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Postinjury epilepsy is an potentially preventable sequela in as many as 20% of patients with brain insults. For these cases biomarkers of
epileptogenesis are critical to facilitate identification of patients at high-risk of developing epilepsy and to introduce effective anti-
epileptogenic interventions. Here, we demonstrate that delayed brain– heart coincidences serve as a reliable biomarker. In a murine
model of post-infection acquired epilepsy, we used long-term simultaneous measurements of the brain activity via electroencephalog-
raphy and autonomic cardiac activity via electrocardiography, in male mice, to quantitatively track brain– heart interactions during
epileptogenesis. We find that abnormal cortical discharges precede abnormal fluctuations in the cardiac rhythm at the resolution of
single beat-to-beat intervals. The delayed brain– heart coincidence is detectable as early as the onset of chronic measurements, 2–14
weeks before the first seizure, only in animals that become epileptic, and increases during epileptogenesis. Therefore, delayed brain–
heart coincidence serves as a biomarker of epileptogenesis and could be used for phenotyping, diagnostic, and therapeutic purposes.
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Introduction
No biomarker that readily predicts and tracks epileptogenesis
(Gowers, 1881) currently exists for the wide range of human
acquired epilepsies, developed after brain insults such as trau-
matic brain injuries, stroke, and infections (Engel et al., 2013;
Pitkänen et al., 2016a,b). These biomarkers are critical to identify
patients at risk of epilepsy, introduce early and effective interven-

tions to prevent establishment of epilepsy, and evaluate therapeu-
tic efficacy of such treatments.

Many investigators have focused on chronic cardiac altera-
tions and autonomic dysfunction as biomarkers for epileptogen-
esis (Kheiri et al., 2012) as well as features for seizure prediction
(Massé et al., 2013; Kolsal et al., 2014; Moridani and Farhadi,
2017; Pavei et al., 2017) with limited success. However, the un-
derlying coupled brain– heart dynamics and the alterations in
those dynamics during epileptogenesis are not fully investigated.

According to the lockstep phenomenon (LSP; Lathers et al.,
1987), epileptiform discharges can induce intermittent synchro-
nized cardiac sympathetic and vagal neural discharges. LSP is
therefore a representation of seizure-induced deficits in the brain
circuitry of the cardiovascular system (Goodman et al., 2008) that
may alter, although not fully impair, the system’s function. We
hypothesized that these events are the extreme end of smaller,
potentially abnormal, fluctuations in brain activity that are likely
to subtly modify cardiac function long before the microscale in-
stability propagates and results into an overwhelming seizure
(Bragin et al., 2000; Schevon et al., 2008; Stead et al., 2010). Our
aim was therefore to investigate the frequency and strength of the
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Significance Statement

No biomarker that readily predicts and tracks epileptogenesis currently exists for the wide range of human acquired epilepsies.
Here, we used long-term measurements of brain and heart activity in a mouse model of post-infection acquired epilepsy to
investigate the potential of brain– heart interaction as a biomarker of epileptogenesis. We found that delayed coincidences from
brain to heart can clearly separate the mice that became epileptic from those that did not weeks before development of epilepsy.
Our findings allow for phenotyping and tracking of epileptogenesis in this and likely other models of acquired epilepsy. Such
capability is critical for efficient adjunctive treatment development and for tracking the efficacy of such treatments.
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signals from brain affecting heart as a function of progression of
epileptogenesis. Once detected and quantified the coupled brain–
heart dynamic could potentially serve as a prognostic and diag-
nostic biomarker of epileptogenesis.

Previously, we developed a murine model of post-cerebral ma-
laria epilepsy that duplicates elements of the human post-infection
acquired epilepsy. As with the human condition, the animal model
presents with long and highly variable epileptogenesis periods
(Ssentongo et al., 2017) thus provides a platform to investigate
the potential of brain– heart interaction as a relevant bio-
marker for epileptogenesis.

Here, we continuously track brain– heart dynamics during
epileptogenesis. To achieve this, we developed a new metric of
cardiac rhythmicity whose statistics are independent of behavior
and state of vigilance (SOV). We report that in animals that sur-
vive the malarial infection and become epileptic, extrema of the
cardiac metric are preceded by potentially abnormal fluctuations
in brain activity. The causal transmission of activity along the
brain– heart axis starts early and progresses during epileptogen-
esis. These findings can thus be used to identify potential patients
at risk of developing epilepsy, track the progression of epilepto-
genesis as well as anti-epileptogenic treatments, and predict the
occurrence of seizures.

Materials and Methods
All animal work was approved by and performed under administration
of the Institutional Animal Care and Use Committee at the Pennsylvania
State University.

Experimental design
This work uses data acquired in the development of a murine model of
post-cerebral malaria (CM) epilepsy previously described in (Ssentongo
et al., 2017). We examined combinations of mouse and parasite strains
for development of post-CM epilepsy (Ssentongo et al., 2017): male Swiss
Webster, male C57BL/6, and male CBA/CaJ mice and Plasmodium ber-
ghei ANKA (PbANKA) and Plasmodium berghei NK65 (PbNK65) par-
asites. Detailed methods are included in the study by Ssentongo et al.
(2017). Critical elements for this work follow.

Surgical procedure and care. Mice were implanted with hippocampal,
cortical, and electromyography (EMG) electrodes at least 5 d post-
treatment following the procedures described by Ssentongo et al. (2017).
A cohort of the animals also received electrocardiography (ECG) elec-
trodes to monitor cardiac activity. The details of the electrode fabrication
and implant are discussed by Ssentongo et al. (2017). At the completion
of the surgery, animals were returned to their individual home cages for
recovery. Mice were allowed to recover and monitored for a minimum of
3 d post-surgery. Animals were then cabled and recordings with contin-
uous periods of at least 2 weeks lasted until the animals expired.

