of LPA on 
glucose homeostasis. Similarly, LPA production appears 
to impair glucose disposal probably through a reduction 

Adipose tissue of obesity

Adipogensis of 
preadipocytes

Proliferation of 
preadipocytes

Glycogenolysis on hepatocytes

Glucose uptake 
in adipocytes

Insulin secretion

Acute PI3K/Akt-mTOR

Chronic insulin

GLUT4

LPA1 Gα12/13
Rho/ROCK

PI3K/Ras-Raf-MEK-ERK
LPA1 Gαi/o

ATX

LPA

Figure 4  Autotaxin-lysophosphatidic acid signaling axis regulates adipose tissue development and glucose homeostasis in obesity. In adipose tissue, 
especially in mature adipocytes, the elevated expression of AXT leads to production of LPA and then induced proliferation of preadipocytes via LPA1 through Ras-Raf-
MEK-ERK pathway. On the other hand, LPA inhibits differentiation of white and brown preadipocytes, which is mediated by LPA1 via the Rho-ROCK pathway. Short-
term insulin treatment increases ATX secretion in adipocytes via PI3K/Akt-mTOR pathway, whereas long-term insulin treatment reduces ATX activity. LPA produced by 
ATX in obesity has a tonic inhibitory effect on glucose homeostasis through inhibition of insulin secretion in isolated pancreas islets, increase of glucose transport in 
myocyte and adipocytes via GLUT4 translocation in a PI3K dependent manner, and elevation of glycogenolysis in hepatocytes. ROCK: Rho-associated kinase; PI3K: 
Phosphatidylinositol 3-kinase; MEK: Mitogen-activated protein kinase; ERK: Extracellular signal-regulated kinase; Akt: Protein kinase B; mTOR: Mammalian target of 
rapamycin; GLUT4: Glucose transporter type 4.
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of plasma insulin as pharmacological inhibition of LPAR1/3 
activation improves glucose homeostasis in obese and 
prediabetic mice[171]. Another possibility is that the 
progression of diabetes affects ATX expression in adipose 
tissue[162]. It has been shown that treatments with high 
concentrations of glucose and insulin led to ATX secretion 
in adipocytes. Short-term insulin treatment increased 
ATX activity, whereas long-term insulin treatment 
reduced the levels of ATX mRNA and protein, and its 
activity[172].

In humans, ATX expression in adipose tissue 
significantly increased in diabetes patients in contrast 
with obese-only subjects[158,166]. Its expression in 
subcutaneous fat is higher than that in visceral fat. 
Nevertheless, ATX in visceral, but not subcutaneous, 
fat of obese subjects is higher than that in non-obese 
patients[155]. Interestingly, the circulating ATX levels in the 
blood were reduced in obese subjects[162]. The females 
have higher blood ATX level than males[173].

The variations of ATX expression were correlated with 
some clinical parameters. In obese patients, visceral fat 
ATX was positively correlated with diastolic arterial blood 
pressure, plasma leptin level, and expression levels of 
inducible nitric oxide synthase and apelin receptor[155]. 
In older and obese humans, plasma ATX correlated with 
fasting glucose, fasting insulin, and glucose level 2 h after 
an oral glucose tolerance test, and body mass index[173]. 
LPA produced by ATX in obesity has a tonic inhibitory 
effect on glucose homeostasis through inhibition of insulin 
secretion in isolated pancreas islets, increase of glucose 
transport in myocyte and adipocytes, and elevation of 
glycogenolysis in hepatocytes[164]. LPA was reported 
to activate glycogenolysis in hepatocytes in vitro[174], 
suggesting that LPA’s effects on glucose homeostasis 
may be mediated by the liver. All these indicate that 
LPA production via ATX and its receptors activation may 
impact glucose homeostasis (Figure 4).

