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Abstract

Stenotrophomonas maltophilia has evolved as one of the leading multidrug-resistant pathogens responsible for a variety of

nosocomial infections especially in highly debilitated patients. As information on the genomic and intraspecies diversity of

this clinically important pathogen is limited, we sequenced the whole genome of 27 clinical isolates from hospitalized

patients. Phylogenomic analysis along with the genomes of type strains suggested that the clinical isolates are distributed

over the Stenotrophomonas maltophilia complex (Smc) within the genus Stenotrophomonas. Further genome-based taxonomy

coupled with the genomes of type strains of the genus Stenotrophomonas allowed us to identify five cryptic genomospecies,

which are associated with the clinical isolates of S. maltophilia and are potentially novel species. These isolates share a very

small core genome that implies a high level of genetic diversity within the isolates. Recombination analysis of core genomes

revealed that the impact of recombination is more than mutation in the diversification of clinical S. maltophilia isolates.

Distribution analysis of well-characterized antibiotic-resistance and efflux pump genes of S. maltophilia across multiple novel

genomospecies provided insights into its antibiotic-resistant ability. This study supports the existence of multiple cryptic

species within the Smc besides S. maltophilia, which are associated with human infections, and highlights the importance of

genome-based approaches to delineate bacterial species. This data will aid in improving clinical diagnosis and for

understanding species-specific clinical manifestations of infection due to Stenotrophomonas species.

DATA SUMMARY

1. The draft genome assembly of 27 clinical isolates of S. mal-
tophilia under this study have been deposited in GenBank and
individual accession numbers are provided in Table 1.

2. Phylogenetic tree file, i.e. Newick file (.nwk), generated
from maximum-likelihood reconstruction based on concat-
enation of protein sequence from 23 phylogenomic refer-
ence genes of 27 S. maltophilia clinical isolates and type
strains of the genus Stenotrophomonas are deposited in Fig-
share; DOI:10.6084/m9.figshare.5356132 (https://figshare.
com/s/2efe1ba9e515343e5017).

3. Phylogenetic tree file, i.e. Newick file (.nwk), for a robust
phylogenetic tree based on the alignment of protein sequen-
ces from 400 core genes of 27 S. maltophilia clinical isolates
under study along with the type strains of members of the

Stenotrophomonas maltophilia complex are deposited in
Figshare; DOI:10.6084/m9.figshare.5356156 (https://fig-
share.com/s/2db426f19b14a6706e43).

4. Data file (.xlsx) used to generate the heat map of average
nucleotide identity (ANI) values of S. maltophilia clinical
isolates with the type strains of species belonging to the
genus Stenotrophomonas is deposited in Figshare; https://
figshare.com/s/dc32d3b7be5f18012fbb.

5. Data file (.xlsx) used to generate the heat map of digital
DNA–DNA hybridization (dDDH) values of S. maltophilia
clinical isolates with the type strains of species belonging to
the genus Stenotrophomonas is deposited in Figshare;
https://figshare.com/s/8c9dc8b9e76661984d92.

6. Data file (.csv) used to generate the heatmap of presence
and absence of antimicrobial resistance genes is deposited
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in Figshare; DOI:10.6084/m9.figshare.5353696 (https://fig-
share.com/s/af35f8952e15bd07dce1).

INTRODUCTION

The genus Stenotrophomonas currently comprises 13 vali-
dated species according to the List of Prokaryotic Names
with Standing in Nomenclature (LPSN; http://www.bac-
terio.net), which are versatile and have the ability to adapt
to diverse environmental niches [1, 2]. Stenotrophomonas
maltophilia is an important and predominant species of the
genus Stenotrophomonas with a wide range of activities,
including plant growth promotion, breakdown of man-
made pollutants and production of secondary metabolites,
and it has an improtant role in multi-drug-resistant infec-
tions to humans and animals [2–4]. S. maltophilia is a
multi-drug-resistant opportunistic pathogen responsible for
causing infections in hospitalized patients as well as cystic
fibrosis and cancer patients [5–8]. According to a recent
World Health Organization report, S. maltophilia is one of
the leading multi-drug-resistant bacteria in healthcare set-
tings worldwide [9].

