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As thermal regimes change worldwide, projections of future population and

species persistence often require estimates of how population growth rates

depend on temperature. These projections rarely account for how temporal

variation in temperature can systematically modify growth rates relative to

projections based on constant temperatures. Here, we tested the hypothesis

that time-averaged population growth rates in fluctuating thermal environ-

ments differ from growth rates in constant conditions as a consequence of

Jensen’s inequality, and that the thermal performance curves (TPCs) describ-

ing population growth in fluctuating environments can be predicted

quantitatively based on TPCs generated in constant laboratory conditions.

With experimental populations of the green alga Tetraselmis tetrahele, we

show that nonlinear averaging techniques accurately predicted increased

as well as decreased population growth rates in fluctuating thermal regimes

relative to constant thermal regimes. We extrapolate from these results to

project critical temperatures for population growth and persistence of 89

phytoplankton species in naturally variable thermal environments. These

results advance our ability to predict population dynamics in the context

of global change.
1. Introduction
Organisms live in variable environments. Demographic rates and outcomes that

integrate temporal or spatial environmental variation may differ substantially

from what might be predicted based on short-term physiological responses to

constant, non-varying experimental environments. For example, population

growth rates are predicted to vary with temperature as described by their ther-

mal performance curve (TPC). The minimum and maximum temperatures that

allow population growth can be estimated from TPCs, and these ‘critical temp-

eratures’ are important thermal traits used in the large and growing body of

synthesis research that links physiological processes with projected population

responses to climate change [1,2].

One factor that complicates the application of thermal traits derived from

TPCs to natural environments is that TPCs are usually generated from physio-

logical assays in constant-temperature laboratory experiments, in contrast to the

thermal variation organisms would experience in the field. Thermally variable

environments can lead to population growth rates over time that differ substan-

tially from estimates based on the average temperature over the same time

period, a problem known as the ‘fallacy of the averages’ [3,4]. This difference

complicates projections of population performance based on experiments in

constant conditions, prompting calls for ecologists to explicitly incorporate

environmental variation into predictions of performance in the field [5–7].

Because temporal patterns of environmental variability differ across regions

and the lifespans of organisms, an approach that allows quantitative scaling
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Figure 1. (a) A TPC and its critical temperatures (Tmin, Tmax, Topt; dots) and
thermal breadth, w. The critical temperatures are not fitted parameters of the
TPC, but are estimated by numerical optimization. This negatively skewed
curve shows an exponential increase typical of processes following an Arrhe-
nius function, with an accelerating region to the left of the inflection point
(grey vertical line), followed by a decelerating region to the right of the
inflection point. Notice that the accelerating region corresponds to the
region with a positive second derivative (b). Figure adapted from [5], but
parametrized with T. tetrahele data from this study. (Online version in colour.)
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from TPCs of population growth generated under constant-

temperature conditions to population performance in vari-

able environments may be particularly useful for

understanding systematic variation in patterns of abundance

and distribution, and species’ responses to climate change [8].

Biological responses to environmental variation depend

on whether the relationship between performance and an

environmental gradient is linear or nonlinear [4,9,10], and if

nonlinear, whether it is accelerating with increasing tempera-

ture or decelerating (figure 1a). When performance, P,

changes nonlinearly with environmental conditions, E,

time-averaged performance in a variable environment PðEÞ
does not necessarily equal performance at the mean environ-

mental condition Pð�EÞ. This fact, captured by the well-known

mathematical rule ‘Jensen’s inequality’ leads to clear predic-

tions about how environmental variability should affect

performance over time [9,11,12]. Jensen’s inequality states

that if P is a nonlinear function of E, then PðEÞ . Pð�EÞ
where P(E) is accelerating (i.e. positive second derivative)

and PðEÞ , Pð�EÞ where P(E) is decelerating (i.e. negative

second derivative; figure 1b). In the context of temperature,

the relationship between organismal or population perform-

ance and temperature, captured in the TPC (figure 1a), is

almost always nonlinear [12–14]. Yet the relationship

between temperature and population growth is often

implicitly assumed to be linear in commonly used demo-

graphic models and degree-day analyses [15], making these

approaches inadequate to describe population dynamics

over wide temperature gradients [16]. The potential ecologi-

cal and evolutionary effects of Jensen’s inequality have been

shown in several recent studies [2,12,17]. Yet, ecologists

struggle to incorporate thermal variability when making pre-

dictions about the effects of temperature on growth,

abundance and distributions of species in nature, often

assuming that species’ thermal experiences are well

represented by the mean temperature of their environment.

