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The emphasis in ischaemic heart disease (IHD) diagnosis has historically 

been directed towards the identification of epicardial coronary 

stenosis by selective coronary angiography, and its management by 

percutaneous coronary intervention (PCI) or coronary bypass graft 

surgery. Over the past two decades, the application of coronary 

physiology techniques to identify the haemodynamic severity of 

epicardial coronary stenoses to guide decision-making regarding 

revascularisation has evolved into an indispensable part of IHD 

management.1 This is mainly attributable to the finding that routine 

PCI of stenoses deemed significant by coronary angiography (>50 %  

diameter stenosis) does not lead to improved patient outcomes beyond 

swift alleviation of angina pectoris.2 The introduction of fractional flow 

reserve (FFR), a coronary pressure-derived estimate of the impact of 

the coronary stenosis on coronary flow, has played a pivotal role in 

this regard.3–5 FFR-guided coronary intervention has been documented 

to provide equivalent functional and long-term clinical outcomes of 

IHD management compared with an angiography-guided approach, 

while reducing the number of revascularisation procedures.6 The 

results of the pivotal Fractional Flow Reserve versus Angiography for 

Multivessel Evaluation (FAME I) and FFR-guided Percutaneous Coronary 

Intervention plus Medical Treatment versus Medical Treatment Alone 

in Patients with Stable Coronary Artery Disease (FAME II) studies 

have led FFR to be endorsed by revascularisation guidelines with a 

class I level of evidence A recommendation in the setting of stable 

IHD with angiographically equivocal disease severity and absence 

of noninvasive documentation of myocardial ischaemia.1 However, 

the results of the FAME II study, evaluating the benefit of PCI over 

guideline-directed medical therapy in vessels with an abnormal FFR-

value, indicate that over 80 % of patients with abnormal FFR do not 

suffer from adverse events, while 60 % of these patients did not require 

PCI during a two years follow-up period.7,8 The finding that a dominant 

proportion of FFR-positive vessels may not require revascularisation 

to improve clinical or functional outcomes is confusing in an era 

when strict adherence to obtained FFR-values is advocated in clinical 

practice guidelines. The origin of these findings is, at least, partially 

explained by the difference between coronary pressure-derived 

estimation of coronary flow impairment due to a stenosis and direct 

measurement of coronary flow for this purpose.9 This review details 

the fundamental basis of clinical coronary physiology, and how this 

relates to the evaluation of coronary stenosis using coronary pressure 

or coronary flow. 

Coronary Pressure-flow Relations: 
Autoregulation and Metabolic Adaptation
Figure 1 illustrates the fundamental coronary pressure-flow relationship. 

At a given level of myocardial demand, coronary flow remains relatively 

stable within a physiological range of perfusion pressures. This 

phenomenon is illustrated by the flow plateau in Figure 1, and is termed 

coronary autoregulation.10,11 An increase or decrease in myocardial 

demand leads to a parallel shift of the pressure-flow relationship, which is 
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a process termed metabolic adaptation.10,11 Autoregulation and metabolic 

adaptation together maintain stable coronary flow at a level that 

meets myocardial demand. Put simply, these processes occur through 

compensatory adaptation of the coronary resistance vessels, which may 

vasodilate or vasoconstrict to adapt to perfusion pressure changes or 

changes in myocardial demand.12 The ability of the coronary resistance 

vessels to accommodate to such changes can be abolished by the 

use of potent coronary vasodilators, such as adenosine, papaverine or 

regadenoson, which override autoregulation by inducing pharmacological 

vasodilation of the coronary resistance vessels.10,11 Therefore, at maximal 

vasodilation, the coronary circulation cannot adapt to pressure or 

metabolic changes, and is perfusion pressure-dependent: an incremental-

linear relationship between coronary pressure and flow occurs.13 Note that 

the relationship is linear, as the relationship is represented by a straight 

line, but this relationship is not proportional: the relationship does not 

pass through the zero-pressure intercept. The course of this pressure-flow 

relationship at maximal vasodilation is variable both within and between 

patients.14 The zero-pressure intercept is, among others, influenced by 

changes in heart rate, left ventricular filling pressures and myocardial 

hypertrophy.10 Similarly, the slope of the pressure-flow relationship in the 

individual patient changes, among other conditions, in the presence of 

small vessel disease or abnormal left ventricular function.15,16

Stenosis Physiology as the Basis for Stenosis 
Assessment
Figure 2 and Figure 3A illustrate the basic physiological behaviour 

