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Abstract

The application of flow cytometry as a scoring platform for both in vivo and in vitro micronucleus 
(MN) studies has enabled the efficient generation of high quality datasets suitable for comprehensive 
assessment of dose–response. Using this information, it is possible to obtain precise estimates of 
the clastogenic potency of chemicals. We illustrate this by estimating the in vivo and the in vitro 
potencies of seven model clastogenic agents (melphalan, chlorambucil, thiotepa, 1,3-propane 
sultone, hydroxyurea, azathioprine and methyl methanesulfonate) by deriving BMDs using freely 
available BMD software (PROAST). After exposing male rats for 3 days with up to nine dose levels 
of each individual chemical, peripheral blood samples were collected on Day 4. These chemicals 
were also evaluated for in vitro MN induction by treating TK6 cells with up to 20 concentrations 
in quadruplicate. In vitro MN frequencies were determined via flow cytometry using a 96-well 
plate autosampler. The estimated in vitro and in vivo BMDs were found to correlate to each other. 
The correlation showed considerable scatter, as may be expected given the complexity of the 
whole animal model versus the simplicity of the cell culture system. Even so, the existence of the 
correlation suggests that information on the clastogenic potency of a compound can be derived 
from either whole animal studies or cell culture-based models of chromosomal damage. We also 
show that the choice of the benchmark response, i.e. the effect size associated with the BMD, is not 
essential in establishing the correlation between both systems. Our results support the concept that 
datasets derived from comprehensive genotoxicity studies can provide quantitative dose–response 
metrics. Such investigational studies, when supported by additional data, might then contribute 
directly to product safety investigations, regulatory decision-making and human risk assessment.

Introduction

There is growing recognition that quantitative approaches for dose–
response analysis and risk assessment that are commonly employed 
in other fields of toxicology have the potential to serve important 
roles in genetic toxicology (1–3). The premise that genotoxicity data 
are not only useful for determining hazard, but can also contribute 
directly towards broader risk-based decision making, has reinforced 

the need for more comprehensive and informative means of inter-
preting and using genotoxicity data. Thus, the application of point 
of departure (PoD) analyses to genetic toxicology data has recently 
received increasing attention. Looking beyond the simple categorisa-
tion of a compound as ‘hazardous’ and making more than a ‘yes/no 
genotoxicity call’ is the rationale for developing new quantitative 
methods in order to make the best use of existing data.
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This topic has been the focus of several industry working groups 
and their observations and recommendations were summarised in 
several recent publications. Gollapudi et  al. (4) described BMD, 
threshold effect level (Td) and the ‘no observed genotoxic effect 
level’ (NOGEL) as potential approaches of evaluating quantitative 
dose–response information from genetic toxicology studies. In a 
follow-up report, Johnson et al. (5) focussed on specific examples 
for the application of these PoD metrics as a means to assess the 
merits and limitations of existing methods and guide the use of 
these tools for generation of reference doses, margins of exposure, 
etc. Slob and Setzer (6) conducted an analysis of several different 
toxicology study formats including subchronic toxicity, local lymph 
node assay, in vivo and in vitro micronucleus (MN), whole embryo 
culture developmental assessment, etc. in order to examine the shape 
of toxicological dose–response relationships. They concluded that 
the dose–response curves all shared a similar shape despite being 
derived from very different assay systems. The authors went further 
to state that ‘the finding that the choice of the dose–response model 
is not crucial may help convincing toxicologists and risk assessors 
who have difficulty in accepting the BMD approach’.

Finally, at the 2013 International Workshops on Genotoxicity 
Testing (IWGT) held in Foz do Iguacu, Brazil, the Working Group 
on Quantitative Approaches to Genetic Toxicology Risk Assessment 
(QWG) reviewed the current status of PoD metrics and described 
consensus statements and future needs for genetic toxicology (2,3). 
One of their conclusions was that the preferred method of dose–
response analysis is determination of the BMD, as this approach is 
used regularly in other risk assessment contexts and it makes use 
of all available data. The QWG also stated that no matter what 
quantitative approach is used, ‘there is a need for high quality data’, 
and any uncertainties that may exist based on the data and chosen 
approach should be clearly represented. Evaluation of the uncer-
tainties in relatively poor datasets may benefit from robust dose–
response estimates derived from studies that include broad dose 
ranges and sufficient sample size.