Data analysis
At least 1 week of data was analyzed for each animal. Longer datasets up
to when the animals developed their first seizure, lost the ECG lead, or
were euthanized were used when available. Our inclusion criteria for each
hour of data involved availability of viable ECG and at least one low-noise
hippocampal depth and electrocorticography (ECoG) recordings.

All recorded data were inspected via in-house written LabVIEW (Na-
tional Instruments) and MATLAB (MathWorks) programs that allow for
simultaneous re-referencing, filtering, spectral analysis and annotation.

Line length. Line length (LL) for discrete time series is calculated from
��xn � xn�1���w, where �w denotes the averaging window length. The
averaging is achieved with a low-pass infinite impulse response (IIR)
filter with cutoff frequency of 1/�w, applied both forward and backward
through the data to eliminate phase delays.

Cortical discharges. Cortical discharges were detected by a custom
script implemented in MATLAB (MathWorks). The raw electroenceph-
alography (EEG) data were first bandpass filtered using 15–250 Hz pass
band to preserve the high-frequency nature of the discharges while elim-

inating the low-frequency artifacts. LL of the EEG (EEGLL) was then
computed using a window length �w � 300 ms. Cortical discharges vary
in pattern, amplitude, and duration throughout epileptogenesis. The
window length was selected to capture potentially abnormal EEG events
as well as the variety of epileptic discharges including sharp waves, spikes,
and spike and wave complexes (Kane et al., 2017).

State of vigilance. State of vigilance (SOV) was scored using a semiau-
tomatic approach via linear discriminant analysis (LDA) similar to the
algorithm described by Sunderam et al. (2007). Briefly, for each animal,
4 – 6 h of video-EEG data within 1 d were manually scored for SOV. A
training set was then generated with EEG spectral power in frequency
bands 0.5– 4, 4 – 8, 8 –12, 12–25, and 25– 80 Hz, plus neck EMG power
used as features. The remaining 18 –20 h of data were set aside as out-of-
sample test data. We marked onset of transitions between different SOVs:
rapid eye movement (REM), non-rapid eye movement (NREM), and
wake.

We further verified the performance of the classifier for the out-of-
sample test data and used the classified SOV as the new training set to
recursively update the parameters of the LDA. For most animals under
analysis the overall automated accuracy exceeded 90%.

Heart rate characterization
QRS complex. In each heartbeat, the QRS complex was detected via a
custom written MATLAB script (MathWorks). The ECG is bandpass
filtered from 2 to 250 Hz to remove the low (DC drift) and high-
frequency artifacts. LL with window size �w � 50 ms was used to highlight
the QRS complexes (�40 ms long) from the background ECG activity.
The standard deviation (SD) of the ECGLL time series was estimated in
non-overlapping 2-s-long windows. The peak point of the QRS complex,
the R wave position, was then detected via threshold crossing of 2–3 times
the SD from the mean as the corresponding location of the local maxi-
mum. The point-by-point RR interval (RRI) and heart rate time series
are then calculated based on the detected R wave times.

Motion artifacts and other glitches not removed with filtering are
detected by convolving the unfiltered ECG with a step function. Any QRS
complex detected within 20 ms of those glitches is then marked as a
potential false detection and is excluded from analysis. We removed
hour-long blocks of data with �2 glitches from the analysis. For each
detected glitch one QRS complex and 2 RRIs are excluded. Therefore, for
the hour-long blocks that are included in the analysis, the maximum
number of excluded RRIs is 4 of 18,000 RRIs, which is negligible.

Cardiac metric dlnRR. The cardiac metric dlnRR was calculated at any
time, T, over window lengths 2� long:

dlnRR�T�� �
2

�

RRI�T � � / 2� � RRI�T � � / 2�

RRI�T � � / 2� � RRI�T � � / 2�
,

where

RRI�T� �
�

NRR�T�
,

NRR�T� � fractional number of intervals � �T � � / 2, T � � / 2	,

where fractional number of intervals include partial intervals that remain
inside the window. Therefore, the discretization effects are minimized.

In the limit as � ¡ 0, if the derivative of RR time series is defined, this
metric becomes the derivative of the logarithm of the RRI:
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dlnRR is a local measure that is proportional to the normalized RRI in the
window length over which it is calculated. Therefore, the window length
� directly affects dlnRR’s capability to efficiently track and represent the
underlying RRI time series. If � is too small, then dlnRR is dominated by
normal fluctuations between consecutive RRIs induced by motion or
cardio–respiratory coupling. If � is too large, then the numerator be-
comes insensitive to single RRI fluctuations, while the denominator is
too long to follow state-dependent changes in the RRI time series. How-
ever, in Figure 3D we show that choice of � does not affect the state-
independence of the dlnRR.

Statistical analysis
Our analysis seeks to quantify correlations between fluctuations in the
extrema of brain dynamics, expressed in EEGLL, and fluctuations in the
extrema of cardiac activity, from dlnRR. The distributions of EEGLL and
dlnRR are not Gaussian; therefore, we used nonparametric rank-order
statistics. The ranks for each metric were computed and normalized over
either 1-h- or 1-d-long blocks of data approximating a uniform selection
of ranks on the range of (0,1). As detailed in Results, we use the Wilcoxon
rank sum test for samples of either metric conditioned on values of the

other. Under an assumption of stochastic inde-
pendence of these metrics, the normalized rank
(rank sum/N ) of such a sample of size N (for
N �� 100) should have mean � 0.5, and SD �

1

12�N
. All rank-ordered statistics are then pre-

sented either in absolute units (see Fig. 4) or as
mean and SD of the rank-sum distributions
(see Figs. 5, 6). Expected false detection rates
from null hypotheses with p 
 0.005 are
identified.