of epicardial coronary stenosis. The pressure loss across a coronary 

stenosis not only depends on the severity of coronary narrowing, 

but to a large extent on the magnitude of flow that goes through the 

coronary artery.17,18 This pressure loss is due to viscous friction losses 

across the throat of the lesion, and separation losses that occur 

through acceleration of flow through the stenosis and the formation 

of eddies at the stenosis exit. Due to the combination of these effects, 

the pressure loss incurred by a stenosis increases quadratically with an 

increase in coronary flow (Figure 2A). For the application of coronary 

physiology in clinical practice, it is important to realise this implies 

that distal coronary pressure (thus, FFR) decreases (does become 

more abnormal) when coronary flow through the coronary artery 

increases (Figure 3B). As such, a severe decrease in coronary pressure 

can occur with low FFR-values merely due to the presence of high 

coronary flow. The clinical relevance of decreased coronary pressure 

in the presence of maintained coronary flow is debated, with studies 

documenting a relative high prevalence of this phenomenon and 

suggesting a benign character with favourable clinical outcomes.19,20 

This agrees with early experimental findings documenting that 

decreased coronary pressure of the coronary circulation does not 

lead to evidence of myocardial ischaemia as long as coronary flow 

remains stable.21 The opposite of this phenomenon also occurs 

frequently, where a stenosis is associated with only limited decreased 

coronary pressure, merely due to the fact that coronary flow does not 

increase upon pharmacological vasodilation.19,20,22 This may occur in 

the setting of microvascular disease, or in the setting of focal stenosis 

superimposed on diffuse epicardial and/or microvascular disease. 

This phenomenon has been linked to impaired clinical outcomes, 

which suggests that the sole use of coronary pressure in practice may 

underestimate the clinical relevance of these stenoses.20,22

Coronary Flow for Stenosis Evaluation
Since the myocardium thrives on coronary flow to exert its contractile 