Our laboratory has developed methodologies for flow cytometric 
assessment of MN formation in both in vivo and in vitro systems. 
These methods share characteristics such as simple, efficient sam-
ple processing, automated, objective scoring and high throughput 
sample analysis that can generate data in minutes or even seconds 
per sample. Thus, high quality data can be practically and efficiently 
obtained via these methods. Given the established qualitative role 
that these assays already serve in genetic toxicology, for example 
hazard identification, expanding their quantitative utility by examin-
ing the relationships that may exist between both test systems is an 
important pursuit.

Based on examples in the literature and recommendations from 
the QWG, we applied BMD analyses to datasets obtained from sev-
eral previously reported in vivo rat studies (7–9) and compared them 
to results obtained from new in vitro experiments with the same 
chemicals. Thus, these studies were focused on the chromosomal 
damage effects of seven well-known clastogenic agents representing 
diverse chemical classes: melphalan (MEL), chlorambucil (CHL), 
thiotepa (THI), methyl methanesulfonate (MMS), azathioprine 
(AZA), hydroxyurea (HU) and 1,3-propane sultone (PRS). These 
particular in vivo studies/chemicals were also chosen based on char-
acteristics that seemed advantageous for the in vitro versus in vivo 
comparison—consistent rodent model, age, sex, treatment schedule/
harvest schedule and consideration of multiple dose levels. The flow 
cytometric methodologies employed for both the in vivo and in vitro 
studies enabled very efficient collection of MN induction data across 

a large dose range of the study compounds. The resulting data were 
statistically analysed by fitting dose–response models and estimating 
BMDs (equipotent doses) in either test system. Further, we investi-
gated the existence of a correlation between both systems, as well as 
the impact of the BMR (the effect size associated with the BMD) on 
that comparison.

Materials and methods

Reagents and test chemicals
MEL (CAS no 148-82-3), CHL (CAS no 305-03-3), THI (CAS no 
52-24-4), MMS (CAS no 66-27-3), AZA (CAS no 446-86-6), HU 
(CAS no 127-07-1), PRS (CAS no 1120-71-4) were purchased 
from Sigma–Aldrich (St. Louis, MO, USA). Reagents for process-
ing and analysis of peripheral blood samples for micronucleated 
reticulocytes were from In Vivo MicroFlow® Rat PLUS kits (Litron 
Laboratories, Rochester, NY USA). Reagents for staining and lysing 
cultured cells for MN analysis were from In Vitro MicroFlow® kits 
(Litron Laboratories).

In vivo micronucleus
Data from these studies were originally published across several 
papers that describe the development and validation of an in vivo 
gene mutation assay (7–9). All animal experiments were conducted 
with the oversight of the University of Rochester’s Institutional 
Animal Care and Use Committee. Male Sprague-Dawley rats 
obtained from Charles River Laboratories (Wilmington, MA, USA) 
were ~7 weeks old at the time of initiation of exposure. Test articles 
were administered via oral gavage at 10 ml/kg body weight/day at 
~24 h intervals for 3 consecutive days.

The concentrations examined were based on preliminary dose-
range information and were selected in order to achieve certain target 
exposures. The highest concentration tested was designed to achieve 
maximum tolerated dose (MTD) as defined by body weight and 
other indices of health. Other concentrations were selected based on 
variations of the numerical measure of carcinogenic potency (TD50) 
as reported by the Carcinogenic Potency Database (10,11). In par-
ticular, we examined doses equivalent to 0.33 TD50, TD50 and 3× 
TD50. These dose ranges allowed us to examine data from exposures 
that elicited dose-related elevations in peripheral blood MN-RET 
frequencies at low to moderate bone marrow toxicity, up to highly-
induced responses observed at MTD.

On study Day 4, peripheral blood was collected via tail vein from 
five to six animals per exposure group for all studies. Fixation, pro-
cessing and analysis of peripheral blood samples for MN-RET was 
performed according to the In Vivo MicroFlow instruction manual 
and as described elsewhere (12,13). MN-RET and RET frequen-
cies were determined via analysis of ~20 000 RETs per sample. The 
identification of the RET population was accomplished by staining 
the samples with a fluorescently-labelled CD71 (transferrin recep-
tor) antibody and enumerating RETs by their elevated expression 
of this cell surface marker. All analyses were performed on a BD 
FACSCalibur™ flow cytometer running CellQuest™ Pro v5.2.

