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Humans can recognize a scene in the blink of an eye.
This gist-based visual scene perception is thought to
be underpinned by specialized visual processing
emphasizing the visual periphery at a cortical locus
relatively low in the visual processing hierarchy.
Using wide-field retinotopic mapping and population
receptive field (pRF) modeling, we identified a new
visual hemifield map anterior of area V2d and
inferior to area V6, which we propose to call area
V2A. Based on its location relative to other visual
areas, V2A may correspond to area 23V described in
nonhuman primates. The pRF analysis revealed
unique receptive field properties for V2A: a large
(FWHM ;238) and constant receptive field size across
the central ;708 of the visual field. Resting-state
fMRI connectivity analysis further suggests that V2A
is ideally suited to quickly feed the scene-processing
network with information that is not biased towards
the center of the visual field. Our findings not only
indicate a likely cortical locus for the initial stages of
gist-based visual scene perception, but also suggest a
reappraisal of the organization of human dorsomedial
occipital cortex with a strip of separate hemifield

representations anterior to the early visual areas (V1,
V2d, and V3d).

Introduction

Humans are remarkably apt at extracting the ‘‘gist’’
of a scene without analyzing its content locally (Oliva &
Torralba, 2006): They can judge from flashes of only 50
ms whether the scene affords a hiding place or rather
allows walking through, without awareness of its
specifics like the colors or the shape of particular
objects. Such gist-based visual processing is clearly at
odds with the properties of conscious foveal vision that
humans use to scrutinize objects. Hence, models of gist-
based visual scene perception propose a type of visual
processing that focuses on the visual periphery instead
(Oliva & Torralba, 2006), at a cortical locus relatively
low in the visual processing hierarchy. However, a
visual cortical region that meets these requirements has
yet to be identified.

Citation: Elshout, J. A., van den Berg, A. V., & Haak, K. V. (2018). Human V2A: A map of the peripheral visual hemifield with
functional connections to scene-selective cortex. Journal of Vision, 18(9):22, 1–11, https://doi.org/10.1167/18.9.22.

Journal of Vision (2018) 18(9):22, 1–11 1

https://doi.org/10 .1167 /18 .9 .22 ISSN 1534-7362 Copyright 2018 The AuthorsReceived February 28, 2018; published September 26, 2018

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:j.elshout@donders.ru.nl
mailto:j.elshout@donders.ru.nl
https://creativecommons.org/licenses/by-nc-nd/4.0/


Previous work has thus far identified three scene-
selective patches of cortex in humans: the parahippo-
campal place area (PPA), the transverse occipital sulcus
(TOS), and retrosplenial cortex (RSC; Aguirre, Detre,
Alsop, & D’Esposito, 1996; Epstein & Kanwisher,
1998; Grill-Spector, 2003). The PPA and TOS do not
appear to exhibit a retinotopic emphasis toward the
periphery of the visual field. The RSC is anatomically
defined as Brodmann areas 29 and 30, confined
between the splenium of the corpus callosum and the
Parietal Occipital Sulcus (POS). The functional defini-
tion of the RSC, however, varies greatly in size across
studies, with scene-selective responses labeled as RSC
that often extend across the POS abutting peripheral
V1 and V2d (Wolbers & Buchel, 2005; Epstein, Parker,
& Feiler, 2007; Nasr et al., 2011; Huang & Sereno,
2013). As such, the term ‘‘retrosplenial complex’’ was
introduced to distinguish it from anatomically defined
RSC (Bar, 2007; Epstein, 2008). This retrosplenial
complex may comprise different cortical areas, analo-
gous to visual field maps PHC-1 and PHC-2 in
functional defined PPA (Arcaro, McMains, Singer, &
Kastner, 2009). For instance, Nasr et al. (2011)
reported a relatively small scene-selective patch on the
occipital side of the POS, abutting the peripheral
representation of V1 and V2d. This particular location
would not only meet the criterion of being anatomically
close to the early visual areas, but also at an anatomical
location that appears to exhibit representations of the
visual periphery.