function,9,21 and coronary flow is the critical determinant of myocardial 

ischaemia,23,24 it seems self-evident that the evaluation coronary flow 

provides an important tool to identify haemodynamically relevant 

stenoses. The most widely studied flow-based index for this purpose is 

the maximal increase in coronary flow that is available upon an increase 

in myocardial demand: the coronary flow reserve (CFR).17,25 CFR is 

defined as the ratio of flow during maximal vasodilation to flow during 

resting conditions, and thereby reflects the reserve vasodilator capacity 

of the coronary resistance vessels. CFR can be assessed by either the 

Doppler flow velocity or coronary thermodilution technique.26,27 Doppler 

flow velocity can be assessed using a Doppler sensor-equipped guide 

wire and provides the operator with both average flow velocity values as 

well as the coronary flow velocity profile. Such assessment of Doppler 

flow velocity has the advantage that its magnitude is intrinsically 

corrected for the amount of perfused myocardial mass in the arterial 

distribution by the laws of normalised shear stress, and is therefore 

relatively independent of perfused myocardial mass.28,29 Coronary 

thermodilution can be assessed with a temperature-sensitive guide 

wire using rapid injections of room-temperature saline to obtain mean 

transit times of the saline boluses. These transit times are inversely 

relative to absolute coronary flow and allow to calculate CFR. Although 

CFR is not impacted by myocardial mass-dependence of coronary 

thermodilution, it is important to realise that absolute mean transit time 

values are influenced by the amount of subtended myocardial mass.30 

Moreover, coronary thermodilution measurements require forced quick 

injection of room-temperature saline, which may affect coronary 

haemodynamics and may therefore affect flow values particularly 

during non-vasodilated conditions.31 Finally, coronary thermodilution 

requires a hyperaemic plateau phase to provide sufficient time for the 

repeated saline boluses, which is usually obtained using intravenous 

adenosine infusion. However, intravenous adenosine infusion frequently 

leads to a decrease in blood pressure. Since maximal coronary flow at 

coronary vasodilation depends on coronary perfusion pressure, such 

decreases in blood pressure due to intravenous adenosine infusion 

Figure 1: The Coronary Pressure-flow Relationship

Coronary blood flow at rest (solid lines) is controlled to match myocardial oxygen demand 
and to counteract variations in perfusion pressure by parallel changes in microvascular 
resistance, resulting in an autoregulatory plateau. During coronary vasodilatation, control 
is exhausted and blood flow depends on perfusion pressure (dotted line). The coronary 
pressure-flow relationship is concave at low perfusion pressures. The zero-flow intercept 
on the pressure axis (Pzf) slightly exceeds venous pressure (Pv). Straight extrapolation of 
the hyperaemic pressure-flow relationship results in an incremental–linear relationship 
that intercepts the pressure axis at the coronary wedge pressure (Pw), which incorporates 
collateral flow, heart rate and ventricular wall tension. Small vessel disease or abnormal left 
ventricular function decreases the slope of the pressure-flow relationship (curved arrow). 
Elevated left ventricular end-diastolic pressure or left ventricular hypertrophy cause a parallel 
shift to the right (straight arrow). Adapted from van de Hoef, et al., 2013.13
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lead to lower maximal flow values and underestimation of CFR if not 

accounted for. Doppler velocity measurements can, in contrast, also 

be performed using intracoronary adenosine administration, which 

circumvents this issue. Nonetheless, despite its potential advantages, 

Doppler flow velocity measurements are considered more technically 

challenging than coronary thermodilution measurements.

With increasing stenosis severity, the coronary circulation 

compensates by progressive vasodilation of the coronary resistance 

vessels to maintain coronary flow at a level that meets myocardial 

demand. Hence, with increasing stenosis severity the resistance 

vessels progressively dilate, leading to a reduction in reserve 

vasodilator capacity, and therefore to a reduction in CFR. This concept 

of CFR has been applied to both invasive and noninvasive methods 

that allow to measure coronary flow or myocardial perfusion, 

which have consistently shown important prognostic value for this 

index.32–40 A theoretical issue with CFR, however, is the fact that 

it is sensitive towards physiological alterations in coronary flow, 

either during resting or hyperaemic conditions, that are not related 

to stenosis severity.41 Moreover, it is important to note that CFR 

incorporates impairment in vasodilator capacity originating from both 

the epicardial coronary stenosis, as well as potential microcirculatory 

dysfunction. Therefore, not all reductions in CFR can be attributed 

to the presence and severity of the epicardial stenosis, and not all 

Figure 2: Diagram of Stenosis Flow Field

The pressure gradient across a stenosis is determined by the sum of viscous and separation losses. Pressure is lost owing to viscous friction along the entrance and throat of the narrowed 
section (Poiseuille’s law). In addition, the area reduction leads to convective acceleration along the stenosis, whereby pressure is converted to kinetic energy (Bernoulli’s law). Flow separation 
and the formation of eddies prevent complete pressure recovery at the exit. Measurement of intracoronary haemodynamics includes proximal perfusion pressure (Pa), coronary pressure 
and flow velocity distal to the stenosis (Pd and Vd, respectively), and the venous pressure (Pv), which is usually assumed to be negligible. Delta-P is the difference between Pd and Pa. Normal 
diameter (Dn), stenosis diameter (Ds), proximal velocity (Vn) and stenosis velocity (Vs) are indicated. Adapted from van de Hoef, et al., 2013.13
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Figure 3: Relationship Between Coronary Flow Through a Stenosis and the Stenosis Pressure Drop and Fractional Flow 
Reserve