Results
We examined a combination of mouse
and parasite strains for development of
post-cerebral malaria epilepsy (Ssentongo
et al., 2017). Animals were continuously
recorded from after ample postsurgical
recovery time for at least 2 weeks or until
they expired.

From the animals that survived to re-
cordings, 75% developed epilepsy as de-
fined by observation of two or more
seizures with durations �10 s and clear
behavioral manifestations (Ssentongo et
al., 2017). The epileptic animals all had
relatively long latencies to the first seizure
with median of 5–10 weeks post-
infection (Fig. 1A) depending on mouse/
parasite combination. Further, we ob-
served incidents of sudden unexplained
death in epilepsy (SUDEP) and other
seizure-related mortalities such as gradual
decline of physiological signs, heart rate
and behavior, after multiple seizures in
10% of the epileptic cohort.

To investigate the brain– heart cou-
pling during epileptogenesis, nine epilep-
tic mice with viable ECG electrodes, at
least until their first seizure, were selected.
This subset is representative of the origi-
nal epileptic cohort both in terms of
seizure rate and distribution as well as la-
tency to first convulsive seizure (Fig. 1A),
which ranged from 39 to 115 d postinoc-
ulation (Fig. 1B). In addition to the nine

epileptic mice, four animals that were rescued from cerebral
malaria but did not become epileptic (termed non-epileptic
mice), and four control mice (treated but not infected) were
investigated. Animals were excluded from analysis when they
developed spontaneous recurrent seizures or their ECG lead
became unviable.

Single substantially long RRIs are preceded by
epileptic discharges
Cardiac arrhythmia manifested in visually distinguishable, sub-
stantially long RRIs in the period between implant and the occur-
rence of the first convulsive seizure. RRI is defined as the interval
between successive R waves marked by the peak of the QRS
complex in each heartbeat. We quantitatively identified sub-
stantially long RRIs by a user-defined criterion of any interval
�150 ms, which is �150% of the mean RR value in mice. We
found that high-frequency cortical and hippocampal dis-

Figure 1. Chronic recording and analysis summary. A, Listed are the distribution of animals chronically recorded that met the
criteria for analysis of brain– heart coincidences during epileptogenesis. Numbers in parentheses indicate total number of mice
studied for development of epilepsy post cerebral malaria. For detailed description of model statistics and mouse–parasite com-
binations see Ssentongo et al. (2017). These animals showed similar seizure rates and latencies to the larger cohorts studied for
development of the post-cerebral malaria epilepsy model (Ssentongo et al., 2017). B, Animals were implanted and continuously
monitored (orange lines) after treatment and ample recovery time. For animals that became epileptic, the latency to the first
convulsive seizure (marked with magenta asterisks) ranged from 39 to 115 d post-infection (shaded gray area). Because the
physiological measurements did not start until the animals fully recovered from cerebral malaria, we assume that we only captured
part of the epileptogenesis process. Instances of substantially long single RRIs (Subs. LRRI) were present in all epileptic mice. The
onset of appearance of such events is marked by black open circles. The black dashed lines separate epileptic, non-epileptic, and
control mice. Non-epileptic mice were rescued from cerebral malaria and chronically recorded from but did not develop seizures.
Data before the first convulsive seizure for epileptic mice (shaded gray area), and until ECG leads broke in control (entire recording
time) and non-epileptic mice (dark green crosses) were analyzed. Data from 30 and 73 d post-infection from animal #9 are used in
later Figures 4 and 5.
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charges precede instances of long RRI by at least 500 ms. An
example of such precedence is shown in Figure 2A.

LL of the EEG (EEGLL), calculated with window lengths �w �
300 ms, for the right posterior cortical electrode increases imme-
diately before the rise in the RRI time series (Fig. 2B) for the event
shown in Figure 2A. Similar increases in EEGLL were observed in
the rest of the cortical and hippocampal channels. For the animal
presented in Figure 2 this particular temporal pattern was ob-
served for the majority (31 of 35) of substantially long RRIs (Fig.
2C). Inspection of the associated recording video confirmed that
these events were subconvulsive.

A limited number of substantially long RRIs was observed for
each animal that became epileptic. This ranged from 10 to 53
instances of long RRIs of the 7– 84 million RRIs marked from the
recording times before the animals’ first seizures. Almost all of
these cases were preceded by subconvulsive cortical and hip-
pocampal discharges reflected in increased EEGLL.

The substantially long RRIs, �150 ms, were observed starting
many weeks into the epileptogenesis process (Fig. 1B, black open
circles). This led us to question whether earlier in epileptogenesis
abnormal brain activity would induce more subtle changes in
duration of single RRIs and whether the size of such an effect
would continuously increase before the first seizure. Detection of
abnormal transmission early in epileptogenesis requires (1) a car-
diac measure that identifies small abnormal fluctuations in the
RRI, and (2) the statistical power to correlate these RRI fluctua-

tions with extremely small fluctuations in brain activity that oth-
erwise would not be identified as epileptic.