In vitro micronucleus
Human lymphoblastoid TK6 cells (American Type Culture 
Collection, Manassas, VA, USA) were maintained in RPMI 1640 
medium supplemented with 10% horse serum, 200  µg/ml sodium 
pyruvate, 2 mM l-glutamine, 50 units/ml penicillin and 50  µg/ml 
streptomycin. Medium and serum was obtained from Mediatech 
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(Manassas, VA, USA), all other cell culture reagents were supplied by 
Sigma–Aldrich. Cells were continuously passed at less than 1.0 × 106 
cells per millilitre in a 37°C, humid atmosphere with 5% CO2.

All TK6 cell treatments, processing and analyses were performed 
in 96-well plates as described in the In Vitro MicroFlow manual and 
elsewhere (14,15). Briefly, stock solutions of test article in dimethyl 
sulfoxide (DMSO) were serially diluted across wells containing fresh 
culture medium. Initial top concentrations of the various test articles 
were determined by preliminary dose-range finder experiments and 
the dilution series achieved up to 20 exposure conditions. Cells were 
then distributed across the plate and incubated for ~24 continuous 
hours in order to achieve the desired population doublings. Samples 
were analysed using a Becton Dickinson FACSCANTO™ II flow 
cytometer equipped with a high throughput sampler and running BD 
FACSDiva™ software. A total of four separate wells were analysed 
per treatment condition with a maximum of 10 000 healthy cells’ 
nuclei evaluated per well.

Criteria for a valid in vitro MN assay included demonstration 
of 1.5–2.0 population doublings in vehicle-exposed control cultures 
that also showed baseline MN frequencies within the historical con-
trol distribution. Concurrent positive control MN values also needed 
to fall within the historical distribution. In addition to these crite-
ria for assay validity, the conditions for selecting an acceptable top 
concentration for analysis were defined as exposures that achieved 
50 ± 5% cytotoxicity and had a %ethidium monoazide (EMA) posi-
tive events value <4-fold over solvent control. Data from concentra-
tions that exceeded these culture viability criteria were not included 
in the BMD analyses.

Statistical analyses
Individual sample data were initially compiled in Microsoft Excel 
and converted to text files for input into PROAST software (RIVM, 
The Netherlands; www.proast.nl) operating in the R environment 
(16). The PROAST software allows for fitting a single dose–response 
model to combined datasets (relating to different subgroups), 
thereby establishing which parameters in the model differ signifi-
cantly among the subgroups. Parameters that are not found to differ 
significantly will be estimated as a single value in the final model, 
while those parameters that do differ significantly are estimated as 
subgroup-specific values. This approach was followed for each test 
system, that is in vivo or in vitro MN, by combining the data for 
all chemicals and by fitting the dose–response model using chemical 
identity as a covariate (17). Critical effect sizes (CES) of 0.05, 0.5, 1, 
2 and 4 were chosen to provide information on the BMD values at 
various points along the dose–response curves. CES is equivalent to 
BMR when defined as a percent change in mean response compared 
with the control baseline, thus the latter term will be used for the 
remainder of the manuscript. BMDs and their associated confidence 
intervals for each compound were obtained, these values were then 
used to rank compounds as well as examine the relationship between 
the test systems. Chemicals with non-overlapping confidence inter-
vals can be differentiated from each other based on potency, whereas 
those with overlap cannot be ranked. The latter is an inconclusive 
result, unless the confidence intervals are deemed small enough to 
consider the chemicals as equally potent from a practical point of 
view. A more detailed description of the statistical methods can be 
found in Soeteman-Hernández et al. (18).

Correlation plots
The chemicals selected for this study were known to be potent 
clastogens, and the combined MN studies resulted in the ability to 

