
rspb.royalsocietypublishing.org
Research
Cite this article: Okerblom J, Fletes W, Patel

HH, Schenk S, Varki A, Breen EC. 2018 Human-

like Cmah inactivation in mice increases

running endurance and decreases muscle

fatigability: implications for human evolution.

Proc. R. Soc. B 285: 20181656.

http://dx.doi.org/10.1098/rspb.2018.1656
Received: 24 July 2018

Accepted: 20 August 2018
Subject Category:
Evolution

Subject Areas:
evolution, physiology, behaviour

Keywords:
human, evolution, running, hunting
Author for correspondence:
Ajit Varki

e-mail: a1varki@ucsd.edu
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4212719.
& 2018 The Author(s) Published by the Royal Society. All rights reserved.
Human-like Cmah inactivation in mice
increases running endurance and
decreases muscle fatigability: implications
for human evolution

Jonathan Okerblom1,2,3,4, William Fletes2,3,5, Hemal H. Patel6,8,
Simon Schenk7, Ajit Varki1,2,3,4 and Ellen C. Breen3

1Center for Academic Research and Training in Anthropogeny (CARTA), 2Glycobiology Research and Training
Center (GRTC), 3Department of Medicine, 4Department of Cellular and Molecular Medicine, 5Initiative for
Maximizing Student Development (IMSD) Program, 6Department of Anesthesiology, and 7Department of
Orthopedic Surgery, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
8Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA

AV, 0000-0002-2206-975X

Compared to other primates, humans are exceptional long-distance runners,

a feature that emerged in genus Homo approximately 2 Ma and is classically

attributed to anatomical and physiological adaptations such as an enlarged

gluteus maximus and improved heat dissipation. However, no underlying

genetic changes have currently been defined. Two to three million years

ago, an exon deletion in the CMP-Neu5Ac hydroxylase (CMAH) gene also

became fixed in our ancestral lineage. Cmah loss in mice exacerbates disease

severity in multiple mouse models for muscular dystrophy, a finding only

partially attributed to differences in immune reactivity. We evaluated the exer-

cise capacity of Cmah2/2 mice and observed an increased performance during

forced treadmill testing and after 15 days of voluntary wheel running.

Cmah2/2 hindlimb muscle exhibited more capillaries and a greater fatigue

resistance in situ. Maximal coupled respiration was also higher in Cmah null

mice ex vivo and relevant differences in metabolic pathways were also noted.

Taken together, these data suggest that CMAH loss contributes to an improved

skeletal muscle capacity for oxygen use. If translatable to humans, CMAH loss

could have provided a selective advantage for ancestral Homo during the

transition from forest dwelling to increased resource exploration and

hunter/gatherer behaviour in the open savannah.
1. Introduction
Between 2 and 3 Ma, the emergence of genus Homo in Africa occurred during a

period of transition from forests to increasingly arid landscapes [1–3]. This tran-

sition coincided with many postcranial biomechanical adaptations that would

have facilitated striding bipedalism and running [4,5]. As descendants of this

lineage, humans today rank among the top endurance runners in the animal

kingdom [6,7]. Notably, no other extant primate lineage has achieved this dis-

tinction [8,9]. Endurance running may have offered Homo advantages over

other animals less equipped for long distance chases in the open savannah,

including the capability for persistence hunting, as well as an increased capacity

to exploit larger areas and move across vast landscapes (vagility) [10,11].

The exceptional aerobic capacity of humans exhibited during endurance

running has been attributed to major alterations in skeletal biomechanics, as

well as to more rapid and efficient heat dissipation, which first emerged in

the Old World monkey lineage. The latter phenotype was probably achieved

through human loss of fur and a maximal expansion of a vast network of

eccrine sweat glands [5,6,12]. Changes in basal metabolic rate, body fat percen-

tage and energy allocation [13], as well as changes in skeletal muscle
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physiology and hindlimb muscle volume [14,15] are other

key features of likely relevance. However, alternative

mutually non-exclusive explanations are possible, and the

genetic and molecular events underlying this transition

remain unclear.