Previous work into a possible retinotopic organiza-
tion anterior to V1 and V2d suggested the presence of
an upper quadrant representation with an emphasis on
the far periphery anterior to V2d (Pitzalis et al., 2006;
Huang & Sereno, 2013). However, the location of this
putative upper-quadrant representation differed be-
tween these studies and whether it is isolated or part of
a hemifield map needs to be scrutinized. Visual field
maps are typically delineated based on polar angle
reversals. For instance, for the cortical representation
of the central visual field, the border between V2d and
V3d in the left hemisphere of the brain can be identified
as those patches of cortex that represent the horizontal
meridian of the visual field surrounded by two mirror-
symmetric representations of the right lower quadrant
of the visual field. If one would apply the same criteria
to the anterior regions near the POS, however, this
would lead to the conclusion that V3d and V2d are
both abutted by hemifield representations. One might
further expect representations of the central visual field
near the parietal occipital sulcus (POS) for both
hemifield representations, though in principle it would
also be possible that the area does not have a focal
representation of the central visual field.

Here, we used wide field retinotopic mapping (up to
;458 of eccentricity) and population receptive field

(pRF) modeling to examine the territory between areas
V2d and V3d and the POS.

Methods

Subjects

Twelve healthy subjects (eight female, four male)
were included in the study (ages, 21–31) following
informed written consent. All subjects had normal
visual acuity. The study was conducted in accordance
with the Declaration of Helsinki and approved by the
local ethics committee CMO Arnhem-Nijmegen.

Stimulus presentation

A custom-built visual projection system was used
during retinotopic mapping to present wide-field
stimuli adjusted for the 32-channel head coil and 8-
channel occipital coil (field of view up to: ;1508 3 1208
or ;908 3 908, respectively). A detailed description can
be found in the supplemental material of Arnoldussen,
Goossens, and van den Berg (2011). Briefly, a
projection screen was placed about 3 cm above the
subject’s eyes. Visual stimuli were projected onto the
projection screen (32-channel: 300 3 150 mm or 8-
channel: 1433 80.5 mm) over a distance of 4.5 m by an
LCD projector with custom-built optics via a mirror.
Subjects wore a custom made soft convex lens with a
refractive power of þ30 diopters in their right eye to
allow effortless sharp vision at the screen. The other eye
was covered. To precisely control retinal angles, we
calibrated the exact eye position relative to the
presentation screen using custom methods (patent
P30574US00/JKO, publication WO2013006057).

Stimulus description

Rotating wedge and an expanding ring stimuli were
used for polar angle and eccentricity mapping
respectively (Sereno et al., 1995). During polar angle
mapping, the subject maintained fixation on a central
ring while a full contrast, ‘‘wedge-shaped’’ checker-
board stimulus (maximum angular width of ;458)
rotated counterclockwise about the center of fixation
at one cycle in 64 s. For the eccentricity mapping, a
radial full contrast checkerboard ring stimulus moved
from the center towards the periphery of the visual
field one revolution in 64 s (maximum eccentricity of
;458). No blank epochs during stimulus presentation
were included. During wide field retinotopic mapping,
the stimulus is often very far away from a voxel’s
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receptive field, and so many parts of the visual fields
have mean luminance periods. For both mapping
stimuli, contrast was reversed at a frequency of 2 Hz.
The checks and the width of the ring-stimulus were
scaled by eccentricity in accordance with the cortical
magnification factor (Cowey & Rolls, 1974). Note that
because of the combination of linear velocity and
eccentricity scaling of the checks, receptive fields are
stimulated more briefly in the foveal region compared
to the periphery.

Magnetic resonance imaging

All data was collected on a 3T Siemens TRIO system
at the Donders Centre for Cognitive Neuroimaging
(Nijmegen, The Netherlands). A 32-channel head coil
was used to obtain a high resolution full-brain
anatomical scan (T1-weighted MPRAGE, 192 slices,
2563 256 matrix, 13 13 1 mm resolution). During the
experimental scan sessions, the occipital part of the
head coil with 20-channels was used to enable the wide-
field screen presentation. Six subjects (6, 8–12) were
scanned using an 8-channel occipital coil. High-
resolution functional scans were obtained with an in-
plane resolution of 2 mm iso-voxel and a slice thickness
of 2 mm (T2*-weighted; multiecho echo planar
imaging; 32 slices; repetition time of 2 s; echo time of 28
ms). For each subject, we collected at least two runs of
each stimulus. The total duration of each run was ;4.5
min. Including calibration and other preparatory
procedures, one scan session lasted ;1 hr.