examine many doses. As a result, the BMD confidence intervals in 
this investigation were relatively small. In other cases, where BMDs 
must be estimated from smaller datasets, or when weakly potent 
or ‘non-potent’ chemicals are included, the BMD confidence inter-
vals are wider, while they also partly have infinite upper bounds. 
In those cases, a correlation coefficient cannot be calculated, and 
another (visual) approach of evaluating the correlation has been 
used. We follow that visual approach here as well, for reasons of 
consistency. The approach is to draw two lines in the double-log plot 
with unity slope. A unity slope in a double-log plot translates into 
a proportional relationship between the BMDs on the original x- 
and y-axis. The two lines are drawn such that they encompass most 
of the BMD intervals. If the different chemicals scatter randomly 
between both lines, this indicates that the BMDs in both systems 
are proportionally related. The vertical distance between both lines 
reflects the uncertainty range of the predicted BMD on the y-axis, 
given a BMD on the x-axis. This uncertainty range can be regarded 
as a measure of the correlation (small range means good correla-
tion). See L. G. Soeteman-Hernández, M. D. Fellows, G. E. Johnson, 
W. Slob (submitted to Tox. Sci.) for a more extensive discussion and 
an illustrative example how to use the two sloped lines in predicting 
the BMD on the y-axis.

Results

In vivo micronucleus
Fitting a four-parameter exponential model to the combined dataset 
(with chemicals as subgroups) showed significant differences among 
the subgroups regarding the potency parameter and the within-
group variance, but not in background response. Therefore, the 
data were described by a four-parameter exponential model (6) with 
constant background and shape parameters, but with potency and 
within-group variance depending on the subgroup (chemical). The 
in vivo MN data and the associated curves generated by the model 
just mentioned are shown in Figure 1. The same data and curves are 
plotted in supplementary Figure S1, available at Mutagenesis Online, 
but now for each chemical separately. Based on visual inspection of 
the fitted curve for each individual chemical the overall conclusion 
is that all seven dose–response relationships can be described by the 
four-parameter exponential model, while assuming their shapes are 
the same. Figure 1 also shows the chemical-specific BMDs associ-
ated with a 3-fold induction from baseline (BMR  =  200%). This 
response value was chosen here to more readily display the graphical 
representation of the derived BMDs. The horizontal line represents 
the chosen response value from baseline which intersects the dose–
response curve and then drops down as a vertical line to the BMD on 
the x-axis. As described in the Statistical analysis, BMDs were also 
calculated for a number of other BMR values (supplementary Figure 
S2, available at Mutagenesis Online). Table 1 shows the BMD, and 
the lower (BMDL) and upper (BMDU) confidence bounds associated 
with various values of BMR.

In vitro micronucleus
All of the chemicals studied showed dose-related elevations of MN 
indicative of chromosomal damage in vitro. Figure 2 shows the dose–
response plot with the BMDs for each chemical, again corresponding 
to BMR = 200% (3-fold induction); the plots for other effect sizes 
are in supplementary Figure S4, available at Mutagenesis Online. As 
opposed to the in vivo MN data above, the background responses 
were found to differ significantly among chemicals, but otherwise 
the model found to adequately describe the combined datasets was 
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the same. Again, the four-parameter exponential model, assumed to 
have the same shape among chemicals, fits the data appropriately, 
based on visual inspection of the plots of the individual chemicals 
(supplementary Figure S3, available at Mutagenesis Online). The 
entire matrix of BMD data for the in vitro MN studies is shown in 
Table 2.

Cross system correlations
Figure 3 shows the cross system plot comparing in vitro MN BMDs 
to in vivo MN BMDs, both at BMR = 200% (supplementary Figure 
S5, available at Mutagenesis Online, for plots with other BMR 
values). The confidence intervals for each BMD are shown by the 
horizontal and vertical lines. To quantitatively represent the cor-
relation between the test systems, the diagonal lines in Figure  3 
were applied manually to encompass the confidence intervals asso-
ciated with each of the reported chemicals. These diagonal lines 
in the double-log plot have unity slope, which translates into a 
proportional relationship on the original scales. The vertical dis-
tance between these two lines may be considered a measure of the 
correlation between the two systems (see Materials and methods 
for explanation). Across the different BMR values studied, there 
was very little difference in this vertical distance: for the BMR val-
ues 0.05, 0.5, 1, 2 and 4, the distance was 1.71, 1.61, 1.59, 1.58 
and 1.57 units, respectively. The reason for these small differences 

is that the fitted dose–response curves for the various chemicals 
are parallel, so that any change in the BMR will not affect the 
relative positions of the BMDs. In addition, the width of the BMD 
confidence intervals (=BMDU/BMDL) does not decrease very much 
when increasing the values of the BMR (see BMDU/BMDL ratios 
in Tables 1 and 2).