Two to three million years ago, an Alu-Alu genomic fusion

caused pseudogenization of the CMAH gene [16,17], and this

loss of CMP-Neu5Ac hydroxylase (CMAH) function ulti-

mately became fixed within the lineage that eventually gave

rise to modern humans [18–20]. CMAH is a hydroxylase/

mono-oxygenase enzyme that uses a variety of cofactors,

including cytochrome b5/b5 reductase, iron, oxygen and

NADH during the hydroxylation of the N-acetyl moiety of

the sialic acid N-acetylneuraminic acid (Neu5Ac) to convert it

to the hydroxylated form, N-glycolylneuraminic acid

(Neu5Gc) [21]. Initial selection for CMAH loss was possibly

owing to pressures from an ancient Neu5Gc-recognizing

pathogen [22], and studies of Cmah2/2 mice with a human-

like mutation [23], as well as human and chimpanzee sperm

suggest that subsequent fixation in a new lineage might have

been due to anti-Neu5Gc antibody-mediated reduction in fer-

tility of null females with wild-type (WT) males [24]. Modelling

of such populations suggested a rapid fixation of the null allele,

which combined with the timing of approximately 2–3 Ma,

allowed us to suggest a role of Cmah loss in the divergence

of the genus Homo [24].

The ramifications of this major change in cell surface bio-

chemistry continue to be explored in mouse models of

disease [25], and there is evidence for other significant pheno-

typic effects, including a human-like increase in sensitivity to

certain muscular dystrophy pathologies [26–29]. Although

initial muscle studies showed no major differences in the

ex vivo force frequency relationship between WT and Cmah
null muscle itself [26,27], independent gene expression

studies pointed towards alterations in redox biology [30,31],

and several transcription factors (cyclic AMP-responsive

element-binding protein 1 (CREB1), CCAAT-enhancer-

binding protein b (C/EBPb) and CCAAT-enhancer-binding

protein a (C/EBPa)) linked to metabolism and inflammation

[26]. Alterations in redox biology associated with Cmah loss

[30] have also been proposed as a molecular mechanism for

age-related hearing loss in Cmah2/2 mice [23]. However,

only limited investigations into the systemic physiological

changes in Cmah2/2 mice have been performed [30–33].

Oxygen delivery and use are particularly important in con-

ditions of maximum aerobic capacity, such as during

persistence hunting [34,35]. In this regard, alterations in

oxygen delivery have been shown to directly affect maximum

aerobic capacity in multiple mammalian model species [36–

40]. However, limited studies of the integrative physiology

of Cmah2/2 mice have been performed [30–32]. Considering

all of the findings to date, as well as the timing of CMAH loss

in relation to fossil evidence for the emergence of the Homo
running phenotype, we investigated the effects of Cmah loss

on exercise endurance, via physiological and behavioural

comparisons of Cmah2/2 and WT mice.
2. Material and methods
(a) Animals and tissue collection
All animal experiments were conducted under approved protocols

and according to the regulations and guidelines of the Institutional
Animal Care and Use Committee at the University of California,

San Diego. An exon deletion identical to the human CMAH
mutation was generated and bred into a congenic C57BL/6N

background as previously described [23]. All WT and Cmah2/2

animals tested for this study originated from a single founder

cage of heterozygous Cmah C57BL/6N mice. All terminal tissue

collection took place on euthanized mice that were fasted from

9.00 to 13.00, with tissue collection beginning at 13.00.

(b) Treadmill exercise
All mice were familiarized on a treadmill (model no. CL-4, Omni-

tech, Columbus, OH) for 10 min at a speed of 10 m min21 for two

consecutive days. After walking the mice for 10 min at

10 m min21, exercise endurance was tested using a treadmill run-

ning protocol: speed was increased 1 m min21 over 10 min,

followed by 25 m min21 for 20 min, 30 m min21 for 5 min,

35 m min21 for 5 min, 40 m min21 for 40 min and then increased

at 1 m min21 until exhaustion. For each running test, exhaustion

was defined as the time-point at which the mouse was no longer

able to maintain normal running position on the treadmill and/or

was sitting on a shock grid (set to less than or equal to 0.1 milliamps)

at the rear of the treadmill for four consecutive seconds.