State-independent cardiac metric: dlnRR
Distributions of conventional metrics of cardiac activity such as
absolute duration of RRIs or heart rate variability (HRV) mea-
sures vary with behavioral states and are highly sensitive to tran-
sitions between such states (Baharav et al., 1995; Ronkainen et al.,
2005; Boudreau et al., 2013; Hajek and Buchanan, 2016). De-
trending methods such as detrended fluctuation analysis (Peng et
al., 1995) attempt to eliminate the behavioral state dependency.
These methods however fail to quantify nonstationarities at the
resolution of single RRIs (Bryce and Sprague, 2012; Govindan et
al., 2014). HRV measurements conditioned on one State of Vig-
ilance (SOV) are also prone to error due to the challenges in
identifying quiet, resting states and transitions in and out of
them. Therefore, to investigate the relationship between brain
activity and cardiac rhythm, we developed a new and more flex-
ible cardiac metric sensitive to small but abnormal fluctuations in
the duration of single RRIs.

We defined the cardiac metric dlnRR(T) at time T propor-
tional to the difference in mean RRI before and after T, computed
in windows � wide, normalized by the average RRI over the pe-
riod 2�. We denote this metric dlnRR(T) because it is the discrete
estimate of the logarithmic derivative of the RRI.

Figure 2. Substantially long RRIs are preceded by epileptiform cortical discharges. Instances of abnormal cortical and hippocampal discharges preceding substantially long RRIs are shown for one
animal. Substantially long RRIs are detected via the user-defined threshold of any interval �150 ms. A, High amplitude, high-frequency EEG activity immediately precedes the long RRI (red trace
in ECG) onset of which is marked by the gray vertical bar. Time-series traces of hippocampal activity are recorded from left and right dorsal hippocampi [depth hippocampus left (DL,) and depth
hippocampus right (DR)], ECoG recorded from frontal and S1 cortices [ECoG left anterior (ELA), ECoG right anterior (ERA), ECoG left posterior (ELP), ECoG right posterior (ERP)]. ECG is bandpass-filtered
between 15 and 250 Hz to eliminate DC artifacts and overall trend of the signal. B, In the same event as in A, the LL of the brain activity at the right posterior cortical site (LLRP), computed over
300-ms-long windows, increases preceding a long RR interval. C, Almost all substantially long RRIs (31 of 35) are preceded by large increases in the LL of the right posterior ECoG shown in color-coded
values. Overlaid is the average of the LL of the right posterior ECoG activity (blue solid line) for all detected abnormally long RRIs along with the 95% confidence bounds (dashed blue lines). The data
extracted from animal #3 (Fig. 1B), A and B, are from 50 d post-infection, 11:00 A.M.
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The distribution of dlnRR is approximately symmetric with
near-zero mean. Unlike conventional measures of cardiac activ-
ity such as heart rate or HRV parameters (i.e., root mean square
of successive differences (RMSSD) of the RRIs), distribution of
dlnRR is not influenced by changes in behavioral state (Fig.
3A,B).

Sensitivity of dlnRR to choice of � is discussed in the Materials
and Methods section. For our analyses we selected � � 0.5 s to
calculate dlnRR, mean heart rate, and RMSSD. For � � 0.5 single
long RRIs that occur within the window after time T result in
large positive values of dlnRR in the tail of the distribution.

Delayed coincidences between brain and heart fluctuations
To investigate correlations between changes in RRIs and small
fluctuations in brain activity, in each 1 h block of data, LL of the
EEG and dlnRR for each beat time were calculated. LL of one
hippocampal lead was then selected for further analysis of the
brain– heart coupling. We expect that if abnormal cortical activ-
ity is transmitted from brain to heart, then we would find coin-
cidences with positive time delay between potentially abnormal
values of EEGLL and potentially abnormal values of dlnRR.

To identify transmission along brain– heart axis, our analysis
leverages statistical tests of dependence of the EEGLL and dlnRR
distributions. By construction, potentially abnormal events will
have values in the tails of each of these distributions. Note that by
choosing simply the tails for the EEGLL, for most of the epilepto-
genesis period, the events detected are too small and ill-defined in

shape to identify as clearly abnormal or epileptic. In addition, by
construction, the number of potentially abnormal events per
hour is constant, as defined by the detection threshold applied,
and independent of time since implant or of the animal’s health.

The joint distributions of EEGLL and dlnRR ranks, P�EEGLL�t�,
dlnRR �t � �t��, over different time offsets, �t, for an hour-long
block of data are shown in Figure 4A. Except for �t � 1 s, these joint
distributions are consistent with independence of the individual
metrics. At �t � 1 s, the joint distribution is highly non-uniform
with high densities in the extrema of the ranks as indicated by darker
corners.

We quantified the non-uniformity of these joint distributions
by computing the conditional rank-sum (CRS) of EEGLL and
dlnRR rank distributions. These conditional distributions are
normalized to have expected mean rank of 0.5. The CRSs are
shown for offset times �t � 1 s (black) and �t � 10 s (red), for the
rank-sum of dlnRR as a function of EEGLL (Fig. 4A, bottom inset)
and for the rank-sum of EEGLL as a function of dlnRR (Fig. 4A,
left inset). For independence of EEGLL and dlnRR we expect a
uniform distribution and CRS � 0.5, as observed for �t � 10 s. In
contrast, the CRS at �t � 1 s diverges away from that, consistent
with interdependent distributions.