The typical shapes of TPCs (figure 1a) [18], with an accel-

erating phase at lower temperatures and a decelerating phase

at higher temperatures, suggest positive effects of thermal

variation at low temperatures and negative effects at high

temperatures [5,17]. Current estimates of the consequences

of temporal thermal variability for population growth rates

have assumed a certain shape to the curve (i.e. a Gaussian

rise and a parabolic fall [2]), thus forcing certain outcomes

of temporal variability. The shape and skew of the TPC can

vary substantially among phenotypes and ecological con-

texts, including predation risk or resource supply levels

[12,19,20], leading to more nuanced responses to environ-

mental variation than may be predicted from empirical

TPCs generated in the laboratory under highly simplified

conditions. To date, empirical tests of how temporal tempera-

ture variability affects population growth rates have been

done at only two mean temperatures [21], and have not

made quantitative predictions for population growth in fluc-

tuating conditions based on the curvature of the TPC under

constant conditions.

Here, using a fast-growing green alga with a short gener-

ation time, we tested whether population growth in a

diurnally fluctuating thermal environment reflects the effects

of nonlinear averaging of performance at each temperature

experienced. We hypothesized that population growth rates

would be accurately predicted by Jensen’s inequality and

the instantaneous effects of time-averaging of acute thermal
responses in population growth. Under this hypothesis, per-

formance at a given temperature in a fluctuating environment

is no different than performance at that temperature in a con-

stant environment, such that time-averaged performance in

fluctuating conditions would be directly predictable based

on temperature-dependent performance under constant con-

ditions. Alternatively, if time-dependent stress or acclimation

effects that depend on recent thermal history modify growth

rates in fluctuating environments [8,22,23], then population

performance in naturally variable environments may not be

predicted directly from TPCs generated under constant lab-

oratory conditions and would require a more detailed

understanding of the mechanisms and time-course of thermal

niche plasticity.
2. Methods
To test our hypothesis that performance in variable environ-

ments is predictable based on Jensen’s inequality and nonlinear

averaging, we experimentally estimated population growth in

constant and fluctuating thermal environments. First, we used

experimental populations of Tetraselmis tetrahele grown in the lab-

oratory at nine constant temperatures to generate a TPC for

population growth rate (electronic supplementary material,

figure S1, steps 1–2). Then, we expressed expectations for how

population growth in fluctuating environments varies with

mean temperature using two approaches: nonlinear averaging

and scale transition theory (electronic supplementary material,

figure S1, step 3). Finally, we tested these predictions against
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observed population growth rates from experimental popu-

lations of T. tetrahele reared under fluctuating thermal

conditions over six mean temperatures (electronic supplemen-

tary material, figure S1, steps 4–5). Then, having identified an

approach for linking laboratory performance to fluctuating

field conditions, we drew on a global dataset of empirical

TPCs for phytoplankton population growth rates, which vary

in shape and geographical origin, and used nonlinear averaging

to estimate in situ population growth rates, given in situ environ-

mental variation at each species’s isolation location (electronic

supplementary material, figure S1, step 6). We estimated the

extent to which predicted growth rates differ when they are pre-

dicted using nonlinear averaging of varying temperatures over

time, as compared to when they are predicted based on mean

temperatures only. By including a range of phytoplankton TPC

shapes from a global distribution, we explored the consequences

of considering thermal variability in projections of population

growth rates, with implications for patterns of abundance and

distribution.

(a) Using nonlinear averaging to predict population
growth in variable environments

We described how population growth rate, r, varies with temp-

erature using a TPC, r ¼ f (T ). We described the expected

growth rate, E(r), for a population over time, t, by taking the

average observed growth rate over time,

EðrÞ ¼ 1

t

Xt
t¼1

f ðTtÞ, ð2:1Þ

where t indexes time. While this approach allows for population

growth rates to be negative, the time-averaging approach

assumes that the sequence of temperatures does not make popu-

lation growth rate negative for long enough to drive a population

to extinction nor to produce irreversible damage that alters how

individuals perform at more benign temperatures.

Empirical time series of environmental or body temperatures

required to use equation (2.1) are often not available; however,

mean and variance of the distribution of temperatures over a

period of time may be more readily accessible. In cases when

only the mean and variance of the temperature distribution are

available, expected performance can be estimated using a

Taylor approximation of the TPC (electronic supplementary

material, equation S5), an approach that has been incorporated

into scale transition theory [5,17,24]. Scale transition theory

makes predictions for how nonlinear dynamics change over

spatial and temporal scales. We compare results using both

approaches (equation (2.1) and electronic supplementary

material, equation S5) to increase the toolkit for ecologists

with different kinds of temperature data available (electronic

supplementary material, appendix A, figures S2–S4).