POSSIBLE ROLE OF LPA SIGNALING IN 
LIVER FIBROSIS
The liver plays a critical role in the control of glucose and 
lipid homeostasis. The disturbance of this homeostasis 
may lead to development of metabolic diseases such as 
type 2 diabetes[175] and nonalcoholic fatty liver disease 
(NAFLD)[176]. Liver fibrosis is a process that leads to the 
alteration of the hepatic architecture marked by the 
accumulation of proteins such as collagen in extracellular 
matrix. This is generally associated with the development 
of liver diseases such as NAFLD and hepatitis. If left 
untreated, the further development of these diseases 
and liver fibrosis will lead to cirrhosis, and liver failure, 
which needs liver transplantation for the treatment. 
Factors causing damages of hepatocytes result in 
activation of hepatic stellate cells (HSCs) and production 
of pro-inflammatory and pro-fibrotic factors, which 
will stimulate formation of accumulation of proteins in 
extracellular matrix[177].

The injuries caused by nutritional and environmental 
factors alter liver structures and functions, which 
may lead to the liver fibrosis[178]. The hepatic matrix 
is remodeled by the inflammatory responses after 
liver injury. Upon the stimulation, the generation of 
the liver matrix such as collagen, elastin, hyaluronan, 
proteoglycans and fibronectin is elevated, which 
is followed by remodeling processes. All these are 
associated with the activation of HSCs, and the change 
of local architecture and the reduction of liver functions. 
Excessive production and accumulation of extracellular 
matrix in the liver results in fibrosis, which can lead 
to liver cirrhosis[178]. In addition to HSCs, other cells 
responsible for the fibrosis include fibrocytes from 
hematopoietic stem cells, portal fibroblasts, bone marrow 
derived mesenchymal cells, epithelial-mesenchymal 
transition and endothelial to mesenchymal transition[178]. 

The excessive accumulation of lipids and alterations 
of their metabolism have been used to explain the 
etiology of type 2 diabetes, which is associated with 
profound changes of hepatic gene expression[175,179]. 
This alteration of hepatic lipid metabolism may cause 
the development of fibrosis. For example, the elevation 
of lipid peroxidation in zone 3 hepatocytes has been 
suggested with the development of fibrosis[180]. On 
the other hand, changes of fatty acid compositions in 
plasma phospholipids have been observed in subjects 
with fibrosis[181,182]. All these show that the alterations 
of plasma phospholipids in patients with metabolic 
diseases may play a role in the development of fibrosis.

It has been shown that serum ATX activity and LPA 
level increase with the development of liver fibrosis 
in patients with chronic hepatitis C[74,183-185], and with 
cholestasis and pruritus[186,187]. The association of 
elevated plasma ATX level with chronic liver disease 
(CLD) in patients suggests a shorter overall survival in 
a 10-year follow-up study[185]. Moreover, the increased 
expression level of hepatic ATX mRNA was found in the 
majority of publically available CLD and hepatocellular 
carcinoma (HCC) microarray data sets, suggesting 
an association of ATX with liver pathophysiology[185]. 
ATX and LPA levels increased in the plasma of patients 
with hepatitis C virus (HCV) infection, and positively 
associate with liver fibrosis stages[183,184,188,189]. HCV 
infection may stabilize the activity of hypoxia inducible 
factor in a PI3K dependent manner, which may increase 
ATX expression, and in turn induce liver fibrosis[190]. 

It has been shown that serum ATX level correlated 
with fibrosis grade, and is useful as its marker in liver 
fibrosis[191]. The higher expression level of LPA2 mRNA 
has been associated with the poorer differentiation of 
HCC cells, and a higher LPA6 mRNA level is associated 
with microvascular invasion of HCC. The high expression 
levels of LPA2 and LPA6 mRNA in HCC predict a high 
potential for malignancy. The elevated levels of LPA6 
and LPA6 mRNA in conjunction with plasma ATX predict 
higher rate of recurrence after surgical removal of 
the tumors[192]. In addition, the plasma level of ATX 
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has been considered as a potential pathogenic factor 
and/or biomarker for nonalcoholic fatty liver disease 
in nondiabetic and obese women[193]. Moreover, the 
plasma ATX levels correlated with prognosis of cirrhosis 
(Child-Pugh score), showing the link of ATX and the 
severity of cirrhosis in patients with CLD[194]. 