(A) The relationship between stenosis pressure drop and flow velocity. This relationship describes the haemodynamic characteristics for a given stenosis geometry, and becomes steeper with 
increasing stenosis severity (from stenosis A to C). The pressure drop (delta-P) at rest (blue squares) and at maximal hyperaemia (red circles) is determined by baseline microvascular resistance 
and the vasodilatory capacity of the downstream resistance vessels. The relationship between delta-P and flow velocity (v) is described by delta-P = Av + Bv2, where the first and second 
terms represent the losses caused by viscous friction and flow separation at the exit, respectively. The coefficients A and B are a function of stenosis geometry and the rheological properties 
of blood. The flow-limiting behaviour of a coronary stenosis is largely caused by the inertial exit losses that scale with the square of the flow. Without a stenosis, the second term is zero, 
and delta-P = Av. (B) Relationship between coronary flow velocity and the distal:aortic pressure ratio during the vasodilatory response to adenosine. Fractional flow reserve (FFR), expressed 
as distal to aortic pressure ratio (Pd/Pa), decreases when microvascular resistance is reduced by administration of adenosine. Conversely, coronary flow velocity reserve (CFVR; hyperaemic 
velocity/basal velocity) increases with decreasing microvascular resistance. For a mild stenosis, dilatation of resistance vessels has little effect on FFR, but a large effect on CFVR. By contrast, 
for a severe stenosis, the decrease in microvascular resistance has a large effect on FFR, whereas the effect on CFVR is small. Figures A and B adapted from van de Hoef, et al., 2013.13
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impairment of CFR may, therefore, be relieved by PCI. Nonetheless, 

regardless of the methodology applied, a strong association between 

CFR and clinical outcomes has repeatedly been observed.22,32,33,35–40 

Moreover, CFR has been evaluated against noninvasive standards 

for myocardial ischaemia, which documented an overall diagnostic 

accuracy for CFR values ≤2.0 of 81 % to identify stenosis associated 

with evidence of myocardial ischaemia on noninvasive stress testing.34 

Randomised clinical trial data for the use of CFR to guide coronary 

intervention are, however, not available. All large studies on CFR 

have either investigated its use to guide the optimisation of coronary 

angioplasty,42,43 or as part of (large) clinical registries. Together with 

its relative technical difficulty, especially for ad-hoc evaluation in the 

catheterisation laboratory, this means that CFR is not widely used as 

a clinical decision-making tool at this moment. Nonetheless, as will 

be discussed below, renewed interest into the complex multilevel 

involvement of the coronary circulation in the setting of IHD has 

reinvigorated an interest in CFR, leading to the design of large clinical 

trials to reintroduce CFR in clinical practice.

Coronary Pressure for Stenosis Evaluation
The Basis of Fractional Flow Reserve
Young et al. first introduced the theoretical concept of estimating the 

impairment of coronary flow due to a coronary stenosis by relating 

the flow in the coronary artery with the stenosis to that in the same 

coronary artery without the stenosis.18 This method, however, includes 

the measurement of coronary flow before and after alleviation of the 

stenosis and, therefore, unfeasible as a tool to identify haemodynamic 

stenosis severity before revascularisation. This concept was later 

expanded upon by Pijls et al., introducing the FFR.5 FFR applies 

the measurement of proximal and distal coronary pressure during 

maximal coronary vasodilation to estimate flow impairment due to the 

stenosis. The FFR framework is therefore based on the assumption 

that during maximal vasodilation, a proportional linear relationship 

occurs between coronary perfusion pressure and coronary flow, and 

that this relationship is the same in the presence and in the absence 

of a stenosis.11,13 By this assumption, the proximal coronary pressure, 

or aortic pressure, can be used as an estimate of coronary flow in 

the absence of a stenosis, and distal coronary perfusion pressure, 

measured by a pressure-sensing guide wire, can be used to estimate 

coronary flow in the presence of the stenosis. By expressing the ratio 

of distal to proximal coronary pressures, FFR reflects the estimated 

fraction of coronary flow in the presence of the stenosis relative to the 

situation when the stenosis would be fully relieved (Figure 2). 