Preprocessing of the imaging data

Both gray and white matter were automatically
segmented using Freesurfer’s recon-all pipeline (http://
freesurfer.net). Next, the cortical surface was recon-
structed at the white/gray matter border and rendered
as a smoothed 3D surface (Wandell, Chial, & Backus,
2000). Motion correction between and within func-
tional scans was applied using FSL’s MCFLIRT
(http://www.fmrib.ox.ac.uk.fsl). Next, all prepro-
cessed data were loaded into the mrVISTA toolbox
environment (http://white.stanford.edu/software),
and the functional data were aligned with the whole-
brain anatomical segmentation. Finally, the time-
series data were averaged across scans, separately for
each stimulus, resulting in two average-time series per
subject (i.e., one for the wedge stimulus, and one for
the ring stimulus), which were subsequently resampled
to match the 1 mm isotropic resolution of the gray/
white matter segmentation using tri-linear interpola-
tion.

Population receptive field modeling

Population receptive field (pRF) parameters were
estimated according to procedures described by Du-
moulin and Wandell (2008). In brief, for each voxel,
fMRI time-series predictions were generated by varying
a wide range of plausible values for the parameters (x,
y, and r) of a circularly symmetric Gaussian pRF
model. Optimal parameters were identified as those
that minimized the residual sum of squares between the
time-series data and prediction. This procedure in-
volved a two-stage, coarse-to-fine search. First, the
fMRI time-series data were smoothed along the cortical
surface using a diffusion process that approximated a 5
mm FWHM Gaussian kernel, after which the pRF
parameters were estimated for a subsample of the
voxels and interpolated for the remaining voxels.
Second, this time without smoothing, a nonlinear
optimization algorithm (implemented by Matlab’s
‘‘fmincon’’ function) was applied to every voxel whose
initial parameter estimates explained more than 10% of
the variance in the time-series. During both stages
fMRI data were detrended using a discrete cosine
transform (DCT) basis set high-pass filter (three basis
functions) and converted to percent signal change by
dividing by and then subtracting the mean signal
amplitude over time. Finally, the best-fitting pRF
model parameters were converted to polar coordinates
expressed in visual angle.

Visual field map definitions

Seven visual field maps were defined in each cerebral
hemisphere (for each subject separately): V1, V2v, V2d,
V3v, V3d, V6, and putative area V2A. To this end, the
pRF center locations were projected onto a three-
dimensional rendering of each subject’s brain to
visualize their retinotopic maps, thresholded such that
the variance explained was at least 1% (as in previous
work, Pitzalis et al., 2006); this liberal threshold was
used solely for the purpose of visualization/visual field
map definition; in all subsequent analyses we applied
the stringent inclusion criterion of at least 20% variance
explained. V1, V2v, V2d, V3v, and V3d were defined
according to standard procedures described elsewhere
(Wandell, Dumoulin, & Brewer, 2007). The anterior
border of these areas was defined as the cortical
representation of the maximum stimulated eccentricity.
Next, V6 and V2A were defined as hemifields directly
anterior to areas V3d and V2d, respectively, using the
standard criterion of polar angle reversal. Finally, the
different portions of each visual area (left and right
hemisphere, as well as dorsal/ventral portions for V2
and V3) were subsequently combined into a single
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region-of-interest (ROI) for each area, yielding five
ROIs in each subject: V1-3, V6, and V2A.

Visual field coverage maps

The visual field coverage plots of V1-3, V6, and V2A
were created as follows: First, for each subject and
ROI, we gathered all pRF location and width
parameters for all voxels whose best-fitting pRF model
explained at least 20% of the variance in the time-series.
These parameters describe a two-dimensional Gaussian
in the visual field. Next, we determined for each voxel,
the maximum value of this Gaussian (normalized
between 0 and 1) across voxels at each visual field
location (pixel), thus creating a single visual field
coverage image for each subject and ROI. For each
ROI, these images were combined by averaging them
across subjects.