Discussion

The genotoxicants studied here are well known DNA damaging 
agents that elicit a specific form of chromosomal damage that can 
ultimately lead to carcinogenicity. This damage mainly takes the 
form of strand breakage, some of which will result in DNA double 
strand breaks and formation of acentric chromatid fragments that 
can then go on to form MN. Since both the in vitro and in vivo MN 
assays are sensitive to such chromosomal damage, an examination 
of the ability of these methods to compare clastogenic compounds in 
terms of potency is useful for confirming the utility of these assays 
and supporting their use for direct involvement in human risk 
assessment.

The in vivo MN data employed for these studies were obtained 
from work being performed as part of ongoing methodological 
development studies at Litron that were characterized by exten-
sive dose ranges, adequate number of animals and doses, and 

Figure  1. Fitted curves for in vivo MN dose–response data from seven clastogens studied in rats. The horizontal-to-vertical dashed lines represent the BMD 
concentrations that correspond to a BMR = 200%, that is a 3-fold induction of MN (=distance of 0.48 on log10-scale). For each chemical, the small symbols represent 
the individual data points and the large symbol represents the geometric mean of these observations.
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typically 20 000 reticulocytes scored per sample (7–9). The specific 
compounds examined here are characterised by varying degrees 
of clastogenic potency based on the fact that they induce a pre-
specified level of chromosomal damage, for example 200% above 
baseline, at higher or lower concentrations. This can be seen by 
the distribution of the curves and their associated BMDs along the 
x-axis in Figure  1 and the data in Table  1, where MEL was the 
most potent MN-inducer, that is lowest BMD confidence interval, 
and either HU or PRS (their BMD confidence intervals overlap) the 
least potent. Figure 4 (lower panel) depicts the confidence intervals 
of the in vivo MN data for BMR = 200% as a means to visually 
compare overlap between chemicals and judge potency (supple-
mentary Figure S6, available at Mutagenesis Online). These exten-
sive in vivo studies formed the basis for conducting an analogous 
set of in vitro MN experiments to determine the responses of the 
same chemicals in human TK6 cells. Similar to the in vivo data, the 
dose–response curves for the in vitro MN studies shown in Figure 2 
and the confidence interval plot in Figure 4 (upper panel) serve to 
rank the chemicals from most potent, MEL/AZA, to least, in this 
case PRS.

One observation that can be made from these clastogenicity 
rankings across the two test systems is the apparent shift in potency 
of MMS and AZA. Thus for the in vitro studies these compounds 
appear to be more potent chromosomal damage inducers, that is 
they have lower BMDs, than for the in vivo system. Likely this is due 
to the different toxicokinetics that exist between whole animal and 
cell culture-based systems. Additional experiments to more closely 
define the mechanism(s) responsible for this are beyond the scope of 
this publication. Despite the impact that toxicokinetic processes in 
living animals must have, there was still a clear relationship between 
these systems as demonstrated in Figure 3.

The methodology for examining the two test systems was 
based on both the previously mentioned recommendation from 

the IWGT QWG (2), and on similar investigations reported in 
the literature. Thus Hernández et al. (19) described a study that 
matched data from 18 compounds studied in long-term in vivo 
carcinogenicity studies with information on responses of the same 
chemicals from in vivo MN, transgenic rodent mutation or in vivo 
comet studies. Correlations generated from BMDL10 data showed 
a positive relationship between the potency of the compounds in 
eliciting elevations in the short-term genetox studies when com-
pared with the potency of the compounds for inducing cancer. 
This study was later expanded to include data from a total of 
48 compounds investigated across both long-term carcinogenic-
ity and in vivo MN study designs (18,20). Again, a clear posi-
tive correlation between cancer potency and clastogenic potency 
was found.

Thus an important outcome of the Hernández et  al. studies is 
that the data support the possibility of using information obtained 
from a relatively simple short-term assay, for example in vivo MN, 
to predict carcinogenic potency (18,20). This concept, in combina-
tion with other initiatives to reduce or refine the conduct of carcino-
genicity testing in product safety programs (21) may ultimately lead 
to better resource allocation and more effective use of animals to 
provide quantitative information on cancer risk that can be used for 
human health-based regulatory decision making, even in the absence 
of 2-year carcinogenicity study data.