(b) Experimental quantification of thermal performance
curves in constant and fluctuating environments

We experimentally quantified TPCs in constant and varying ther-

mal environments for T. tetrahele, a globally distributed coastal

marine phytoplankton species. We used acute TPCs estimated

directly from experimental populations newly exposed to a

temperature gradient (i.e. with no acclimation period), rather

than longer-term acclimated TPCs, to match the time scale of

temperature exposure under constant and fluctuating conditions

and to simulate the effects of temperature variability in real time.

The cultured strain used here was obtained from the Canadian

Centre for the Culture of Microorganisms (UW418) and was orig-

inally isolated off the coast of Vancouver Island, British

Columbia, Canada. Tetraselmis tetrahele was maintained in
laboratory culture in ESAW medium (Enriched Seawater, Artifi-

cial Water) [25] at 168C on a 16 L : 8 D cycle under nutrient- and

light-saturated conditions for 1 year (approx. 300 generations)

before the start of the experiments.

We initiated 20 replicate experimental populations of

T. tetrahele in 30 ml glass test tubes containing 20 ml of 10 mM

nitrate ESAW medium at a density of approximately 700

cells ml21 under constant-temperature conditions at 08C, 58C,

108C, 158C, 208C, 248C, 278C, 298C and 328C (electronic sup-

plementary material, figure S1, step 1) and under fluctuating

temperature conditions, with the same mean temperatures as

the constant conditions, but fluctuating +58C (i.e. 0–108C,

5–158C, 10–208C, 15–258C, 19–298C and 22–328C; electronic

supplementary material, figure S1, step 4). We created fluctuat-

ing temperature treatments by programming temperature-

controlled incubators (Panasonic MR 154) to switch between

low and high temperatures once per day (i.e. approx. 11.5 h at

each of the high and low temperatures, with 30 min of transition

time in between). This period corresponds to approximately half

a generation time of T. tetrahele at 208C. We verified that the rates

of heating and cooling were the same in the experimental

populations by measuring water temperatures inside the test

tubes at 1-min intervals with iButton temperature loggers

(Maxim/Dallas Semiconductor). To avoid confounding the temp-

erature cycles with daily light cycles, we grew all experimental

populations under continuous light at saturating intensities of

150 mmol m22 s21 (electronic supplementary material, figure S5).

The source population was acclimated to continuous light for

four months prior to the experiment during which time we

observed no detrimental effects on population growth rates. Con-

tinuous light regimes are often used in algal physiological

studies to simplify sampling [26] and have been shown to induce

rapid growth with no detrimental effects in coastal algae [27].

We sampled four replicate populations destructively at each of

five time points over the period corresponding to the exponential

growth phase (i.e. when resources were not limiting) at each temp-

erature. Population abundances were estimated from 250 ml

samples using a FlowCAM (flow rate ¼ 0.3 ml min21; FlowCAM

VS Series, Fluid Imaging Technologies).
(c) Estimating the temperature dependence of
population growth in constant and variable
conditions

We estimated the temperature dependence of population growth

directly from the observed time series of population abundance

over the temperature gradient [28] (electronic supplementary

material, figure S1, step 2, and figure S6). We modelled the temp-

erature-dependent intrinsic rate of population growth, r, during

the exponential growth phase as

NðtÞ ¼ Nð0ÞerðTÞt, ð2:2Þ

where N(t) is the number of individuals at time t and r(T ) is

given by [19],

rðTÞ ¼ aebT 1� T � z
w=2

� �2
" #

, ð2:3Þ

using nonlinear least-squares regression with the nls.LM function

in the minpack.LM package in R [29]. Population growth rate, r,

is a function of temperature, T, a and b are parameters from the

Eppley curve [30] that together describe the increase in maxi-

mum observed population growth rates with temperature, z
determines the location of the maximum of the quadratic portion

of the function and w is the range over which the growth rate is

positive (i.e. the thermal breadth). Equation (2.3) allows the TPC

to have any combination of accelerating and decelerating
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portions and allows for population growth rates to be negative at