(c) Voluntary exercise
Mice were allowed free access to a running wheel connected to a

digital recorder for 15 days. Distance run and average speed

were recorded on a daily basis at 9.00. After 15 days of running,

running wheels and food were removed at 9.00, and terminal

tissue and serum collected from the sacrificed animals after a

4 h fasting period.

(d) In situ gastrocnemius fatigue resistance
Fatigue resistance was measured in electrically stimulated gastro-

cnemius complex (soleus, plantaris and gastrocnemius) as

previously described [40]. Mice were anaesthetized with isoflur-

ane and placed on a heated surgery table to maintain

temperature (378C+1) throughout the procedure. Oxygen satur-

ation in the hindlimb was monitored with a Mouse PulseOx

(STARR Life Sciences) and maintained above 90% in all groups

before experimentation. The sciatic nerve was then exposed

and connected to electrodes. The gastrocnemius complex was

then separated from the bone, and the tendons connected by a

suture to a force transducer (Grass, Astro-Med, West Warwick,

RI). The sciatic nerve was electrically stimulated with a Grass

S88X Stimulator (Astro-Med, West Warwick, RI) to contract

with a single pulse (8 V, 200 ms duration electrical stimulation)

to set the optimal muscle length (Lo). To measure fatigue, the gas-

trocnemius complex was stimulated with repeated trains (8 V,

0.25 trains per second (tps), 80 Hz) until the force generated

fell to 60% of the initial force output (time to fatigue).

(e) Ex vivo muscle testing
Mice were anaesthetized with isoflurane and the soleus [38] and

a strip of the diaphragm with rib attached [41] were dissected.

For each test, the muscle was mounted in a chamber filled with

Kreb’s solution at 328C (126 mM NaCl, 2.5 mM KCl, 2.5 mM

CaCl2, 1.2 mM MgCl2, 1.2 mM NaH2PO4 and 25 mM NaHCO3

at pH 7.2) and continuously bubbled with oxygen (95% O2–5%

CO2). One tendon was tied with silk suture to a force transducer

(DMT-USA, Ann Arbor, MI), and the other tendon or rib was

tied to an adjustable post at the opposite end of the chamber

to allow muscle length to be changed incrementally to set Lo.

Muscles were stimulated with a Grass S88X Stimulator (Astro-

Med) at supramaximal voltage using platinum electrodes

placed on either side of the muscle. Following 15 min of
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equilibration, the muscles were tested for contractile function and

fatigue resistance. To assess contractile function, the force fre-

quency relationship was established for each muscle.

Maximum isometric tetanic force was measured by recording

force output at stimulation frequencies of 1, 15, 30, 50, 80, 100,

150 and 250 Hz (500 ms train duration, monophasic pulses of

0.2 ms duration) for soleus and diaphragm. The muscles were

stimulated to contract once every 1.5 min to prevent fatigue.

Stability of the muscle was checked by periodically stimulating

the muscle at maximal frequency throughout the course of the

experiment. To measure fatigue, isometric tetanic contractions

were elicited with 500 ms train duration and monophasic

pulses of 0.2 ms pulse duration at 80 Hz (soleus) or 40 Hz (dia-

phragm). Stimulation frequency was increased every 2 min in a

progressive manner (the rate of contractions was progressively

increased every 2 min starting at a frequency of one every 8 s

and changed to one every 4 s to 3 s to 2 s to 1 s over the course

of 8 min). Fatigue was defined as the time it took each muscle

to reach 60% of the maximal developed force for that muscle.

When all testing was finished, Lo was measured using a reticle

with a surgical microscope (Zeiss OPMI, Thornwood, NY), ten-

dons were removed and the muscles were blotted and

weighed. Cross-sectional area was calculated as previously

described [42], and the specific force was expressed in Newtons

per square centimetre.

( f ) High-resolution respirometry
Following dissection, soleus and diaphragm tissues were placed

immediately in preservation solution at 48C until measurements

could be made (approx. 30 min to 4 h after euthanasia). Preser-

vation medium (BIOPS) contained 10 mM Ca2þEGTA buffer,

20 mM imidazole, 50 mM Kþ-4-morpholineothanesulfonic acid,

0.5 mM dithiothreitol, 6.56 mM MgCl2, 5.77 mM ATP, 15 mM

phosphocreatine and a pH of 7.1. Tissue samples (approx.