Clinical Validation of Fractional Flow Reserve
FFR has been evaluated against a multitude of noninvasive tests for 

myocardial perfusion deficits, which has yielded an overall accuracy of 

FFR to identify such perfusion impairment of around 81 %.34,44 Moreover, 

ample randomised clinical outcome data supports the benefit of FFR-

guided coronary intervention over the use of the coronary angiogram 

alone. FFR-guided intervention is associated with equivalent functional 

and clinical outcomes compared with angiographic guidance, while 

requiring significantly less revascularisation procedures.6 These 

findings have led FFR to be incorporated as a dominant diagnostic 

test in the management of IHD,1 and even has (inappropriately) led 

several investigators to use FFR as a gold standard reference test for 

the evaluation of novel tools for IHD management, including advanced 

noninvasive tests.45 The recent FAME II study results have, however, 

shed new light on the diagnostic and prognostic characteristics of 

FFR. This study evaluated routine PCI of FFR-positive stenosis on 

top of guideline-directed medical therapy versus an approach using 

guideline-directed medical therapy alone.7,8 Among stenoses with an 

average FFR of 0.68 ± 0.15, 80 % of medically managed FFR-positive 

stenosis did not suffer major adverse cardiac events up to two years 

of follow up, and over 60 % of patients did not require PCI at all during 

this period. This means that the majority of stenoses that should 

actually undergo revascularisation according to contemporary clinical 

guidelines, do not require revascularisation to prevent adverse cardiac 

events.46,47 Hence, although there is a distinct benefit of FFR-guided 

revascularisation over PCI-guided by the coronary angiogram, it is not 

a perfect tool and substantial room for improvement seems to exist.

Theory Versus Reality: Accuracy of Fractional Flow 
Reserve to Identify Flow Impairment
Comparing the theoretical pressure-flow relationship that forms the 

basis of FFR with the actual pressure-flow relationship in humans 

illustrates why FFR only provides an estimate of – and is not the 

same as – stenosis-induced flow impairment in the individual patient 

(Figure 4).5,10,48,49 First and foremost, in reality the relationship between 

perfusion pressure and coronary flow is not proportional linear 

(Figure 4A), but is incremental linear and varies in slope with variation 

in clinical and haemodynamic conditions (Figure 4B).10,13,49 The variability 

of the pressure-flow relationship both between patients, as well as 

within patients between adjacent perfusion territories, means that the 

deviation of the proportional linear pressure-flow relationship assumed 

by FFR from the actual relationship in the individual patient is variable 

as well. Moreover, the FFR-theory assumes that such relationship 

is the same for unobstructed and stenosed coronaries, which can 

only occur when coronaries would be rigid pipes that do not change  

in diameter with a change in perfusion pressure: after all, resistance in 

the coronary arteries can only be the same in these situations when 

coronary diameter is independent of perfusion pressure.50,51 However, 

it is well-known that coronary arteries are pressure-distensible, which 

precludes the aforementioned assumption and induces another 

uncertainty regarding the accuracy of FFR to identify actual stenosis-

induced flow impairment.52 With such detailed analysis of the assumed 

and actual pressure-flow relationship, it becomes clear that many 

factors influence the accuracy with which FFR estimates stenosis-

induced flow impairment in the individual patient: it may be very 

close in some patients, but can be ill-estimated in others. Finally, 

beyond the conceptual issues with FFR as an estimate of coronary 

flow impairment, it is important to recall that FFR becomes more 

abnormal as flow through the coronary artery becomes more normal: 

an abnormal FFR may therefore coincide with highly normal coronary 

flow, and vice versa.19,20 Since the myocardium thrives on coronary flow, 

not on coronary perfusion pressure,21 and coronary flow is the critical 

determinant of myocardial ischaemia,23,24 such can be interpreted 

as inaccuracy of FFR to estimate stenotic flow impairment. Clearly, 

coronary pressure can theoretically be used to estimate coronary 

flow impairment induced by a stenosis, but it should be realised that 

many factors interfere with its reliability. Reconciling that the aim of 

FFR is to identify stenosis-induced flow impairment, which it may 

misestimate on the basis of basic physiological principles, it becomes 

clear the limited prognostic value of positive FFR in FAME II may well be 

explained by misestimated stenosis-induced flow impairment. 