thermal extremes. We favoured this TPC over others, such as the

modified Gaussian, which do not permit negative population

growth rates at cold temperatures, and because it is parametrized

with biologically meaningful parameters for phytoplankton

[19,31]. For comparison, we fitted several other functional

forms to the experimental dataset but did not find any better

fits when we compared models via AIC. In addition to estimat-

ing the temperature dependence of r directly from the time

series at all temperatures simultaneously, we also estimated the

temperature dependence of r via an ‘indirect’ approach [28] (elec-

tronic supplementary material, appendix A), a traditional way of

fitting TPCs, in which we first estimated growth rates at each

temperature separately, and then fit equation (2.3) to the

growth estimates at each temperature (electronic supplementary

material, figures S7 and S8).
.B
285:20181076
(d) Estimating thermal traits
To facilitate comparisons of thermal performance in constant and

fluctuating environments, we estimated four thermal traits

derived from the TPC (figure 1a): the optimal temperature for

population growth, Topt, the minimum and maximum tempera-

tures for positive population growth, Tmin and Tmax, and

thermal niche breadth, w [32]. Here we use Tmin and Tmax to

denote the lower and upper limits of the thermal niche (w) for

positive population growth, respectively (figure 1a). Topt, Tmin

and Tmax are not parameters of equation (2.3), but rather features

of the curve defined because they are understood to be important

for the ecology of populations. We identified Topt via numerical

optimization using the optim function in R, and Tmin and Tmax by

finding the roots of the TPC (i.e. the intercepts of the TPC with

the x-axis) using the uniroot function in R. We quantified the ana-

logues of these critical temperatures under thermally variable

conditions and refer to them as the minimum mean and maxi-

mum mean temperatures for positive population growth under

fluctuating conditions, �Tmin and �Tmax, respectively, the mean

temperature for optimal growth under fluctuating conditions,
�Topt and thermal niche breadth under fluctuating conditions,
�w. Because Tmin from the estimated curve could be below the

freezing point of seawater, 21.88C, we used an additional

metric of thermal breadth, ws, which assumes that T. tetrahele
cannot maintain positive population growth below the freezing

point of seawater. We defined ws as the difference between

Tmax and 21.88C if Tmin was estimated to be below 21.88C. If

Tmin was estimated to be above 21.88C, then we defined ws as

the difference between Tmax and Tmin.

To generate estimates of uncertainty in TPC fits, we

determined confidence intervals around fitted TPCs using non-

parametric bootstrapping of mean-centred residuals using the

nlsBoot function with 999 iterations in the nlstools package [33]

in R. We calculated 95% confidence intervals as the range

between the 2.5th and 97.5th quantiles.

To test our hypothesis that performance in varying con-

ditions can be explained by nonlinear averaging of

performance at each temperature experienced, we generated an

expected TPC for T. tetrahele under thermally fluctuating con-

ditions (electronic supplementary material, figure S1, step 3).

We evaluated equation (2.1) with f (T ) equal to the TPC fitted

using equation (2.3), for all values of T between 08C and 338C
(i.e. the entire TPC), assuming that experimental populations

spend half their time at 58C above and below each mean temp-

erature. We generated confidence intervals around the expected

TPC under variable conditions by evaluating equation (2.1) for

each of the 999 bootstrapped constant-environment curves and

calculating 95% confidence intervals as the range between the

2.5th and 97.5th quantiles (figure 2a, dashed band). This pre-

dicted TPC demonstrates the effects of Jensen’s inequality: we
expected temperature variability to increase population growth

in the accelerating phase of the TPC and decrease population

growth rate in the decelerating phase of the TPC [9] (figure 1),

and to shift �T min and �Tmax to lower temperatures because the

TPC is left-skewed (figure 2a). Time-averaged maximum

growth rate, �rmax, should decrease under variable temperature

conditions relative to constant conditions because Topt is

always in a decelerating portion of the TPC. Finally, we expected

the thermal breadth under fluctuating conditions, �w, to also

decrease under fluctuating conditions if Tmin is close to freezing,

thus preventing �Tmin from shifting to lower temperatures to com-

pensate for decreased �Tmax. Ultimately, the predicted balance

between positive and negative effects of temperature variability

depends on whether the range of variable temperatures is

above or below the inflection point, the shape of the curve and

the amount of variability.

We then compared these predictions to observed population

growth rates estimated in fluctuating thermal environments,

which we estimated by fitting equations (2.2) and (2.3) to the

time series of population abundance in the variable experimental

treatments (electronic supplementary material, figure S1, step 5).