1 mg) were weighed using a microbalance and transferred into

a calibrated respirometer (Oxygraph 2 k, Oroboros Instruments,

Innsbruck, AT) containing 2 ml of media in each chamber.

Respirometry was performed in duplicate at 378C in stirred

media (MiR05) containing 0.5 mM EGTA, 3 mM MgCl2, 60 mM

K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM

HEPES, 110 mM sucrose and 1 g l21 bovine serum albumin

essentially fatty acid free, adjusted to pH 7.1. [O2] in the media

was kept between 300 and 500 pmol ml21.

A simplified substrate-uncoupler-inhibitor-titration protocol

was used to assess maximum ADP-stimulated oxidative phos-

phorylation (OXPHOS) [43], including 10 mM glutamate

and 2 mM malate to support electron entry through complex

I (GM; ‘LEAK’ state), 5 mM ADP to stimulate OXPHOS,

10 mM succinate to maximize convergent electron flux at the

Q-junction and 10 mM cytochrome c to test for outer mitochon-

drial membrane integrity as a quality control (greater than 10%

cytochrome c response was excluded).

(g) Skeletal muscle morphology and
immunohistochemistry

Capillaries and fibres in 10 mm cryosections were detected using

the Capillary Lead-ATPase method [44]. Images were captured

using a Hamamatsu Nanozoomer Slide Scanning System. Total

capillary numbers, total fibre numbers and total muscle area

were calculated using IMAGEJ software.

(h) Transmission electron microscopy preparation of
muscle tissue

Tibialis anterior (TA) tissues were fixed with 2% paraformalde-

hyde and 2.5% glutaraldehyde in 0.15 M sodium cacodylate
buffer (SC buffer pH 7.4), treated with 1% osmium in 0.15 M

sodium cacodylate for 1–2 h on ice, washed with 0.15 M SC

buffer followed by rinsing in ddH2O on ice, incubated in 2%

uranyl acetate (UA) for 1 to 2 h at 48C, dehydrated in ethanol,

embedded in durcupan, sectioned by diamond knife and post

stained with UA and lead. Images were captured on FEI Spirit

Tecnai transmission electron microscopy (TEM) at 80 KV with

Eagle 4 k � 4 k camera.

(i) Metabolomics
Metabolomics were performed by the West Coast Metabolomics

Center, UC Davis Genome Center-Metabolomics, University of

California Davis, 451 Health Sciences Drive, Davis, California

95616, United States Instrument: Gerstel CIS4 –with dual MPS

Injector/Agilent 6890 GC- Pegasus III TOF MS.

( j) Statistical analysis
Error data represent standard errors of the means (s.e.m.) of the

measurements. When comparing WT versus Cmah2/2, statistical

analysis was performed using two-way analysis of variance

(ANOVA) followed by the Tukey’s multiple comparisons test

or Student’s paired two-tailed t-test when appropriate. Unless

otherwise specified in the figure legend, *p , 0.05, **p , 0.01,

***p , 0.001 and #p , 0.0001 represent estimates of statistical

significance.
3. Results
(a) Mice with a human-like Cmah deficiency perform

better during forced and voluntary exercise testing
Endurance capacity of WT and Cmah2/2 eight-week-old male

mice was tested with a ramp up treadmill running protocol.

Separate groups were tested either at baseline or after 30

days of voluntary wheel running. In multiple independent

tests, Cmah2/2 mice displayed approximately 30% greater

running endurance compared with WT controls, both at base-

line (figure 1a) and after exercise training (figure 1b). A

separate study also measured exercise parameters (speed

and distance) of eight-week-old WT and Cmah2/2 male

mice during 15 days of voluntary exercise wheel running.