Our investigation showed a similar positive relationship between 
in vitro and in vivo potency of MN induction (Figure 3), demonstrat-
ing that the compounds which were very potent MN inducers in a 
cell culture model were also very effective at the formation of MN in 
a whole animal model, and, vice versa, for less potent MN inducers. 
This finding supports L.  G. Soeteman-Hernández, M.  D. Fellows, 
G. E. Johnson, W. Slob (submitted to Tox. Sci.) who also observed a 
correlation between in vitro and in vivo MN potencies. These obser-
vations serve to further strengthen the links that exist between these 

Table 1. BMD values for in vivo MN assay across varying BMR (units are mg/kg/day)

AZA CHL HU MEL MMS PRS THI Geometric mean

BMR = 0.05
 BMD 0.7717 0.1325 7.0082 0.0289 1.3037 4.8628 0.1365
 BMDL 0.5636 0.0991 5.3371 0.0218 0.9724 3.7600 0.0994
 BMDU 1.0340 0.1725 9.0255 0.0376 1.6952 6.1718 0.1826
 BMDU/BMDL 1.83 1.74 1.69 1.73 1.74 1.64 1.84 1.74
BMR = 0.5
 BMD 3.5334 0.6066 32.0880 0.1323 5.9693 22.2650 0.6252
 BMDL 2.8488 0.5114 27.1340 0.1113 4.9824 18.9060 0.5115
 BMDU 4.3516 0.7105 37.8160 0.1562 7.0295 26.1750 0.7538
 BMDU/BMDL 1.53 1.39 1.39 1.40 1.41 1.38 1.47 1.43
BMR = 1
 BMD 5.6013 0.9616 50.8680 0.2098 9.4629 35.2960 0.9911
 BMDL 4.6174 0.8374 44.0240 0.1812 8.1262 30.5020 0.8366
 BMDU 6.7700 1.0947 58.8130 0.2416 10.8770 40.9870 1.1621
 BMDU/BMDL 1.47 1.31 1.34 1.33 1.34 1.34 1.39 1.36
BMR = 2
 BMD 8.9140 1.5303 80.9520 0.3338 15.0590 56.1700 1.5772
 BMDL 7.4696 1.3704 71.1550 0.2946 13.2360 48.9930 1.3682
 BMDU 10.6250 1.6998 92.4370 0.3773 16.9930 64.9410 1.8042
 BMDU/BMDL 1.42 1.24 1.30 1.28 1.28 1.33 1.32 1.31
BMR = 4
 BMD 14.3010 2.4551 129.8800 0.5356 24.1610 90.1180 2.5304
 BMDL 12.0990 2.2438 114.8300 0.4789 21.5650 78.5950 2.2427
 BMDU 16.9120 2.6800 147.7100 0.5987 27.0010 104.6100 2.8385
 BMDU/BMDL 1.40 1.19 1.29 1.25 1.25 1.33 1.27 1.28
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test systems that are a routine part of genetic toxicology and regula-
tory review of preclinical safety submission for pharmaceuticals and 
other consumer or industrial products. Further investigations on the 
role of metabolism and toxicokinetics might improve the correlation 
between in vivo and in vitro potencies of MN induction. In addition, 
more chemicals would need to be included. If the correlation then 
remains, or even improves by taking toxicokinetics into account, this 
result may be useful for in vitro to in vivo extrapolation and support 
the application of alternatives to animal testing for certain safety 
assessment contexts.

The underlying datasets of the present study were relatively 
large, with more doses/concentrations than usual. As a result, the 
BMD confidence intervals were smaller than in the other correla-
tion studies mentioned (18–20). These results are therefore a good 
starting point for examining the impact of toxicokinetics on the 
scatter among the chemicals in the correlation plot, as that scatter 
cannot be explained by imprecise BMD estimates due to limited 
datasets.

The studies reported here provide support for the earlier finding 
(6) that dose–response data in general can be adequately described 
by a four-parameter exponential model. Further, they support the 
finding in the same study (6) that there is little difference between 
the dose–response shapes among the chemicals (for the same end-
point in the same test system). As Figures 1 and 2 illustrate, the 
dose-responses of all seven chemicals are adequately described by 

dose–response curves having identical shapes. This fact can be used 
to better estimate the BMDs for each chemical by fitting the model 
to the seven datasets combined. While the BMDs are allowed to be 
different in fitting the model, the shape parameters are held constant 
among chemicals, so that a much larger number of datapoints are 
available for estimating those shape parameters [c and d, see expres-
sion (1) in ref. (6)]. By having more precise estimates for c and d, the 
BMD confidence intervals will be narrower as well. For an illustra-
tion of this phenomenon in a collection of real datasets, see Fig. 11 
in reference (6).