For this, we used T ¼ �T, the mean temperature in each treatment,

to characterize the thermal experience of populations in thermal

regimes that we know varied over time. By doing this, we expli-

citly and empirically tested whether the ‘fallacy of the averages’

is sufficient to explain how TPCs from fluctuating environments

differ from TPCs in constant environments.
(e) Applying nonlinear averaging to estimate in situ
phytoplankton population growth rates

We estimated time-averaged population growth rates in ther-

mally variable environments for a diverse set of phytoplankton

species using nonlinear averaging (equation (2.1); electronic sup-

plementary material, figure S1, step 6) and scale transition theory

(electronic supplementary material, equation S5). We estimated

TPCs for 89 species by fitting equation (2.3) to published phyto-

plankton growth rates [31] measured in the laboratory at arrays

of constant temperatures. We fit the TPCs using maximum-

likelihood estimation with the mle2 function in the bblme package

in R [34] (electronic supplementary material, appendix A).

For each of these 89 species, we used historical reconstructed

sea surface temperature (SST) data to characterize thermal

regimes at isolation locations reported in the original studies.

For each species’s isolation location, we extracted daily average

SSTs from the closest point in NOAA’s Optimum Interpolation

Sea Surface Temperature dataset, Advanced Very High Resol-

ution Radiometer (AVHRR) and Advanced Microwave

Scanning Radiometer on the Earth Observing System (AMSR-

E) AVHRRþAMSR, which uses additional data from AMSR-E,

available from 2002 to 2011 [35]. This dataset has 0.258 spatial

resolution.
( f ) Statistical estimation of ‘realized’ thermal
performance curves

For each species and isolation location, we generated a ‘realized

TPC’ which represents expected growth rates, given natural pat-

terns of temperature variability (electronic supplementary

material, figure S1, Step 6). We compared the expected in situ
growth rate, r, at each species’s isolation location using a mean

annual temperature only, such that T ¼mean annual SST at the

isolation location, with a time-averaged growth rate using two

approaches: first using equation (2.1) where Tt is daily tempera-

ture at the isolation location and where f (T ) is the TPC fit using

equation (2.3); and second using the scale transition theory

(Taylor approximation) approach (electronic supplementary
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material, equation S5) where f (T ) is the TPC fit using equation

(2.3), �T and s2
T are the mean and standard deviation of daily

temperatures over the period 1981–2011 (electronic supplemen-

tary material, figures S3 and S4). Our purpose in using these

two approaches was to compare the predictions made with

empirical time series of temperature versus only the mean and

standard deviation of the temperature distribution. We then

extrapolated these approaches over the entire TPC to generate

an expected ‘realized TPC’, given in situ thermal variability. To

do this, we first generated a synthetic temperature distribution

around each mean temperature from 228C to 408C by taking

the distribution of temperatures over the historical time series

at each isolation location, subtracting the mean and then

adding each temperature from 228C to 408C. From these ‘rea-

lized TPCs’, we compared �Tmax and �Topt to the Topt and Tmax

estimated in constant laboratory environments.

Given that predicted effects of thermal variability depend on

curve shape and temperature variance (electronic supplementary

material, equation S5), we tested how the effects of thermal varia-

bility on estimated critical temperatures and population growth
rates depend on the TPC skew and standard deviation of SST

using OLS regression. We used a curve skewness metric devel-

oped by Thomas et al. [31] (electronic supplementary material,

eqn 5 in [31]), which standardizes the absolute skewness of the

curve by the niche width, w. All analyses were conducted in R

version 3.4.1 [36]; data and code for these analyses are available

at https://github.com/JoeyBernhardt/thermal-variability.
3. Results
(a) Does population growth in a thermally variable

environment reflect the effects of nonlinear
averaging over the thermal performance curve?

Population growth in fluctuating conditions differed from

that in constant thermal conditions over the thermal gradient,

and the differences were predicted quantitatively by

https://github.com/JoeyBernhardt/thermal-variability
https://github.com/JoeyBernhardt/thermal-variability
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nonlinear averaging of temporal variation in temperature-

dependent performance (95% CI of the growth rate estimates

under fluctuating conditions overlapped with predicted

growth rates from equation (2.1); orange curve and dashed

band in figure 2b). Consistent with expectations based on

Jensen’s inequality and nonlinear averaging, experimental

populations of T. tetrahele had higher population growth

rates under fluctuating temperature conditions compared

with constant conditions over accelerating portions of the

TPC, but lower growth rates under fluctuating temperature

conditions compared with constant conditions over decelerat-

ing portions of the TPC (figure 2b). Notably, population

growth was lower under fluctuating conditions relative to

constant conditions at 248C, which is close to Topt in this

population of T. tetrahele (figure 2b). Populations had negative

growth rates at 328C. The shift between positive effects of

temperature fluctuations on population growth at low temp-

eratures and negative effects of fluctuations at warmer

temperatures aligned with the inflection point of the con-

stant-temperature TPC (16.768C, 95% CI: 16.768C, 16.818C),

providing strong empirical support for nonlinear averaging

in predicting population growth in thermally variable

environments.