To confirm the dependence of the joint distribution on the
time offset (�t), we calculated the CRS of EEGLL and dlnRR rank
distributions over a sweep of time-offsets (�50 � �t � 50 s). In
mice that later became epileptic the CRS of EEGLL (Fig. 4B) and
dlnRR (data not shown) during epileptogenesis diverged signifi-

Figure 3. Temporal measures of cardiac rhythm for a control mouse. A, Distributions of dlnRR, RMSSD, and RRI for different SOV pooled from 2 weeks of recordings from control animal #2.
Distributions of dlnRR and RMSSD are calculated using identical window lengths (�) of 0.5 s. RMSSD and RRIs have varying distributions across different states of vigilance; two-sample Kolmogorov–
Smirnov test, REM and NREM ( pRR � 6.41– 6, pRMSSD � 9.1e-4), REM and wake ( pRR � 5.9e�8, pRMSSD � 5.95e�4), and NREM and Wake ( pRR � 3.9e�4, pRMSSD � 1.12e�4). The distribution
of dlnRR remains similar and approximately symmetric with near-zero mean for all states of vigilance. By construction, for the �� 0.5 s, single long RRIs lead to values in the upper tail of the dlnRR
distribution. Dashed gray line indicates the boundary for the 99% upper tail of the dlnRR distribution. B, Mean and SD of RRIs, RMSSD, and dlnRR distributions across different SOVs. C, Mean (solid
lines) and SD (dashed lines) of RMSSD calculated over different window lengths (�). For all �, within the physiologically relevant range of 5–20 RRIs, mean and SD of RMSSD distributions for different
SOV are different. D, Mean (solid lines) and SD (dashed lines) of dlnRR calculated over a sweep of � remain relatively similar for all SOV.
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Figure 4. Joint rank distributions of brain (EEGLL) and cardiac metric (dlnRR) over different time offsets (�t) for an hour-long block of data. The metrics are first transformed into the rank space.
A, The joint EEGLL-dlnRR rank distributions are then calculated for different time offsets (�t). When �t � 1 s, joint rank distribution of EEGLL and dlnRR is no longer uniform such that higher ranks
of dlnRR correspond to higher ranks of EEGLL. The normalized CRS of EEGLL (left) and dlnRR (bottom) highlight the non-uniformity of the joint distribution at �t � 1 s. The CRSs of EEGLL and dlnRR
(black line) increase for higher ranks and decrease for lower ones. In contrast, the mean rank-sum for P (rank EEGLL (t), rank dlnRR (t��t)��t�10 s) remains at �0.5 (red line) which indicates a
uniform distribution. Dashed gray lines indicate p value � 0.1. B, Shown are the CRSs of EEGLL as a function of �t for the same animal as in A at different times post-infection (PI). Contour lines mark
select iso-probability (yellow�0.1, black�0.2) of the Wilcoxon rank sum test with the null hypothesis that the ranks are chosen from independent distributions. Outside the time range 0 ��t �
2 s, this test has PWilcoxon �� 0.2, which is consistent with independent brain and heart metrics. In contrast, within the small range of 0 � �t � 2 s the CRS diverges from independence for the
extrema of the ranks (magenta and cyan areas). That p � 0.1 (A, gray dashed lines) inside the 0 � �t � 2 s interval indicates a dependence between large fluctuations in brain or cardiac activity
with a time delay of 0 –2 s. The brain– heart interdependence is smaller early (30 d PI) and worsens during epileptogenesis (73 d PI). dlnRR and EEGLL extracted from epileptic animal #9 (Fig. 1), 30
and 73 d PI, 12:00 –1:00 P.M.
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cantly from uniformity (CRS � 0.5) within the time range of 0 �
�t � 2 s. Significance here is quantified from the Wilcoxon rank
sum test p value, which is the probability that the observed rank-
sums would have come from random rank samples. Further, in
animals that later became epileptic, the statistical interdepen-
dence of the EEGLL and dlnRR distributions progressively
strengthened during epileptogenesis. This pattern is indicated in
smaller CRSs within 0 � �t � 2 s earlier during epileptogenesis
(Fig. 4B, bottom; 30 d post-infection) and larger CRSs within
0 � �t � 2 s later during epileptogenesis (Fig. 4B, top; 73 d
post-infection). Overlaid on Figure 4B are the iso-contours for
p value of 0.1 (yellow) and 0.2 (black). We will use repeated
independent excursions through this contour to yield highly
significant observations ( p 
 0.005).

Quantification with the Spearman’s rank-order correlation
yields similar confirmation of statistical interdependence of
EEGLL and dlnRR distributions that peaks with a time-delay of
�1 s (data not shown).

Brain– heart coincidence as a biomarker for epileptogenesis
The significant divergence of the joint dlnRR-EEGLL distribution
from independence with a peak delay of 1 s implies that fluctua-
tions in brain activity potentially cause or lead to fluctuations in
cardiac activity. Because we observed this trend and its progres-
sion only in mice that later became epileptic, we hypothesized
that the significant divergence of the joint dlnRR and EEGLL dis-
tribution from uniformity within the specific range of 0 � �t �
2 s could be used to distinguish animals that would become epi-
leptic from the ones that did not. These brain– heart coinci-
dences, once quantified, would serve as a biomarker of the
epileptogenesis.

The apparent brain to heart coupling is primarily mediated by
isolated abnormal events. By construction these events fall in the

upper tail of the EEGLL and dlnRR distributions. To further
quantify these events during epileptogenesis, we define a condi-
tional rank threshold (cRT) and select EEGLL and dlnRR ranks
that are above this threshold. The cRT � 0.99 is marked by the
gray dashed line in Figure 3A for the dlnRR distribution. We then
extract values of the other metric as a function of time with re-
spect to these high-rank values, brain or heart triggered events,
and quantify, as a function of time offset, whether their distribu-
tion is consistent with independence. This is achieved by com-
puting the p value of the Wilcoxon rank sum test, which we
denote as Psig.