After adaptation to exercise training, Cmah2/2 mice ran at a

12% faster pace (figure 1c) and 20% longer distance per day

(figure 1d ) compared with WT controls. To determine if

any underlying differences in cardiac output or blood haema-

tocrit could be contributing to the observed phenotype, we

measured the left ventricular (LV) mass and posterior wall

thickness (LVPW) both in diastole and systole by echocardio-

graphy. Although we did observe a significant difference in

bodyweight in the measured cohort, we did not observe a

significant difference in LV mass/bodyweight ( p ¼ 0.2) or

LVPW ( p ¼ 0.2) in the measured cohort (electronic sup-

plementary material, figure S1A–C). We also quantified the

red blood cell (RBC) concentration in blood through complete

blood count analysis and did not observe any significant

differences in RBC concentrations (electronic supplementary

material, figure S1D).

(b) Hindlimb muscles from Cmah2/2 mice display a
greater resistance to fatigue in situ

To directly measure fatigue resistance of WT versus Cmah2/2

mouse muscles with intact vascular and nervous systems, we
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electrically stimulated the gastrocnemius complex to contract

via the sciatic nerve in anaesthetized mice. The gastrocnemius

complex of Cmah2/2 mice reached fatigue (60% of initial

force) at 7 min (7.1+ 0.4 min) compared to the control

group, which took about 3 min (3.2+ 0.3 min) (figure 2a,b).
To directly measure the intrinsic fatigue resistance of the

muscles ex vivo, we evaluated the force frequency

(figure 2c–e) and time to fatigue (figure 2f ) of isolated hind-

limb (soleus) and respiratory (diaphragm) muscles. Under

these ex vivo conditions, there were no differences in maximal

force (soleus p ¼ 0.4, diaphragm p ¼ 0.8) or time to fatigue

(soleus p ¼ 0.9, diaphragm p ¼ 0.4) between genotypes. To

determine whether vascularity could be a contributing

factor to the differences in fatigability between in situ and

ex vivo contractions, we analysed the capillary per fibre

ratio of a primarily oxidative (soleus) and glycolytic (plan-

taris) muscles of the hindlimb. Histological analysis of WT

versus Cmah2/2 hindlimb muscles demonstrated that the

capillary to fibre ratio was significantly higher in the red oxi-

dative muscle (soleus) but not the white glycolytic muscle

(plantaris) in non-exercise-trained Cmah2/2 mice versus WT

controls (figure 3a). To determine the mitochondrial content,

we analysed the mitochondrial volume density of a glycolytic

hindlimb muscle (TA) by electron microscopy and did not

observe a significant difference ( p ¼ 0.4, figure 3b). We also

checked the citrate synthase activity of four different muscles

(heart, diaphragm, gastrocnemius and soleus) and observed a

trend towards an elevated citrate synthase activity in

Cmah2/2 versus WT mice ( p ¼ 0.07, electronic supplementary

material, figure S2A). When performing individual compari-

sons, we did observe a significant difference in the diaphragm

(*p ¼ 0.03, electronic supplementary material, figure S2A).
(c) Locomotor and respiratory fibres from Cmah2/2

mice show a greater maximal mitochondrial
capacity

To assess the coupled respiratory capacity of WT and

Cmah2/2 myofibre, oxygen consumption (O2 flux) was

measured in permeabilized fibre bundles derived from dia-

phragm (figure 3c) and soleus (figure 3d ) in the presence of

complex I substrates (glutamate and malate), state III (satur-

ating ADP conditions) and complex I þ II substrates while in

state III (glutamate þmalate þ ADP þ succinate) with sub-

sequent cytochrome c addition as a quality control. We

found that under saturating conditions of ADP and mito-

chondrial complex I þ II substrates, Cmah2/2 muscle had a

greater O2 flux (oxygen consumption per second normalized

to muscle fibre bundle mass) compared with WT controls

(figure 3c,d ), indicating a higher maximum ADP-stimulated

OXPHOS capacity in Cmah2/2 mouse myofibres compared

with WT controls in conditions where the cytochrome c
response (as a marker of mitochondrial outer membrane

damage) was very minimal (average , 1%). To determine

oxygen substrate use, we also measured the Km (p50) of

oxygen in isolated mitochondria from heart and gastrocne-

mius and did not observe a significant difference ( p ¼ 0.31,

electronic supplementary material, figure S2B).