Thermal variation altered estimated parameter values

and thermal traits of the realized TPC, effectively shifting

the height of the curve down and the position of the curve

to lower temperatures. The maximum exponential growth

rate ð�rmaxÞwas lower under variable conditions than constant

conditions, rmax ¼ 1:54 d�1 (95% CI: 1.52 d21, 1.56 d21)

versus �rmax ¼ 1:20 d�1 (95% CI: 1.15 d21, 1.25 d21)

(figure 2a,b). Estimated mean optimal temperatures for

growth rate were lower under variable conditions: Topt ¼

24.698C (95% CI: 24.528C, 24.888C) versus �Topt ¼ 21:92�C

(95% CI: 21.488C, 22.438C). Maximum mean temperatures

for positive growth rates were lower under variable con-

ditions Tmax ¼ 32.398C (95% CI: 32.138C, 32.648C) versus
�Tmax ¼ 30:31�C (95% CI: 29.248C, 31.978C). All estimated

critical temperatures under fluctuating conditions

ð �Topt, �Tmax, �TminÞ were quantitatively consistent with theor-

etical predictions from equation (2.1) (i.e. had 95% CI

overlapping the predicted values from equation (2.1);

figure 2b,c). The range of temperatures associated with posi-

tive growth rates, accounting for the freezing point of

seawater, ws, was 34.198C (95% CI: 33.938C, 34.448C) under

constant conditions and 32.118C (95% CI: 31.048C, 33.778C)

under variable conditions. The estimated thermal breadth,

w, was also lower under variable conditions, but not statisti-

cally distinguishable from constant conditions (i.e. had

overlapping 95% CI): �w ¼ 37:05�C, 95% CI: 33.578C,

45.528C, versus w ¼ 41.238C, 95% CI: 37.318C, 47.418C).
(b) How different are predicted ‘realized’ thermal
performance curves in variable natural
environments from predictions based on thermal
performance curves generated under constant
conditions?

When we estimated the TPCs of the 89 phytoplankton species

for constant and varying temperature regimes, we found that

for the 90% of species that show negative skew (i.e. mean ,

median), �Topt in variable environments is lower than Topt in
constant environments (figure 3c), while for the remaining

10% of species which show a positive skew (electronic sup-

plementary material, table S1), thermal variability is

expected to increase �Topt relative to Topt. The magnitude of

the difference between �Topt and Topt increased with increas-

ing standard deviation of SST and was well explained by

curve skew (slope ¼ 85.98, 95% CI: 70.13, 101.82) and the

standard deviation of SST (slope ¼ 20.32, 95% CI: 20.40,

20.24; adjusted R2 ¼ 0.66, F2,86 ¼ 85.32, p , 0.001;

figure 3c). Phytoplankton growth rate estimates that included

the effects of thermal variability, �r, differed from those that

did not account for in situ thermal variability, r
(figure 3d,f ). Generally, predicted growth rates under vari-

able conditions were lower than predicted growth rates

assuming constant conditions (i.e. �r� r , 0, data points

below the line y ¼ 0 in figure 3f ), and the majority of species

(84%) were isolated at locations with mean daily temperatures

that were colder than their Topt (on average 4.268C lower than

Topt). Importantly, the differences between r and �r were great-

est for species whose isolation locations have mean

temperatures that are close to their Topt. Of the species that

were isolated at locations warmer than their Topt, 64% had a

positively skewed TPC. Predicted upper thermal limits for

population growth were almost always lower under variable

conditions ð�Tmax , TmaxÞ (figure 3e), and the difference

between �Tmax and Tmax increased with increasing skewness

(positive slope ¼ 53.31, 95% CI: 39.77, 66.85) and standard

deviation of SST (negative slope ¼ 20.50, 95% CI: 20.57,

20.43; Adjusted R2 ¼ 0.77, F2,75¼ 132.8, p , 0.001).