Furthermore, this combined approach to dose–response analysis 
explains why the relative positions of the BMD confidence intervals 
among chemicals do not change for different values of the BMR, so 
that the correlation plots are hardly sensitive to the choice of the 
BMR. The BMD confidence intervals will only increase minimally 
with decreasing BMR. Apart from this small change in the width of 
the confidence intervals (=BMDU/DBML), a given BMD confidence 
interval calculated for a particular BMR can be directly translated 
into a BMD confidence interval for another BMR [using the esti-
mated parameters c and d in the exponential model; see expression 
(2) in ref. (6)].

By gaining a better understanding of the relationships between 
these and other genetic toxicology assays, not only can we expand 
their contribution to risk assessment, we can more effectively con-
sider alternate study designs that may further maximise the utility of 

Figure 2. Fitted curves for in vitro MN responses from seven clastogens studied in human TK6 cells. The horizontal-to-vertical dashed lines represent the BMD 
concentrations that correspond to a BMR = 200%, that is a 3-fold induction of MN (=distance of 0.48 on log10-scale). For each chemical, the small symbols represent 
the individual data points and the large symbol represents the geometric mean of these observations.
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comprehensive datasets that can be readily obtained through the use 
of efficient, high-throughput methodologies. The continued evolu-
tion of genetic toxicology away from simple hazard identification 

depends on the adoption of quantitative tools found to be effective 
in other areas of toxicology and developing the knowledge base to 
implement them effectively.

Table 2. BMD values for in vitro MN assay across varying BMR (units are µg/ml)

  AZA CHL HU MEL MMS PRS THI Geometric mean

BMR = 0.05
 BMD 0.0065 0.0099 0.2706 0.0052 0.0095 0.8737 0.0284
 BMDL 0.0047 0.0071 0.2015 0.0038 0.0073 0.6221 0.0199
 BMDU 0.0089 0.0140 0.3682 0.0073 0.0127 1.2562 0.0397
 BMDU/BMDL 1.88 1.99 1.83 1.94 1.74 2.02 1.99 1.91
BMR = 0.5
 BMD 0.0522 0.0798 2.1713 0.0421 0.0764 7.0109 0.2276
 BMDL 0.0426 0.0626 1.7343 0.0337 0.0661 5.2717 0.1806
 BMDU 0.0635 0.1004 2.7736 0.0520 0.0877 9.7620 0.2821
 BMDU/BMDL 1.49 1.60 1.60 1.54 1.33 1.85 1.56 1.56
BMR = 1
 BMD 0.0977 0.1493 4.0649 0.0788 0.1431 13.1250 0.4261
 BMDL 0.0819 0.1199 3.2729 0.0648 0.1275 9.9183 0.3489
 BMDU 0.1163 0.1846 5.1829 0.0953 0.1593 18.2930 0.5134
 BMDU/BMDL 1.42 1.54 1.58 1.47 1.25 1.84 1.47 1.50
BMR = 2
 BMD 0.1830 0.2796 7.6116 0.1475 0.2679 24.5770 0.7978
 BMDL 0.1564 0.2284 6.1307 0.1237 0.2437 18.5530 0.6716
 BMDU 0.2142 0.3419 9.7468 0.1758 0.2937 34.4380 0.9389
 BMDU/BMDL 1.37 1.50 1.59 1.42 1.20 1.86 1.40 1.46
BMR = 4
 BMD 0.3428 0.5238 14.2600 0.2764 0.5018 46.0430 1.4946
 BMDL 0.2961 0.4319 11.4010 0.2344 0.4595 34.5140 1.2847
 BMDU 0.3984 0.6383 18.4490 0.3271 0.5505 65.1430 1.7303
 BMDU/BMDL 1.35 1.48 1.62 1.40 1.20 1.89 1.35 1.45

Figure 3. In vivo MN versus in vitro MN responses for seven clastogens. BMD200 is the BMD corresponding to a BMR = 200%, that is a 3-fold induction of 
MN. Confidence intervals for each chemical are shown as the horizontal and vertical lines at each data point. The correlation between these two methods is 
represented by the diagonal lines that encompass the confidence intervals of all chemicals studied.
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Supplementary Figures S1–S6 are available at Mutagenesis Online.
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