Functional connectivity analysis

We conducted a functional connectivity analysis
based on the resting-state data of the first 20 subjects in
the publicly available WU-Minn Human Connectome
Project (http://humanconnectome.org) Q2 dataset re-
lease (van Essen et al., 2012). We performed this
analysis twice, the second time using resting-state fMRI
data of the same database acquired on a different day
in the same subjects. These resting-state data have been
preprocessed as detailed in Smith et al. (2013), which
included corrections for spatial distortions and head
motion, registration to the T1w structural image,
resampling to 2 mm MNI space, global intensity
normalization, high-pass filtering with a cut-off at 2000
s, and the FIX artifact removal procedure (Griffanti et
al., 2014; Salimi-Khorshidi et al., 2014). For this work,
we additionally smoothed the images using a 6 mm
FWHM Gaussian kernel, applied a 100 s cut-off high-
pass filter, and also removed the mean ventricular and
white-matter signal from the time-series data. After
normalizing the time-series of each voxel to zero mean
and unit variance, the data were concatenated, resulting
in two 30-min functional scans per subject. Next, we
defined three spherical seed regions of 10 mm diameter.
The first seed was centered at MNI coordinates (x¼ 8/
�8, y¼�96, z¼ 14) corresponding to visual area V2d.
The second seed was centered at MNI coordinates (x¼
8/�8, y¼�76, z¼ 24) abutting the parietal occipital
sulcus (POS), corresponding to visual area V2A. The
third seed was centered at MNI coordinates (x¼ 10/�8,
y¼�82, z¼ 36) abutting the POS, corresponding to
visual area V6. For each session separately, we then
calculated the unique functional connectivity of each
seed region using the FSL’s sbca tool (O’Reilly,

Beckmann, Tomassini, Ramnani, & Johansen-Berg,
2010). As such, the first eigenvariate of the time-series
in each seed region was correlated with the voxel-wise
time-series in the rest of the brain, controlled for the
eigenvariate of the time-series in the other seeds (i.e., by
regressing out the eigenvariate time-series of the
remaining two seed regions from the first and the rest of
cortex). The ensuing subject-level partial correlation
maps were subsequently Fisher z-transformed and
subjected to a one-sample permutation t test with
threshold-free cluster enhancement (TFCE; Smith &
Nichols, 2009) using FSL’s randomize tool (5000
permutations) to characterize the connectivity maps of
each seed region in terms of maps of the ensuing voxel-
wise t statistics. These maps were subsequently thresh-
olded at a significance level of p , 0.05 (FWE
corrected).

Results

We recorded fMRI data of twelve healthy partici-
pants during a wide-field retinotopic mapping session
and fitted a circular symmetric Gaussian pRF model to
the ensuing voxel-wise time-series data. The pRF
estimates, explaining on average 45% of time-series
variance, provided converging evidence of two abutting
hemifield representations at the anterior end of areas
V2d and V3d (Figures 1 and 2). Though there is
variability across subjects due to methodological
challenges associated with wide field retinotopic map-
ping of an area deep inside the POS, careful inspection
of each individual hemisphere shows that the border
between these hemifields was formed by a polar-angle
reversal at the representation of the upper vertical
meridian, just as for instance the border between V1
and V2.

A reversal in the eccentricity map further appeared
to distinguish the hemifield maps from its bordering
lower tier region V2d or V3d (see Figure 3, which
summarizes the relationship between eccentricity and
cortical distance through V2d and V2A from the
occipital pole to the posterior occipital sulcus based
on voxels, whose best fitting pRF model exceeded 20%
variance explained). Notably, the anterior border of
V2d and V3d coincided with the appearance of an
upper visual field representation anterior to V2d and
V3d. On both sides of the borders of V2d and V3d,
eccentricity rapidly decreased away from these bor-
ders, with a much slower decrease posteriorly closer to
the fovea (due to the cortical magnification factor in
areas V2d and V3d). The hemifield anterior of V3d
corresponds to putative human area V6 as described
previously (Pitzalis et al., 2006). The hemifield
representation anterior to V2d seems to overlap with
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Figure 1. Wide-field retinotopic mapping results for all twelve subjects. Shown are polar angle maps. The borders between V1, V2,

and V3 are indicated by the dashed black lines. V2A is enclosed by a dashed white line and can be found inferior to area V6 at the

anterior end of V2d. V6 is enclosed by the dashed black line. The asterisks beneath the hemispheres indicate if we can identify the

hemifield representation after careful inspection of the figure (17 of the 24 hemispheres in 11 of the 12 participants). Note in four

of the other seven hemispheres we can identify an upper field representation only (S2 left hemisphere, S5 right hemisphere, S8

left hemisphere, and S11 right hemisphere).