For all 89 species in the global dataset, the nonlinear aver-

aging approach (presented here) and the scale transition

theory approach (electronic supplementary material, appen-

dix A) resulted in similar ‘realized’ TPCs in variable

environments (electronic supplementary material, figure

S3). Predicted critical temperatures, �r estimates and relation-

ships shown in figure 3 were all qualitatively consistent

between the two approaches (electronic supplementary

material, figures S3 and S4) indicating that scale transition

theory, which makes use of parameters of environmental

variation rather than detailed time series, leads to similar

predictions in the datasets considered here.
4. Discussion
As climate changes worldwide, how temperature affects

population growth is a critical link between climate and

species persistence in a changing world. One common

approach to project population abundance, persistence or fit-

ness under future climate conditions is to apply mathematical

curves describing population growth rate over a range of

temperatures (a TPC) generated from controlled laboratory

studies at constant temperatures (e.g. [37]). This approach

relies on the assumption that TPCs do not vary systematically

with thermal variation and that performance in naturally

variable environments is well approximated by performance

in constant-temperature environments [38]. Here we tested

this important assumption and found that natural levels of

environmental variability systematically change how popu-

lation growth depends on temperature. In our analysis of

globally distributed phytoplankton TPCs, we found that a

variable thermal environment reduced critical upper mean

temperatures ð�TmaxÞ for population persistence by up to
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48C, meaning that population growth in variable conditions

was much lower at warmer temperatures than would be pre-

dicted based on a TPC generated under constant conditions.

This thermal differential is substantial—the 48C difference in

Tmax is on a par with the magnitude of predicted temperature

changes over the next 100 years [39], suggesting that projec-

tions of TPCs used for future conditions may overestimate

population performance in warming climates. Other work

has compared acute thermal physiological limits (e.g.

CTmax, CTmin) to environmental temperatures at range

limits to assess relative sensitivities of range edges to warm-

ing (e.g. [1]), yet the underlying nonlinear negatively

skewed TPC expected for these ectotherms suggests that

variability at warm range edges will have a stronger effect

on population persistence than variability at cold range

edges. Specifically, our findings suggest that approaches

based on direct applications of laboratory-determined critical

temperatures may under-predict range edges at boundaries

defined by cold temperatures and over-predict range edges

at boundaries defined by warm temperatures.
We have shown experimentally that realized TPCs in

variable environments differ from those in constant environ-

ments, and that these differences are predicted qualitatively

by Jensen’s inequality [9,17] and quantitatively from nonlinear

time-averaging of performance over the TPC. Fluctuating

temperatures changed several aspects of the ‘realized’ TPC

including �Topt and �rmax—effectively shifting the TPC towards

lower temperatures and lower population growth rates overall.

Consistent with the argument that ‘suboptimal’ is optimal [12],

we show both experimentally (figure 2b) and theoretically

(using empirical TPCs and in situ temperatures; figure 3d,f )

that population growth rates are often lower under variable

thermal conditions relative to constant ones, and this negative

effect of temperature variation is greatest for populations

living close to their thermal optima. However, in contrast to

the common assumption that environmental variation is

always detrimental for population growth rates [16], our

results suggest that populations living at mean temperatures

in an accelerating part of the TPC will benefit from environ-

mental variation. Indeed, the T. tetrahele isolate used here
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was collected at a location where mean annual temperatures

are far colder than its �Topt in the accelerating portion of the

negatively skewed TPC (at mean temperature ¼ 11.698C)

[34]. In this way, when TPCs have accelerating portions at

the edges of the thermal niche, thermal variation may allow

population persistence in environments that would be too

hot or cold under constant conditions.

When we applied nonlinear averaging to estimate the

growth rates of globally distributed phytoplankton species,

we found that the effect of variability on predicted phyto-

plankton thermal performance depended strongly on the

shape and skew of the TPC and the degree of thermal varia-

bility in the oceans from which the phytoplankton

originated. Previous approaches have, in the absence of

more complete datasets, assumed a certain shape to the

TPC, thus forcing certain outcomes of variability. Here, we

used a model that does not prescribe a shape, enabling a

more complete exploration of the effects of temperature varia-

bility on population performance. Importantly, empirical

TPCs varied in skew, and whether the TPC was positively

or negatively skewed determined the direction of the pre-

dicted shifts in thermal optima. The majority of the curves

in the dataset were negatively skewed, and in these cases

variability shifted �Topt to colder temperatures. Negatively

skewed TPCs are widely observed across ectothermic taxa

[18], suggesting that the direction of the effects of thermal

variability observed in our experiment may be general

across ectothermic taxa. Because the shape of the TPC deter-

mines performance in variable environments, the

mechanisms that determine TPC shape can have an important

influence on the outcome of thermal variability on population

persistence. More studies of the diversity of TPC shapes

among species and the phenotypic plasticity of TPCs within

species will elucidate the extent to which environmental varia-

bility increases or decreases performance optima relative to

constant laboratory conditions.