The taxonomic status of S. maltophilia within the genus is
complicated because several previously proposed species,
namely S. africana, Pseudomonas genicualata, Pseudomonas
hibiscicola and Pseudomonas beteli, are considered as syno-
nyms of S. maltophilia [10]. S. maltophilia and its synonym
species along with the validly described Stenotrophomonas
pavanii belong to the Stenotrophomonas maltophilia com-
plex (Smc) [11, 12]. Whole-genome sequencing of the type
strains of validly described and misclassified species belong-
ing to the genus Stenotrophomonas revealed that synonyms
of S. maltophilia, i.e. S. africana, P. genicualata, P. hibiscicola
and P. beteli, represent distinct species as per modern
genome-based taxonomic criteria [13]. In addition to this
taxonomic complication, clinical and environmental isolates
of S. maltophilia exhibit high levels of phenotypic and geno-
typic diversity [14]. Various molecular typing methods such
as amplified fragment length polymorphism (AFLP) [1],
rep-PCR [15], gyrB [10] and multi-locus sequence typing
and analysis [16–18] have shown that there is a high level of
genetic diversity amongst S. maltophilia isolates. Although
these approaches have provided insights into the phylogeny
and genetic diversity among S. maltophilia isolates, their
limited resolution at the strain level means they are not use-
ful for studies of intraspecies diversity. Genomic studies of
clinical and environmental S. maltophilia isolates also sug-
gested a high level of genomic diversity among them [19–
23], but systematic studies focusing on phylogenomics and
taxogenomics are lacking. Thus, there is a need to under-
stand the intraspecies diversity of S. maltophilia clinical iso-
lates by using genome-based approaches, which is
important to identify novel species associated with human
infections.

Sequencing of a clinical strain, K279a, of S. maltophilia
revealed that the presence of numerous drug resistance
determinants and efflux pumps into its genome [24].

S. maltophilia is resistant to a broad array of antibiotics due
to intrinsic resistance mechanisms, which are common to
all S. maltophilia isolates. Such resistance mechanisms
include low membrane permeability, the presence of efflux
pumps and antibiotic-modifying enzymes [7, 25]. The
intrinsic resistome includes chromosomal but not horizon-
tally acquired genes, which are present in all strains of bac-
terial species prior to antibiotic exposure. Moreover, apart
from the intrinsic resistance mechanisms, acquired mecha-
nisms have also been reported in S. maltophilia, involving
acquisition of resistance genes through horizontal gene
transfer and mutations [26, 27].

In the present study, whole genome sequencing of 27 clini-

cal isolates identified as S. maltophilia isolated from hospi-

talized patients at the Postgraduate Institute of Medical

Education and Research (PGIMER), Chandigarh, India, was

carried out. To study phylogenetic placements of sequenced

clinical isolates within the genus Stenotrophomonas and to

discover novel genomospecies, we used type strain-based

phylogenomics and modern taxonomic criteria. Based on

this, we concluded that multiple novel genomospecies are

present amongst these clinical isolates of S. maltophilia. We

also studied the gene content of Smc members along with

novel genomospecies and found a small core genome size,

which again supported the diverse nature of these clinical
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isolates. To elucidate the role of homologous recombination
and mutations in the diversification of the Smc, we per-
formed recombination analysis, which suggested that the
impact of homologous recombination includes more than
mutations in diversification. We also assessed the distribu-
tions of drug resistance and efflux pump genes across novel
genomospecies. Our finding of potential novel species asso-
ciated with the clinical isolates of S. maltophilia may be
important for clinicians in understanding the epidemiology
and management of the disease caused by this multi-drug-
resistant pathogen.

METHODS

Bacterial isolates and culture conditions

Twenty-seven isolates identified as S. maltophilia from hos-
pitalized patients at a tertiary care hospital, PGIMER, were
included in this study (Table 1). They were isolated from
different clinical specimens, i.e. blood (n=18), respiratory
(n=7), pus (n=1) and cerebrospinal fluid (n=1). The isolates
were grown either on nutrient agar or in nutrient broth at
37

�

C from frozen stocks. Ethics approval and each patient’s
written consent was not required as it was a part of routine
clinical testing.

DNA isolation, Illumina library construction and
sequencing

Approximately 15ml of culture was grown in nutrient broth
at 37

�

C with constant shaking at 200 r.p.m. DNA isolation
was carried out by using a ZR Fungal/Bacterial DNA Mini-
Prep Kit (Zymo Research) as per the manufacturer’s
instructions. DNA was quantified by using a Qubit 2.0 Fluo-
rometer (Invitrogen; Thermo Fisher Scientific). Illumina
sequencing libraries were prepared by using an Illumina
Nextera XT sample preparation kit (Illumina) with dual
indexing adapters from Illumina by strictly following the
manufacturer’s guidelines. Illumina libraries were quantified
by using a KAPA Library Quantification kit for Illumina
(KAPA Biosystems). Sequencing libraries were pooled and
sequenced using an in-house Illumina Miseq (Illumina)
platform with 2�250 bp paired-end runs.