Figure 2. Eccentricity maps shown for all twelve subjects. Maximum stimulus coverage is ;458.
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the upper field quadrant reported by Pitzalis et al
(2006), and part of the retrosplenial complex (Nasr et
al., 2011; Huang & Sereno, 2013). We propose to call
this hemifield representation anterior to V2d and
inferior to V6, area V2A.

To examine V2A’s representation of the visual field
in more detail, coverage plots were created based on the
most reliable pRF parameter estimates (i.e., pRF
models whose explained variance exceeded 20%) for all
defined visual field maps (V1, V2, V3, V6, V2A). This
method allows for a quantitative inspection of the
visual field maps illustrated in figures 1 and 2. The
coverage plots (Figure 4) show clear evidence that area

V2A has a complete hemifield representation. The red
color in Figure 4 indicates that there’s .80% field
coverage found across subjects. This is in line with the
polar angle maps illustrated in Figure 1. In contrast to
V1–V3 whose visual field coverage is biased towards
the center of the visual field, both V6 and V2A
exhibited coverage of a complete hemifield with an
emphasis on the periphery of the visual field (Figure 4).

Our approach of combining wide field visual stimu-
lation and pRF analysis further allowed us to study for
the first time the eccentricity dependency of pRF size
estimates at high eccentricities in human subjects. We
determined the relationship between the pRF size
estimates and eccentricity by gathering for each visual
field map all voxels across all subjects whose pRF
predicted more than 20% of the variance and then
binning these into segments of 58 eccentricity (Figure 5a
and b). In line with previous work that mapped the
central ;158 of the visual field, pRF size estimates in
V1–V3 and V6 increase linearly with eccentricity when
measuring up to 458 of eccentricity. Interestingly,
however, the expected linear increase in pRF size with
eccentricity could not be observed for V2A, as V2A’s
pRF size was very large even at very small eccentricities
(FWHM ;238) and did not change systematically across
the central ;708 of the visual field (t11¼�0.56, p¼ 0.59;
one-sample t test for a nonzero slope of the regression
line). Of note is also that the pRF centers in V2A extend
all the way down to at least 2.58 eccentricity even though
V2A abuts the peripheral representations of anterior
V2d, which indicates that V2A has its own representa-
tion of the central visual field.

Figure 3. Reversal in eccentricity as a function of the cortical distance along a line (illustrated for S12 in the left panel) that followed

the cortical surface from the foveal representation of V2d all the way to the POS (bins of 5 mm). For each subject (plotted in different

colors), cortical distance was calculated with respect to the point of maximum eccentricity such that distances in the posterior

direction were negative and distances in the anterior direction were positive. The solid black line represents the data of the group

average. The shaded area represents the standard error of the mean. Note that the eccentricity color map is linearly scaled in contrast

to Figure 2, which has logarithmic scaling.

Figure 4. Average visual field coverage maps for receptive fields

of paired ROIs (ventral and dorsal quadrants combined for V1–

V3) from the two hemispheres represent the entire visual field

(08–458), indicating that V2A also represents a hemifield

emphasizing the visual periphery, like V6. Yellow indicates that

field coverage for these areas is found in all subjects (100%).
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To determine the functional relevance of the new
visual area V2A, we performed a seed-based functional
connectivity analysis on the resting-state data of the first
20 subjects in the publicly available WU-Minn Human
Connectome Project (http://humanconnectome.org) Q2
dataset release (van Essen et al., 2012). As a measure of
functional connectivity, we used the correlation between
the resting-state fMRI time-series of one region (V2A,
V6, or V2d) and the rest of the brain, while controlling

for the fMRI activity in the remaining two regions. In
line with anatomical tract tracer injections in experi-
mental animals, this revealed that area V6 is part of a
lateral occipital, parietal, and premotor network (Gal-
letti et al., 2001), and that V2d is functionally connected
with visual cortex exclusively (Figure 6). By contrast,
area V2A appeared to be part of a network including the
parahippocampus, transverse occipital sulcus (TOS),
and retrosplenial cortex (RSC), which has previously

Figure 5. pRF size versus eccentricity function (58 bins). (A) Data averaged across all participants for V1, V2, and V3 and (B) V2A and

V6. Error bars represent standard errors.