Our results suggest that TPCs derived from constant

thermal conditions yield systematically biased estimates of

thermal traits such as Topt and Tmax. Although this has

been noted before, our empirical results provide support

for mathematical approaches that can bridge the gap

between laboratory-derived TPCs and their associated esti-

mates of thermal traits and projections of species’

performance in the field in varying environments. It is poss-

ible that additional variation in resource environments, such

as light or nutrient conditions, could further complicate

extensions of thermal traits to biogeographic patterns. Still,

even in the absence of empirical temperature time series, as

is often the case, predictions made based on the mean and

standard deviation of a temperature distribution may pro-

vide a more accurate estimate of population growth or

persistence in the field than thermal traits based on a TPC

that does not consider thermal variability. We predicted simi-

lar effects of thermal variability on population growth rates

when these predictions were made using empirical time

series of in situ SST (equation (2.1)) and when using a

Taylor approximation approach from scale transition

theory, which relies on the mean and standard deviation of

the temperature distribution only.

Our results, that performance in fluctuating environments

can be predicted from TPCs generated in constant conditions,

differ from two previous attempts to predict individual

somatic growth rates in fluctuating environments based on
TPCs generated in constant conditions [8,22]. Previous obser-

vations showed that short-term acute responses to diurnal

temperature variation were not predictable based on TPCs

generated from chronic exposure to constant temperatures

over the course of development of an insect [8] and amphi-

bian [22]. These contrasting results highlight the importance

of the time scale of temperature exposures used to measure

and predict performance in constant and fluctuating con-

ditions. Biological responses to temperature, including

acclimation and thermal stress are inherently time-dependent

and may accrue over the course of development in longer

lived species [14,38,40], thus precluding the ability of TPCs

generated over longer terms (i.e. entire lifespans of individ-

uals) to predict temperature responses over relatively short

time spans (small fractions of lifespans corresponding to

daily temperature variation). In our experiments, using a

fast-growing phytoplankton with short overlapping gener-

ations, we maintained the time frames of temperature

exposure comparable under both constant and fluctuating

conditions. We matched the time scales of thermal acclim-

ation and the time scale over which we measured

population growth rates (i.e. multiple generations) in both

the constant and fluctuating temperature treatments, thus

keeping the time frames for prediction and observation com-

parable. This approach allowed us to avoid mismatches in

time scale and time-dependent effects and instead test the

nonlinear effects of temperature variation.

Our predictions of in situ phytoplankton population

growth rates should be interpreted as first-order predictions,

which do not incorporate long-term phenotypic responses to

thermal variability. Organisms may be able to acclimatize or

adapt to fluctuating conditions over longer-term exposures

[40], with the potential to alter the shape and limits of the

TPC. The global predictions we make here should be

viewed as null models which do not incorporate long-term

biological responses to environmental variability and

should be tested empirically [5]. To extend our predictions

of time-averaged growth rates over the whole thermal

niche, i.e. our visualization of a ‘realized TPC’, we had to

assume a particular distribution of temperatures around

each hypothetical mean and used the variation observed at

each isolation location as the residual variation around each

putative mean temperature. This assumption about tempera-

ture distributions is a simplification of real thermal regimes,

which likely show more complex patterns of variability and

temporal autocorrelation, which can further modify the

effects of variability on populations [3]. Resource supply

may also covary with temperature, potentially altering the

outcomes of thermal variability on population growth.

Nevertheless, even in the simplest scenario of environmental

variability, we predict significant changes in realized thermal

traits.

Understanding population responses to temperature now

and into the future involves understanding biological

responses to changes in the full suite of temperatures experi-

enced (i.e. all the variation). Omitting the effects of

environmental variation from population and species distri-

bution models may limit our ability to predict species’

responses, particularly at the extreme edges of their ranges,

even if variability patterns remain unchanged. We show

that the effects of environmental variation can be predicted

based on the shape of the functional relationship between

population growth and the environment, adding another
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tool to the kit for forecasting species’ responses to the

environment in a changing world.
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