In rats, plasma LPA level and serum ATX activity were 
increased in liver injury and were correlated with severity 
of the damage; the former in relation to the extent 
of fibrosis, and the latter in relation to the extent of 
hepatocyte damage[186,195]. In mice, different hepatotoxic 
stimuli linked with the development of different forms of 
CLD were shown to stimulate hepatocyte ATX expression, 
leading to increased LPA production, HSCs activation, 
and signals for fibrosis development[185].

LPA was first shown to stimulate rat HSCs proliferation 
through MAP kinase activation in 1998[196]. Then, LPA 
was shown to enhance HSCs contractility through 
modulation of cellular morphology and attachment to 
extracellular matrices via Rho-kinase[197,198]. LPA also 
inhibits the apoptosis of those cells through Rho/Rho 
kinase activation[199], suggesting its involvement in the 
pathogenesis of liver fibrosis. Moreover, LPA was shown 
to induce nuclear translocation of inducible nitric-oxide 
synthase in hepatocytes[200]. These findings demonstrate 
the possible involvement of LPA in the development of 
liver fibrosis.

CONCLUSION
LPA is a highly bioactive lipid mediator with a number of 
cellular sources and exerts its actions through a family 
of receptors coupling with GPCRs in various cell types. 
Here, we have discussed recent advances in pathways 
for extracellular and intracellular production of LPA, the 
functions as well as structural and biochemical properties 
of ATX and LPA receptors. For the past 20-30 years, 
the cloning and identification of proteins mediating LPA 
production and signal transduction pathways open a new 
field for us to understand relevance of these proteins in 
physiology and disease development. The association 
of LPA production and signal pathways with chronic 
metabolic diseases has been gradually realized. We have 
highlighted the roles of LPA signaling pathways in the 
obesity, insulin resistance and liver fibrosis.

The realization of the importance of LPA-mediated 
functions leads to more open questions begging for 
answers. (1) The regulations of enzymes involved in LPA 
synthesis and degradation pathways remain to be further 
investigated. Whether intracellularly produced LPA 
can cross the plasma membrane into the extracellular 
compartment is currently unclear. Additional enzymes 
or pathways for the production of LPA are still worth 
exploring. For example, phosphatidylglycerol was shown 
to be converted to LPA under the catalytic action of GPAT 
as reported[201]. (2) For ATX, an important player for the 
extracellular LPA production, how its activity is regulated, 
and how the newly produced LPA is released remain to be 

addressed. Future analysis will undoubtedly shed some 
light on these. (3) There are many factors contributing to 
the pathophysiology of obesity and metabolic diseases. 
Therefore, the precise role of LPA signaling pathways 
in these diseases remains to be investigated further. In 
addition, mechanisms by which the LPA and its receptor 
signaling pathways in the differentiation of both white 
and brown adipocytes remain to be clarified. This may 
help for the control of lipid metabolism. (4) LPA seems to 
have a negative effect on glucose homeostasis in obesity. 
This was observed only in obese patients, but not in 
non-obese subjects. So future human studies should 
focus on more heathy subjects and compare with those 
parameters of obese patients. (5) LPA appears to inhibit 
insulin secretion. Whether this inhibitory effect is due 
to a direct action of LPA on pancreas islets or a possible 
regulation of liver glycogen mobilization and/or muscle 
glucose oxidation remains to be clarified. And (6) It was 
shown that the plasma LPA level and serum ATX activity 
both were increased in association with liver fibrosis. The 
underlying mechanism remains to be determined.

Taken together, the LPA signaling pathways 
contain multiple points that potentially involve in the 
development of obesity, liver fibrosis and related 
pathologies. The development of novel pharmacological 
modulators targeting intervention points may open new 
research fields and provide potential medicinal therapies 
to reduce human suffering. The prospects are bright for 
expanding insights and contributions in LPA biology.
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