Figure 6. Seed-based partial correlation analysis results for V6, V2d, and V2A (left panel). Maps of the t statistic are thresholded at p ,

0.05 (FWE corrected). These results were replicated using resting-state fMRI data acquired on a different day in the same subjects

(right panel). PM¼ Pre Motor area; SMA¼ Supplementary Motor Area; PHC¼ Parahippocampal Cortex; RSC¼ Retrosplenial Cortex;

TOS ¼ Transverse Occipital Sulcus.
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been shown to be involved in scene perception (Epstein
et al., 2007; Figure 6).

Discussion

By combining wide field retinotopic mapping and
pRF modeling, we found a new visual hemifield
representation, which we propose to call area V2A. V2A
emphasizes the visual periphery, is located anterior to
V2d and inferior to V6, and exhibits large, constant sized
receptive fields across all eccentricities tested. In
addition, we presented evidence to suggest that V2A
plays a crucial role in visual scene perception based on
its functional connectivity patterns with scene-selective
cortex.V2A’s role in visual scene perception may also be
gleaned from its proximity to (and perhaps overlap with)
the occipital parts of the retrosplenial complex (RSC)
reported in earlier work (Nasr et al., 2011; Huang &
Sereno, 2013). Indeed, it is possible that V2A is one of
several different functional areas within the RSC (Bar,
2007; Epstein, 2008; Solomon & Rosa, 2014). In
nonhuman primates like the Marmoset, several hemi-
field areas border the anterior region of dorsal V1 and
V2 (Rockland, 2012; Yu, Chaplin, Davies, Verma, &
Rosa, 2012; Solomon & Rosa, 2014; Yu, Chaplin, &
Rosa, 2015). Of these areas, prostriata and area 23V are
considered part of the RSC-complex and have been
associated with peripheral scene monitoring. Mikellidou
et al. (2017) recently mapped the human prostriata
anterior to V1 Based on its position relative to the other
visual areas (anterior to V2d, inferior to V6, and
superior to human prostriata), it appears likely that V2A
corresponds to area 23V. Indeed, according to Solomon
and Rosa (2014, page 11), ‘‘Based on its location relative
to V2, area 23V seems to correspond to the scene-
selective area of the retrosplenial cortex described by
Nasr et al. (2011) in other species.’’

Area V2A also appears to overlap partly with area
DVT defined in a recent multimodal parcellation of
human cortex (Glasser et al., 2016). Area DVT,
however, is more elongated than V2A, extending from
Prostriata all the way anterior to V6. We are reluctant
to interpret this discrepancy because the multimodal
parcellation did not incorporate retinotopic mapping
data and because the multimodal parcellation beyond
early visual cortex does not adhere very well to well-
established retinotopic mapping results. For instance,
while early visual areas V1–3 are correctly delineated,
visual areas such as hV4 and LO are rather poorly
delineated by the multimodal parcellation (see e.g.,
supplement s3, figure 3 of Glasser et al., 2016).

Our seed-based functional connectivity analysis
indicates that area V2A is part of a scene selection
network including PPA, TOS, and RSC, while area V6

is part of a lateral occipital, parietal, and premotor
network. While the latter is in line with anatomical
tract tracer injections in the macaque (Galletti et al.,
2001), it may appear inconsistent with recent results of
Tosoni et al. (2015), who observed functional connec-
tions between V6 and PPA. It is of note, however, that
Tosoni et al. (2015) based their functional connectivity
characterizations on full correlations, while ours was
based on partial correlations (controlling for the
activity of neighboring regions). It is likely, therefore,
that the functional connectivity between V6 and PPA
observed by Tosoni et al. (2015) reflects indirect
connectivity via V2A (since in the present work, V2A
exhibited significant partial correlation with PPA after
regressing out the activity in V6).