Optimization of Psig to classify epileptic and non-epileptic mice
We adopted a cross-validation classification method to optimize
Psig to separate epileptic from non-epileptic and control animals.
We first computed the CRS for EEGLL (with cRT � 99%) for
every hour-long block of data for all animals. We then selected
every other day of measures from the first 14 d of recordings for
all animals as a training set, and found the minimum CRS that
maximized the classification specificity for identifying epileptic
animals. The Wilcoxon p value associated with this CRS is Psig.
The CRS threshold was then applied to all remaining data, and
hours with CRSs larger than this threshold were marked for ex-
istence of brain– heart coincidences.

The fraction of hours per day with significant brain– heart
coincidences with the optimized CRS threshold (Psig � 0.0554) is
shown in Figure 5A. Because each day’s value is constituted from
24 independent measures, the probability of observing a fraction
of hours �0.25 with the null hypothesis of random distribution
of ranks, is 
0.002. For the epileptic animals, these fractions
fluctuate during the first 21 d after recording onset, but they all
generally increase during epileptogenesis. In contrast, for non-

Figure 5. Evolution of brain– heart coupling in epileptic, non-epileptic, and control mice using hour-long blocks of data. A, Daily fraction of hours marked for existence of brain– heart coincidence
are shown for epileptic (colored diamonds), non-epileptic (colored squares), and control (hexagons) mice; based on a cRT of 0.99. The fractions increase during epileptogenesis with large fluctuations
within the first 21 d of the recordings. In contrast, they remain low for animals that were rescued from cerebral malaria but did not become epileptic (non-epileptic) and controls. The hours are
marked for existence of brain– heart coincidences if they have conditional EEGLL rank sums larger than a specified rank-sum threshold. The rank-sum threshold is selected to maximize classification
specificity for a collection of every other days from the first 14 d of recordings. Mice were then classified according to a classification boundary on fraction of marked hours to maximize specificity
(black solid line). This boundary is represented by the gray dashed line separating epileptic, non-epileptic, and control distributions in B (top). B, Bottom, The ROC curve using the boundary and
fraction of marked hours. All epileptic mice but one (A, light blue trace) are separated from non-epileptic and control mice after 21 d of recording. C, Specificity (blue circles), sensitivity (orange
crosses), and the minimum conditional rank sums (gray triangles) selected as the classification boundary to mark hours for brain– heart coincidences, as a function of cRT. End point for epileptic
animals is the occurrence of the first spontaneous seizure and for non-epileptic and control cohorts is time of death.
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epileptic animals they remain low from the onset of recording
until time-of-death.

We then defined a classification criterion by maximizing spec-
ificity (Fig. 5A, black line, B, gray dashed line), using the fraction
of marked hours per day. Under this criterion we can correctly
classify all 13 mice under analysis into epileptic (n � 9) and
non-epileptic (n � 4) groups over almost all of the period shown.
Only one epileptic animal is temporarily misclassified within the
third week of recording.

Optimization of cRT
We further investigated the sensitivity of the rank-sum classifier
to our criteria of potentially abnormal events, cRT. Shown in
Figure 5C are the minimum CRS thresholds selected as the clas-
sification boundary to mark hours for brain– heart coincidences
over a sweep of conditional rank thresholds [cRT � (85%, 99%)].
As more ranks are allowed into the potentially abnormal samples,
the CRS threshold (and Psig) increases to separate epileptic from
non-epileptic and control animals with maximum specificity. Max-
imum specificity is achieved at the expense of degrading sensitivity.
But, that neither specificity nor sensitivity decreases below 80% in-
dicates the classification is robust over a wide range of cRTs.

Day-long analysis blocks
By expanding our analysis block size from 1 h blocks to full-day
intervals we increased the statistical power of the analysis. As
done previously, we computed CRS of EEGLL with cRT � 0.99 for
full day-long blocks of data, and then derived the maximum CRS
within the window of 0 � �t � 2 s.

The maximum CRS for EEGLL within the range 0 � �t � 2 s is
shown in Figure 6A for each day for all epileptic, non-epileptic,
and control animals. As with the daily fractional detections (Fig.
5A), this metric steadily increases during epileptogenesis (for the

epileptic animals) with smaller fluctuations during the first weeks
of recordings. With this statistic the epileptic animals are com-
pletely separated from non-epileptic animals from the first day of
recording (Fig. 6B). Therefore, the metric provides a classifier
with complete sensitivity and specificity.

We further note that each day’s measurement constitutes an
independent measure, with one free variable; cRT. This analysis
therefore separates 480 independent measures from animals that
became epileptic, from 308 independent measures including
ones from non-epileptic animals (168) and controls (140).

The potentially abnormal events in the analysis in Figure 6A
are based on a cRT � 0.99. To evaluate the sensitivity of the classifier
presented in Figure 6B to this threshold, we repeated the analyses for
a sweep of cRTs over (75–99%). The animals were then separated
with a classification boundary to maximize specificity. As shown in
Figure 6C, the classification sensitivity begins to degrade for cRTs

95%, although specificity decreases only when the cRT is 
88%.
Again, the analysis is quite robust for a broad range of statistically
relevant thresholds over the rank distributions.

Qualitatively similar results can be achieved without the in-
herent threshold introduced by detection of potentially abnor-
mal events through cRT, by using Spearman’s rank correlation
analysis (data not shown).

Univariate measures do not track epileptogenesis
As shown in Figure 7A, the mean EEGLL remained relatively sta-
tionary in the duration before the first seizure in epileptic mice
and during entire lifetime for non-epileptic mice. Similarly the
SD of dlnRR distribution although slowly increased for a portion
of epileptic animals (n � 4), did not differentiate epileptic from
non-epileptic mice.