Genome assembly and annotation

The Illumina reads were de novo assembled into the high-
quality draft genome by using CLC Genomics Workbench
6.5.1 (CLC Bio-Qiagen) with default parameters except a
minimum contig length set to 500 bp. The quality of the
assembled genome in terms of completeness and contami-
nation was accessed using CheckM v1.0.7 with default set-
tings [28]. The assembled genomes were submitted to the
NCBI GenBank database and accession numbers are given
in Table 1. The genomes were annotated using the NCBI-
Prokaryotic genome annotation pipeline [29].

Phylogenetic analysis

The 16S rRNA gene was extracted from the sequenced
genome by using the RNAmmer 1.2 server [30]
available at http://www.cbs.dtu.dk/services/RNAmmer/.

Protein sequences for 23 essential bacterial phylogenetic ref-
erence genes (dnaG, rplA, rplB, rplC, rplD, rplE, rplF, rplK,
rplL, rplM, rplN, rplP, rplS, rpmA, rpoB, rpsB, rpsC, rpsE,
rpsJ, rpsK, rpsM, rpsS, tsf) were extracted from the genome
by using the AmphoraNet pipeline [31] available at http://
pitgroup.org/amphoranet/. The extracted sequences were
aligned by using CLUSTALW and a maximum-likelihood
(ML) phylogenetic tree was reconstructed by using the Gen-
eral Time Reversible model, and Gamma distributed and
Invariant sites (G+I) with 1000 bootstrap replications using
MEGA version 6.06 [32]. The phylogenetic tree based on the
whole genome was reconstructed by using PhyloPhlAn
[33], which uses 400 ubiquitous and phylogenetically infor-
mative proteins conserved among the bacteria. Orthologues
of these proteins in the genome were detected using
USEARCH v5.2.32 [34] followed by the generation of multiple
sequence alignments of these proteins using MUSCLE v3.8.31.
A final concatenated dataset containing 4231 aligned amino
acid positions was generated, and phylogenetic tree recon-
struction was performed using FastTree version 2.1. [35].
The resulting phylogenetic tree was visualized by using
iTOL v4 (https://itol.embl.de/) [36].

Genome similarity assessment

For genome similarity assessment we used average nucleo-
tide identity (ANI) and digital DNA–DNA hybridization
(dDDH), which have emerged as modern genome-based
taxonomic methods [37]. ANI was calculated by using JSpe-
cies 1.2.1 [38] and dDDH was calculated by using the web
tool Genome to Genome Distance Calculator, GGDC 2.1
(http://ggdc.dsmz.de/distcalc2.php). We used Formula 2
alone for calculation of dDDH as it determines dDDH inde-
pendent of the genome length and is recommended for use
with draft genomes [39]. Heat maps of ANI and dDDH val-
ues were constructed using GENE-E software (https://soft-
ware.broadinstitute.org/GENE-E/).

Pan-genome analysis

Pan and core genome analysis were performed using the
pan-genome analysis pipeline (PGAP pipeline version 1.2.1)
with the MultiParanoid (MP) method [40]. A minimum
score value of 40 and e-value of 1e-10 were used as a cut-off
for BLAST. PanGP version 1.0.1 [41] was used to analyse the
pan-genome profile of clinical isolates of S. maltophilia and
six reference genomes of members of the Smc. The power-
law regression (ypan=Apan x

Bpan+Cpan) was used to model
the pan-genomes generated from all permutations, where
ypan is the total number of gene families in the pan-genome,
x is the number of genomes considered, and Apan, Bpan and
Cpan are fitting parameters. When 0<Bpan<1, the pan-
genome should be considered open because it is an unre-
strained function over the number of genomes. When Bpan
<0, the pan-genome is considered closed because it
approaches a constant as more genomes are considered.
The number of core genes after addition of each new
genome was plotted as a function of the number of genomes
added sequentially, in a similar manner to the pan-genome
plot. The exponential curve fit model, ycore=Acore e

Bcore.x
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+Ccore, was used to fit the core genome, where ycore denotes
the core genome size, x denotes the number of genomes,
and Acore, Bcore and Ccore are fitting parameters.