Mikellidou et al. (2017), who recently reported on
human prostriata, did not examine this area’s receptive
field size. A general feature of receptive field organiza-
tion that can be observed across many visual areas and
species is that the receptive field size increases with
eccentricity. By contrast, V2A’s receptive field size
appears to be constant up to about 358 eccentricity. A
similar feature has also been observed in Marmoset
prostriata (Yu et al., 2012) and may facilitate extracting
the statistical structure of a scene because it allows for
sampling the retinal image with equal resolution across
the visual field. A constant receptive field size may
further be useful for accounting for gaze movements. If
V2A’s purpose is to rapidly extract the gist of a scene to
provide a context for further image processing, it could
be beneficial to additionally keep track of the displace-
ment of subsequent snapshots as we move our eyes and
head. In this way, it would be possible to place the
individual snapshots in the larger context of our
surrounding environment (Robertson, Hermann, My-
nick, Kravitz, & Kanwisher, 2016). Previous work has
shown that sampling the retinal image with relatively
large receptive fields (blur) allows for a straightforward
computation of its partial spatial derivatives of any
order (Koenderink & Van Doorn, 1987). As such, gaze
shifts can be estimated by local ‘‘shifter’’ circuits
(Olshausen, Anderson, & Van Essen, 1993) directly from
the visual input up to a saccade size that is determined
by the receptive field (or blur) size and the order of
differentiation (Beintema & Van den Berg, 1998). In
principle, these shifter circuits can be implemented in
any visual area with nonzero receptive field sizes, but if
the receptive field size increases with eccentricity, this
would put a limit to the size of the gaze-displacements
that can be estimated based on information from the
center of the visual field, leading to different displace-
ment estimates across the visual field. By virtue of its
constant receptive field sizes, therefore, V2A may be
ideally suited to rapidly extract the global displacement
of the image when we move our heads and eyes. If so, we
estimate that V2A can keep track of gaze movements of
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up to at least about half the receptive field diameter (i.e.,
;158; Beintema & Van den Berg, 1998). This extent
covers the majority of the prior probability distribution
of saccades in retinocentric space (Tatler & Vincent,
2009), suggesting that V2A can account for the most
frequent types of gaze-shifts.

Together with the recent discovery of human
prostriata, the present findings suggest a reappraisal of
the organization of human dorsomedial occipital cortex
with a strip of separate hemifield representations
anterior to the early visual areas (Figure 7). The strip of
contralateral hemifield representations consists of areas
V6 (as described by, for example, Pitzalis et al., 2006) at
the anterior end of area V3d, Prostriata as described by
Mikellidou et al. (2017) at the anterior end of V1 and
area V2A at the anterior end of V2d. The strip of
hemifield representations anterior to dorsal V1–V3
reveals an interesting alignment between the human
and the Marmoset literature.

It is challenging to map visual areas in this region of
the cortex deep inside the POS. Whereas the summary
plots show convincing evidence of V2A, the individual
data show substantial variability. Inconsistencies in the
polar angle and eccentricity maps are likely due to the
challenges associated with mapping a visual area with
predominantly far peripheral responses, leading to a
poorer characterisation of different portions of the
maps in some subjects. Furthermore, our wide-field
retinotopic mapping paradigm comes at the expense of
accurately mapping the central ;58 of the visual field,
which explains the inconsistencies regarding the central
visual field representation. Finally, the maps presented
in Figures 1 and 2 only show the pRF centre positions,
but a voxel’s response depends on a larger area because

the pRF is not a point but a circular region with a size.
Looking at figure 5, we can see that V2A voxels have
very large pRFs, so for a voxel to respond to the centre
of the visual field, it does not need a pRF that is
positioned at the very centre of the visual field.

In conclusion, our data provide converging evidence
of a distinct hemifield representation at the anterior end
of V2d, which we propose to call area V2A. Area V2A
is characterized by unique receptive field properties
such as a constant receptive field size across the central
;708 of the visual field and exhibits unique functional
connectivity patterns with a network of regions that
have previously been related to scene processing. V2A
may correspond to marmoset area 23V, which also lies
anterior to V2d near the parietal occipital sulcus,
features large receptive fields, and has been associated
with visual scene processing. Together, these features
suggest that V2A supports the initial, gist-based stages
to visual scene perception in humans.

Keywords: fMRI, retinotopic mapping, pRF modeling,
scene perception, gist
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