Figure 6. Evolution of brain– heart coupling in epileptic, non-epileptic, and control mice using day-long blocks of data. A, CRS of the cardiac-triggered brain events from each day for all animals:
epileptic mice (colored diamonds), non-epileptic mice (colored squares), and control mice (hexagons); based on cRT of 0.99. The color-coding for all mice is the same as in Figure 5A. Similar to daily
fractional detections in Figure 5A, this statistic increases during epileptogenesis for epileptic mice while it remains low for non-epileptic and control mice. All epileptic animals, including the animal
that was transiently misclassified in Figure 5A, are fully separable from non-epileptic and control mice as shown in the distributions of these animals in the top of B (green, epileptic; black,
non-epileptic; magenta, controls). Therefore, this statistic provides a classifier with complete sensitivity and specificity (shown via the ROC curve in B, bottom). Epileptic Animal 9 in Figure 4 is marked
by the purple trace. A, Inset, The number of epileptic (gray), non-epileptic (green), and control (magenta) alive at days post-recording onset. C, Specificity (blue circles) and sensitivity (orange
crosses), as a function of cRT. The sensitivity values are computed based on a classification boundary to maximize specificity. As the cRT is relaxed to include more intermediary values of the
rank[dlnRR(t)] distribution, the sensitivity and specificity decrease and the classifier performs worse. Gray triangles indicate the minimum classification threshold that maximizes specificity in the
units of fraction of SD away from the mean of the control and non-epileptic distributions. End point for epileptic animals is the occurrence of the first spontaneous seizure and for non-epileptic and
control cohorts is time of death.
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Both EEGLL and dlnRR distributions significantly overlap for
epileptic and non-epileptic animals. We tested a variety of statis-
tical measures of each of the distributions of EEGLL and dlnRR as
features to separate epileptic from non-epileptic and control
mice. None provided significant sensitivity or specificity to sep-
arate, as illustrated in Figure 7, C and D, by the receiver operating
characteristics (ROC) curves of mean, SD, SEM, and values of the
1–5% upper bounds.

Discussion
We used continuous long-term recordings in a murine model of
post-cerebral malaria epilepsy to derive metrics of brain–heart in-
teractions. We then investigated the statistical codependence of these
metrics as a biomarker of the epileptogenesis period in nine mice
that later developed epilepsy under the acquired epilepsy model.
Underlying these metrics are fluctuations in brain activity causing,
�1 s later, fluctuations in cardiac rhythmicity. We used LL as the
metric for brain activity to specifically highlight epileptiform-like
events and transient cortical discharges. We developed a SOV-
independent metric of cardiac rhythmicity to highlight abrupt
changes in cardiac rhythm with resolution of single long RRIs. Tran-
sitions between SOVs induce transient changes in RRIs. The dlnRR
is therefore designed to be state-independent to not confound the
state induced changes with abnormal variations of RRIs. By con-
struction, abnormally long brain and cardiac events result in large
positive values of the EEGLL and dlnRR.

We demonstrate that abnormal cortical discharges precede
abnormally long single RRIs. These delayed coincidences were
only detected in animals that survived the malarial infection and
later became epileptic. Further, once quantified, we observe that
the strength of the coupling between abnormal brain and heart
events increases during epileptogenesis.

Our observations that subconvulsive cortical discharges lead
to isolated long RRIs implicate involvement of the autonomic
nervous system impinging on heart. The mechanistic basis for this
phenomenon might be imbalanced parasympathetic activity trans-

mitted to the heart via the vagal nerve or a decrease in sympathetic
activity. The detected positive time-delay of 1 s is consistent with
previous reports of an induced reduction in heart rate after electrical
stimulation of the vagal nerve branch innervating the heart (Rosen-
blueth and Simeone, 1934; Warner and Cox, 1964).

Impaired cardiac function is considered a contributing clini-
cal manifestation of severe childhood malaria (Mockenhaupt et
al., 2004; Yacoub et al., 2010; Herr et al., 2011). One might ques-
tion whether our observations are due to post-malarial cardiac
dysfunction. Animals that were identified as non-epileptic in this
study experienced and then were rescued from cerebral malaria
and therefore were subject to potential cardiac damage. Com-
pared with animals that later became epileptic we found negligi-
ble incidents of abnormally long RRIs and brain-to-heart delayed
coincidences in non-epileptic mice. Control animals presented
with even lower incidence of development of abnormal transmis-
sion along brain– heart axis. Our findings are thus not attributed
to the cardio-pathological effects of malarial infection.

In the context of epilepsy, our findings support the body of
evidence that epileptic discharges and seizure activity recruit cor-
tical structures as well as autonomic nuclei regulating cardiac
rhythmicity (Schraeder and Lathers, 1983; Lathers et al., 1987;
Oppenheimer and Cechetto, 1990; Oppenheimer et al., 1991).
The coalescence models in acquired epilepsies argue that during
epileptogenesis the propagation of abnormal activity across small
populations forms larger interconnected epileptogenic networks
(Bragin et al., 2000; Bikson et al., 2003; Schevon et al., 2008; Stead
et al., 2010; Wang et al., 2017). We found that in animals that later
become epileptic the brain– heart coincidence becomes stronger
during epileptogenesis. This likely represents recruitment of ad-
ditional autonomic structures into the pathologic circuitry orig-
inally impaired by the initial cerebral malaria insult. If we assume
that this coalescence is the substrate for the epileptogenesis, then
interventions to reverse it would lead to decreases in the brain–
heart delayed coincidences.