(d) Amino acid metabolism and pentose phosphate
pathway metabolites are enriched in Cmah2/2

exercise-trained mouse locomotor muscle
To explore differences in major metabolic pathways, the

soleus from exercised and non-exercised WT and
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Cmah2/2 mice was subjected to untargeted GC-TOF

metabolomics analysis. The top 100 metabolites showing

differences are visually illustrated by a heat map

(figure 4). Targeted evaluation of specific metabolites illus-

trates a greater abundance of multiple amino acids in

Cmah2/2 exercise-trained muscle compared with WT exer-

cised trained muscle, particularly proline, phenylalanine

and the branched chain amino acids (BCAAs) leucine and

isoleucine. Aspartate, threonine, asparagine and tyrosine

were also upregulated in Cmah2/2 exercise-trained soleus

but not in WT exercise-trained soleus in the same con-

ditions. Several other amino acids were upregulated in

both WT and Cmah2/2 exercised tissues as a general effect

of exercise shared between the two groups, although most

were trending towards higher upregulation in Cmah2/2

exercised muscle versus WT exercised muscle (figure 4).

Multiple metabolites in the pentose phosphate pathway

such as ribulose-5-phosphate, ribose and xylulose
were also upregulated in Cmah2/2 exercise-trained soleus

compared to WT controls (figure 4).

4. Discussion and conclusion
Hominin evolution is like a bush, with many lineages of

hominins coexisting throughout much of the past 6 Myr

[45,46]. While hominin bipedalism emerged early and poss-

ibly more than once, CMAH loss [19,20] occurred later and

roughly coincides with the major biomechanical and environ-

mental changes that took place as hominins probably

transitioned to a more carnivorous diet [1–3,47]. Such a tran-

sition could have been greatly facilitated by an increase in the

capabilities of ancient hominins to perform persistence hunt-

ing and explore a wider range for resources. For this reason,

the exact timing of CMAH loss in the fossil record is of inter-

est, and a method to measure a stable Neu5Gc metabolite in

4 Myr-old fossil material has recently been developed [48].
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Emulating human CMAH loss in mice generates an

increased capability to use oxygen. This is most evident by

an increase in endurance running performance, muscle fati-

gue resistance in situ and myofibre respiration ex vivo.
Importantly, these differences appear to be completely inde-

pendent of differences in biomechanics or eccrine sweat

glands already associated with the success of humans for

long distance running compared with other vertebrates [5].

At least part of this difference in oxygen use could be

owing to a difference in baseline skeletal muscle capillarity.

This was observed in the more oxidative soleus but not the

more glycolytic plantaris. Notably, the soleus is a highly oxi-

dative slow twitch muscle compared with most muscles in a

mouse and more closely resembles the type 1 and type 2A

fibre type distribution prevalent in humans and other rela-

tively large mammals [49,50]. Compared to other primates,

human muscle also contains a greater proportion of myosin

heavy chain I (MHC I) fibres [15,51] and likely associated

capillaries, another predictor of human endurance [52].

Increasing the number of capillaries supplying each myofibre

increases vital nutrient and oxygen availability to mitochon-

dria during periods of prolonged endurance exercise or

providing resistance to muscle fatigue as we measured in
situ [38,40,53–56]. In this regard, a comparable performance

of muscle fatigability ex vivo further strengthens the hypoth-

esis that greater oxygen availability contributes to the

superior muscle fatigue resistance measured in situ in mice

with Cmah loss [57–59]. This is supported by the technical

limitation in detecting small differences in O2 use ex vivo
owing to the known diffusion limitations in isolated muscles

externally bathed in an O2-saturating solution [60]. The

observed increase in ADP-stimulated OXPHOS of saponin-

permeabilized muscle fibre bundles, however, does suggest

that Cmah2/2 myofibres have a higher capacity to use O2.

The heat map of metabolites illustrates a major effect of

exercise adaptation on the muscle metabolite profile.