The Basis of Instantaneous Wave-free Ratio
The instantaneous wave-free ratio (iFR) is a pressure-derived index 

of stenosis severity that can be calculated during resting conditions 

and therefore does not require the use of potent vasodilators in the 
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catheterisation laboratory. iFR is defined as the ratio of distal to proximal 

coronary pressure during a restricted part of cardiac diastole, termed the 

wave-free period. This approach means the stenosis pressure gradient 

is assessed during that portion of the cardiac cycle where coronary flow 

is intrinsically highest. Thereby, iFR aims to maximise the information on 

stenosis severity that can be derived during resting conditions. The fact that 

iFR can be assessed in resting conditions overcomes several ambiguities 

associated with the use of coronary vasodilators in clinical practice, and 

simplifies physiological assessment of coronary stenosis severity. 

Diagnostic Value of Instantaneous Wave-free Ratio 
Compared with Fractional Flow Reserve 
The diagnostic value of iFR has been evaluated against FFR as the 

reference standard, as well as against independent reference standards. 

Overall, iFR agrees with FFR in approximately 80 % of cases.53 When 

independent reference tests were used to compare the diagnostic 

efficiency of iFR and FFR, such as CFR assessed with intracoronary 

Doppler velocity measurements and with PET or invasively assessed 

hyperaemic stenosis resistance index, no benefit of FFR over iFR could 

be identified.54–56 Actually, iFR showed better agreement with direct 

assessment of coronary flow than FFR.57 Hence, both techniques can 

be considered equivalent alternatives in terms of their diagnostic 

efficiency to detect haemodynamically relevant coronary stenosis. To 

date, two large-scale randomised clinical outcome trials comparing iFR-

guided versus FFR-guided coronary intervention have been performed: 

the Functional Lesion Assessment of Intermediate Stenosis to Guide 

Revascularization (DEFINE-FLAIR) and the Instantaneous Wave-Free 

Ratio Versus Fractional Flow Reserve in Patients With Stable Angina 

Pectoris or Acute Coronary Syndrome (iFR-SWEDEHEART) studies. 

Combining approximately 4,500 patients, these studies documented 

no difference in the occurrence of major adverse cardiac events 

between an iFR-guided or FFR-guided revascularisation strategy. Hence 

iFR and FFR can be considered alternatives for stenosis assessment 

with respect to clinical outcomes as well. In both the DEFINE-FLAIR 

and iFR-SWEDEHEART studies, significantly fewer coronary stenoses 

were identified as haemodynamically significant in the iFR-guided arm 

compared with the FFR-guided arm, and significantly fewer coronary 

interventions were performed in the iFR-guided arms.58 Yet, patients 

deferred from coronary intervention on the basis of iFR had equivalent 

clinical outcomes compared with patients deferred on the basis of 

FFR. Moreover, patients with an acute coronary syndrome (ACS) had 

significantly worse outcomes than the stable coronary artery disease 

patients (SCAD) in the FFR-guided arm, but not in the iFR-guided arm 

where outcomes between ACS and SCAD were similar.59 Aside from 

its proven non-inferiority, iFR induces less patient discomfort since it 

obviates the use of vasodilators, can be assessed quickly compared 

with FFR and has the ability to assess serial lesions by performing 

an iFR-pullback. The latter may be the largest benefit of iFR-guided 

intervention. In hyperaemic conditions, serial coronary stenoses show 

interplay as soon as they reach >50 % diameter stenosis: in sequential 

stenosis, the proximal stenosis will lower blood flow across the distal 

stenosis and vice versa. When treating either of the stenosis with PCI, 

coronary flow across the second stenosis will increase, increasing the 

residual pressure gradient across the residual stenosis. Due to this 

phenomenon, hyperaemic pressure-wire assessment with FFR does 

not allow identification of the individual impact of coronary stenosis 

on the overall FFR-value. In resting conditions, such stenosis interplay 

does not occur until stenosis severity exceeds >85 % diameter 

stenosis. Therefore, since PCI does not influence resting flow across 

the residual stenosis, pre-intervention pressure gradients can be 

assessed for each individual stenosis. An iFR-pullback, therefore, 

allows to identify the individual contribution of each stenosis to the 

overall iFR value, and to optimise planning of the PCI procedure in 

serial stenoses. Moreover, this iFR scout calculates stenosis severity 

according to the pressure gradient obtained during the iFR-pullback 

and predicts real-time potential haemodynamic gain in iFR post-PCI 

according to stent size.60–62 

Improving Identification of True Stenosis 
Haemodynamic Significance: Combining Fractional 
Flow Reserve and Coronary Flow Reserve
FFR and CFR were long considered alternatives for the physiological 

assessment of coronary artery disease, and discrepancies between the 

two have historically been linked to the technical difficulty of obtaining 

accurate CFR values and the limitations of CFR defined above. 