Figure 7. dlnRR and EEGLL alone do not separate epileptic from non-epileptic cohorts. Distribution of mean EEGLL (A) or SD of dlnRR (B) as a function of time is not different for epileptic (colored
squares) versus non-epileptic (brown hexagons) animals. Time (t � �sz) is with respect to the first seizure for the epileptic mice and death for non-epileptic mice. Even hours before the first seizure
(right) the mean values are not differentiable between epileptic and non-epileptic mice. The distributions of mean of EEGLL (C) and SD of dlnRR (D) are pooled from 10 d intervals of recordings from
all epileptic (magenta) and non-epileptic mice (green). The two distributions are overlapping which indicates that as a feature for classification neither of them provides sufficient sensitivity or
specificity. ROC curves are calculated for a variety of statistical measures of the EEGLL (C, right) and dlnRR (D, right) distributions including mean, SD, SD normalized by the mean, and values of the
1–5% upper bounds. As shown by the ROCs, none provide significant sensitivity or specificity to separate the epileptic from non-epileptic animals.
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The strength of the brain-to-heart coupling during epilepto-
genesis shown in Figures 5 and 6 exhibited an increasing pattern
with day-by-day fluctuations in the first 3– 4 weeks of recordings.
Compared with the large fluctuations in the daily fractional de-
tections (Fig. 5A), the day long detection metric (Fig. 6A) shows
relatively smaller day-by-day variations. Therefore, the day-long
detections separate pre-epileptic and non-epileptic animals with
perfect sensitivity and specificity from the first day of the record-
ings. The high degree of separability of pre-epileptic from non-
epileptic and control mice provided can thus be used in
phenotyping animals in studies and assessing risk of epilepsy in
patients.

The large fluctuations of the daily fractional metric (Fig. 5A)
in all pre-epileptic mice reflect the finer temporal variations of
the brain-to-heart coupling. These fluctuations were the most
severe in the animal that was transiently misclassified (Fig. 5A,
light blue trace). We associate these changes with the dynamic
nature of epileptogenesis. We hypothesize that successful treat-
ments to interrupt epileptogenesis will be reflected as decreases in
the abnormal brain-to-heart coupling captured via the daily frac-
tional detections.

We note that our measurements, although continuous and
long-term, started weeks after the malarial infection. Therefore,
the true onset of detectable neurophysiological changes during
epileptogenesis remains unclear.

We assert that in future work, our observation of development
of abnormal brain-to-heart coupling before the first convulsive
seizure can be adapted to forecast seizure clusters with long
seizure-free intervals between them. These clusters would be re-
flected in increases of the abnormal brain-to-heart delayed coin-
cidences followed by gradual decreases representative of the
seizure-free periods.

The cortically-induced disturbances of cardiac rhythm have
the potential to make the network more susceptible to more sei-
zures and vulnerable to their effects (Lathers et al., 1987; Devin-
sky et al., 1997; Hilz et al., 2002; Altenmüller et al., 2004; Schuele
et al., 2007). The LSP is evidence that epileptic discharges can
interrupt autonomic regulation. Therefore LSP is proposed to
share a common underlying mechanism with SUDEP (Schraeder
and Lathers, 1983; Leutmezer et al., 2003; Altenmüller et al., 2004;
Dütsch et al., 2006; van der Lende et al., 2016). Our observation of
abnormal brain-to-heart coupling implies that cortical dis-
charges are involved in induced autonomic imbalance that could
lead to catastrophic conditions such as gradual deterioration of
physiological signs and increased risk of SUDEP. For these cases,
the strength of the brain-to-heart coupling should be investigated
to assess the need and efficacy of cardiac pacemakers to reduce
risk of SUDEP.

Although there are quite a few animal models of epilepsy, the
time course of disease development and the underlying processes
do not necessarily match human epileptogenesis periods. The
murine model of post-CM epilepsy studied here models the hu-
man conditions of post-infection acquired epilepsy. Both express
long and variable epileptogenesis periods before observations of
spontaneous unprovoked seizures. Our findings of brain– heart
delayed coincidences in this model can offer a novel approach to
prevent epilepsy in high-risk patients—post-traumatic brain
injuries, post-infection, post-anoxic/ischemic, postsurgical—
through pharmacological trials with biomarker monitoring.

A critical need in biomarker research is development of pref-
erably noninvasive and less costly markers that can be applied
easily to human population. We detected the brain-to-heart cou-
pling during epileptogenesis from delayed coincidences between

EEG and ECG. Electrocardiograms are non-invasive. But further
investigation of the underlying mechanisms of brain– heart axis
may require measurements from the vagal nerve innervating the
heart. Direct measurements of the cardiac branch of the vagal
nerve can be provided by bipolar electrodes and implanted radio
transmitters (Jung et al., 2006; Ogawa et al., 2007; Tan et al., 2008;
Choi et al., 2010; Sevcencu et al., 2016).

The brain– heart coincidence measure introduced here is
based on fast temporal correlations, of the order of 1–2 s, between
variations in single RRIs and small fluctuations in brain activity.
The temporal resolution needed for detection of such correlation
is enabled because mouse heart beats many times per second. The
analyses presented here need to be adjusted for the relatively
slower heart rates in human subjects for clinical applications.

The work presented here highlights one of the many potential
mechanistic coincidences between CNS and much more accessi-
ble physiological measurements. These physiological measures
such as cardiac activity for parasympathetic and skin sympathetic
nerve activity for sympathetic nervous system (Doytchinova et
al., 2017; Uradu et al., 2017), limb motion (Zafeiriou et al., 1999;
Hellwig et al., 2000, 2001; Kanemaru et al., 2014), cerebrovascu-
lar function (Bar-Klein et al., 2017), and SOV (Sedigh-Sarvestani
et al., 2014) cannot only provide us with more insight into the
underlying mechanisms of neurologically-sourced pathologies
but can lead to novel diagnostic approaches and identification of
new phenotypic features.
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