Although there is no significant difference in the citric acid

cycle metabolites measured (citrate, malate and succinate)

between WT and Cmah2/2 exercise-adapted mice, greater

increases in anabolic amino acids such as the BCAAs, leucine

and isoleucine, were observed in Cmah2/2 exercised muscle.

In addition to their anabolic effects after physical exercise

[61], increased muscle BCAA can also prevent oxidative

damage and enhance physical endurance in mice [62]. The

higher prevalence of metabolites of the anabolic pentose

phosphate pathway in Cmah2/2 exercised mice could also

help to combat oxidative stress [63–66].

One of the disparate clues that lead us to test endurance

capacity in Cmah2/2 mice was the finding that when cross-

ing this genotype into the human-like Duchenne Muscular

Dystrophy mouse model (mdx), Cmah2/2/mdx mice display

a much more severe and human-like muscular dystrophy

pathology [26,27]. The C/EBP family of transcription factors

connect changes associated with metabolism [67] to the

inflammatory response [68,69] and muscle wasting [70]. We

have previously shown that the family member (C/EBPb)

could be modulated simply by causing uptake and metabolic

incorporation of Neu5Gc into macrophages ex vivo [29] and
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1.0
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Figure 4. Metabolite profiles in WT versus Cmah2/2 mice. Heat map for visualization of the average value per group of the 100 most significant metabolites from the
soleus muscles of non-exercised (n ¼ 10 WT and 7 Cmah2/2) and exercise-trained (n ¼ 13 WT and 12 Cmah2/2) mice determined by one-way ANOVA.
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that C/EBPb was differentially expressed in WT versus

Cmah2/2 macrophages. Alterations in macrophage C/EBPb

expression or activity during the development and/or polariz-

ation of macrophages could be a contributing factor towards

the differences in baseline capillary to muscle fibre ratios

observed in the soleus muscles of Cmah2/2 mice [71]. Pre-

viously reported genechip analysis revealed that the

expression of another C/EBP family member (C/EBPd) and

the transcriptional activity of CREB1 are upregulated in

Cmah2/2 gastrocnemius muscle compared to WT controls [26].

The single oxygen atom added to Neu5Ac by CMAH

generates Neu5Gc, and this conversion from an acetyl

group to a glycolyl group probably alters the amphipathicity

and/or charge of the primary sugar molecule as well as the

macromolecules carrying them at the membrane surface.

We believe that surface Neu5Gc loss could increase mem-

brane surface hydrophobicity, which could facilitate a

greater oxygen diffusion rate, but this is difficult to test. On

the other hand, the intracellular turnover of these sialic

acids would generate acetate and glycolate, respectively,

which could intrinsically alter cellular metabolic flux. Sialic

acid-binding proteins and sialidases can also differentiate
between the two types of chemical structures. Given that

the great majority of self-surface and secreted molecules of

all cell types (including muscle) express such sialic acids

(often at high densities), the loss of Neu5Gc (and the resulting

excess of Neu5Ac) in the hominin lineage is likely to have had

multiple effects on multiple pathways and systems. Thus,

there are many mechanisms possible and we have only

begun to explore some of them. Our current work suggests

that there were probably complex multilevel effects of Cmah
loss on skeletal muscle and vascular physiology during the

evolution of hominins. Integrated changes in the O2 transport

system provide a greater capability for long distance running

in vivo, resistance to muscle fatigability in situ and greater

maximal ADP-stimulated OXPHOS in skeletal muscle,
despite no measurable difference in fatigue resistance

ex vivo. These data suggest a critical role for oxygen delivery

and use in the muscle endurance phenotype.

Given that Neu5Gc loss altered the surfaces of almost all

cells in the body, it is not surprising that no single mechanism

can fully account for the increase in spontaneous exercise and

maximal endurance observed in Cmah2/2 mice. Further

study of all components of the integrated oxygen transport
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system, including cardiac function, are needed. For the time

being, given the timing of the mutation and the potential rel-

evance of its fixation to the emergence of the genus Homo, it is

reasonable to speculate that this mutation may have been

essential for running faster and further. Thus, the emergence

of an endurance phenotype critical to our ancestral lineage:

an increased range for resource exploration and the ability

to chase down prey over long distances.
hing.org
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