Conversely, it has now become evident that FFR and CFR comprise 

complementary tools, and that discrepancies between the two are 

the result of basic coronary (patho)physiology.19,20,22,63 Accordingly, 

the combined interpretation of FFR and CFR allows more accurate 

discrimination of the pathophysiological substrate in the setting of 

IHD. The relationship between FFR and CFR is illustrated in Figure 5.  

On the basis of their clinical cut-off values, four main quadrants can be 

defined in this relationship. When FFR and CFR are in agreement they 

are easily interpreted in combination: either no haemodynamically 

relevant coronary artery disease is present – illustrated by the 

combination of normal FFR and normal CFR – or there is coronary 

artery disease that severely impairs coronary flow – illustrated by 

the combination of abnormal FFR and abnormal CFR. Disagreement 

between FFR and CFR may arise from distinct (patho)physiological 

mechanisms. In the presence of a coronary stenosis, the combination 

of abnormal FFR and normal CFR illustrates the presence of non-flow 

limiting coronary artery disease. In this situation, the (highly) normal 

coronary flow through the coronary artery induces a significant 

pressure drop across the stenosis, leading to an abnormal FFR value. 

Since the myocardium thrives on coronary flow, not on perfusion 

pressure, and coronary flow is the critical determinant of myocardial 

ischaemia, it is the high coronary flow that determines the benign 

clinical follow up in these patients.20,64 The combination of normal FFR 

with abnormal CFR illustrates the presence of focal epicardial coronary 

Actual relationship in patients

QMax no stenosis

B

QMax stenosis

Pd Pa

Assumed relationship for FFR

QMax no stenosis

A

QMax stenosis
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Figure 4: Theoretical and Actual Pressure-flow Relationships

(A) The theoretical framework of fractional flow reserve (FFR) assumes a proportional linear 
relationship between coronary pressure and flow, since only then a change in pressure 
can be directly related to a proportional change in flow. Such a relationship is illustrated 
by a straight line with a zero-pressure intercept. (B) Actual pressure-flow relationship in 
patients. The is an incremental–linear relationship between coronary pressure and flow: 
the relationship is illustrated by a straight line but a non-zero pressure intercept. A change 
in pressure is not proportional to a change in coronary flow. The relationship is variable, as 
both the slope (red arrow, red dotted line) and the zero-pressure intercept (green arrow, 
green dotted line) are influenced by concomitant pathological changes in the coronary 
circulation (see Figure 1).
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artery disease superimposed on a background of either microvascular 

disease and/or diffuse epicardial coronary artery disease. This pattern 

has been associated with impaired long-term clinical outcomes.20,22 

Although it is generally assumed that the normal FFR in this setting 

reflects that PCI is not applicable in this setting to improve coronary 

flow, impaired microvascular function may mask haemodynamically 

relevant coronary stenosis.65 On the basis of this phenomenon, recent 

case-based clinical data suggests that in select cases, PCI might be a 

last resort option in an attempt to alleviate the epicardial contribution 

to coronary flow impairment.66 

The combined interpretation of FFR and CFR to optimise decision 

making is until now only supported by retrospective clinical data. 

The ongoing Combined Pressure and Flow Measurements to Guide 

Treatment of Coronary Stenoses (DEFINE-FLOW) study (NCT02328820) 

aims to evaluate this diagnostic approach in a multicentre 

prospective observational setting. This study tests the hypothesis that 

deferral of PCI in stenosis with abnormal FFR and normal CFR leads to 

equivalent clinical outcome compared with deferral of PCI in stenosis 

where both FFR and CFR are normal. Such prospective clinical data are 

needed to ultimately define the role of this approach in clinical practice. 

This study will similarly provide insight into the clinical relevance of 

FFR–CFR discordance and its relationship with clinical outcomes.

Combining Pressure and Flow Signals: Calculation of 
Coronary Resistances
Beyond the combined interpretation of FFR and CFR, the combined 

assessment of coronary pressure and flow allows for calculation of 

indices that relate to resistance to coronary flow in the coronary 

circulation. The resistance in a vascular compartment is defined as 

the pressure drop across the compartment divided by the flow that 

goes through it. Accordingly, the maximal resistance to coronary flow 

induced by an epicardial stenosis can be calculated as the pressure 

drop across the stenosis divided by distal coronary flow (velocity) 

during coronary vasodilation. This hyperaemic stenosis resistance 

index (HSR) was noted to provide significantly higher accuracy to 

identify stenosis associated with perfusion deficits on nuclear stress 

imaging than FFR.67 Moreover, it was shown to provide high prognostic 

value, particularly in those cases where FFR and CFR disagree.68 

Together with its strong physiological fundament, these findings 

have led several investigators to use HSR as a diagnostic reference 

standard in studies evaluating novel tools for stenosis assessment.69,70 

Notably, when calculated during resting conditions, the basal stenosis 

resistance index also provided very high diagnostic accuracy of 

at least equivalent magnitude to that of FFR, especially when 

contemporary guide wires were used that allow measurement of 

coronary pressure and flow velocity simultaneously.69,71

Clinical Implications and Future Outlook
Above all, the use of FFR has importantly improved the selection 

of patients that benefit from coronary revascularisation over the 

use of the coronary angiogram alone. Yet, the robust clinical 

data documents that further improvement in patient selection 

should be possible. The complex multilevel involvement of the 

coronary circulation in IHD means that multimodality physiological 

evaluation will be required to achieve this goal. As with FFR, it can 

be assumed that more advanced physiological testing will lead to 

stricter selection of patients eligible for PCI, reducing unnecessary 

patient exposure to mechanical revascularisation and improving 

the benefit of PCI in the individual patient. Yet, this requires the 

routine measurement of coronary flow in clinical practice, which 

remains technically challenging. Improvements in the available 

armamentarium of wire technology are required to make coronary 

flow measurements feasible, and thereby to provide the opportunity 

for more complex physiology uptake in clinical practice. Moreover, 

prospectively gathered (randomised) clinical trial data are needed to 

further substantiate the relevance of these endeavours for patient 

outcomes in stable ischaemic heart disease.

Conclusion
In the evaluation of coronary stenosis, coronary pressure and 

flow both have advantages and disadvantages. Ultimately, both 

parameters are complementary, and together optimally define the 

pathophysiological basis of IHD. Although coronary pressure represents 

the cornerstone of contemporary clinical coronary physiology, 

evidence is emerging on the clinical relevance of the complex 

multilevel involvement of the coronary circulation in IHD. More 

complex physiological testing may well enhance our ability to direct 

the risk and benefit of mechanical revascularisation to those patients 

and stenosis that are most likely to benefit. For this purpose, both 

technical advancement in wire technology and prospective clinical 

data are needed. n
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Figure 5: Conceptual Plot of the Fractional Flow Reserve–
Coronary Flow Reserve Relationship 

Four main quadrants can be identified by applying the clinically applicable cut-off values for 
fractional flow reserve (FFR) and coronary flow reserve (CFR), indicated by the dotted lines. 
Patients in the upper-right blue area are characterised by concordantly normal FFR and CFR, 
and patients in the red lower-left area are characterised by concordantly abnormal FFR and 
CFR. Patients in the upper-left orange area and lower-right light-green area are characterised 
by discordant results between FFR and CFR, where the combination of an abnormal FFR and 
a normal CFR indicates predominant focal epicardial, but non-flow limiting, coronary artery 
disease, and the combination of a normal FFR and an abnormal CFR indicates predominant 
microvascular involvement or diffuse epicardial disease. The small dark-green region in the 
lower-right is characterised by a FFR near 1 and a normal CFR, indicating sole involvement 
of the coronary microvasculature. The FFR grey zone indicates the equivocal 0.75–0.80 FFR 
range. Adapted from Johnson, et al., 2012.19
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