Homologous recombination analysis

The genomes of clinical isolates of S. maltophilia along with
the five type strains belonging to the Smc were aligned using
Mauve version 20150226 build 10 (c) [42]. Core genome
alignment generated from Mauve was further used to recon-
struct the phylogenetic tree using PhyML 3.1 [43]. The core
genome alignment and PhyML tree were further used to cal-
culate the relative rate of recombination to mutation events
using ClonalFrameML [44] with 100 bootstrap replications.
The PhyML and ClonalFrameML phylogenetic tree was
visualized by using iTOL v4 (https://itol.embl.de/) [36].

Resistome analysis

The nucleotide sequences of well-characterized antibiotic
resistance and efflux pump genes were retrieved from the
complete genome of S. maltophilia K279a. The nucleotide
sequences of resistant genes were used as query in BLAST

v2.2.28+ [45] searches with sequenced genomes in order to
check the distribution of drug resistance genes amongst
diverse genomospecies of S. maltophilia. The heat map of
presence and absence of resistance-associated genes was
generated using GENE-E software (https://software.broadin-
stitute.org/GENE-E/).

RESULTS

Whole genome sequencing of S. maltophilia clinical
isolates

Whole genome sequencing was carried out for S. malto-
philia isolated during 2010–2013 from clinical specimens of
different patients (Table 1). The genome features and
assembly statistics are detailed in Table 1. High-quality draft
genomes were obtained with coverage ranging from 65� to
407� fold. There is no direct significant correlation found
between assembly quality and coverage, suggesting that
other factors, such as library quality or percentage of repeti-
tive DNA in each genome, may influence the assembly qual-
ity. The estimated genome completeness for this genome
dataset ranges from 95.55 to 99.89% and estimated contam-
ination ranges from 0 to 2.12% (Table 1). The number of
predicted coding DNA sequences (CDSs) ranged from 3491
to 4432 and GC content of the assembled genomes is
around 66 mol% (Table 1).

Phylogenetic placement of sequenced clinical S.
maltophilia isolates within the genus
Stenotrophomonas

The phylogenetic placement of sequenced clinical S. malto-
philia isolates within the genus Stenotrophomonas was
assessed by reconstructing a phylogenetic tree along with
the type strains of species belonging to the genus (Table S1,
available in the online version of this article). A phyloge-
netic tree was reconstructed based on 16S rRNA gene
sequences, which plays an important role in microbial

identification and taxonomy with 97% cut-off for distinct
species. 16S rRNA gene sequences of the clinical isolates
from this study showed >97% similarity with the type
strains of all species of the Smc (Fig. S1). Due to the limited
resolution provided by 16S rRNA-based phylogeny, a phy-
logenomic tree was obtained further using translated pro-
tein sequences of 23 conserved housekeeping genes. The
analysis showed the placement of S. maltophilia clinical iso-
lates in the Smc with high bootstrap values (Fig. 1). While
both analyses suggested the distribution of clinical isolates
over the Smc lineage, certain discrepancies in branching
among the phylogenetic tree based on 16S rRNA and 23
phylogenomic marker genes were observed, indicating the
need for a highly robust tree for taxonomic classification.

To address these discrepancies, we reconstructed a phyloge-
netic tree based on protein sequences of 400 core genes of
the Smc including type strains of members of the Smc along
with S. maltophilia clinical isolates under study (Fig. 2). The
phylogenetic tree showed that the 27 clinical isolates of
S. maltophilia were distributed over five major monophy-
letic groups. Eleven isolates grouped together with S. malto-
philia MTCC 434T while both P. hibisicola ATCC 19867T

and S. pavanii DSM 25135T were grouped with two isolates
under study. Isolate SM3123 formed a monophyletic clade
with P. beteli LMG 978T. The type strains of P. geniculata
and S. africana did not group with any of the clinical iso-
lates under study.

Genome similarity assessment and discovery of
novel genomospecies

A robust phylogenetic tree of members of the Smc clearly
revealed the existence of multiple distinct lineages within
the Smc. We calculated ANI and dDDH values with the
type strains of valid and misclassified species of the genus
Stenotrophomonas for the assessment of overall genome
similarity and to identify potential novel species. The heat
map of ANI and dDDH values of clinical isolates of S. mal-
tophilia with the type strains of the genus Stenotrophomonas
is shown in Fig. 3. Based on the cut-off values for species
delineation using ANI (96%) and dDDH (70%) [46], there
are six distinct groups in S. maltophilia isolates that should
be considered as separate bacterial species, and referred to
below as genomospecies (Fig. 3). Genomospecies 1 (G1)
consisting of 11 isolates that are grouped with reference
strain S. maltophilia MTCC 434T represents the core S. mal-
tophilia group. Genomospecies 2 (G2), genomospecies 3
(G3) and genomospecies 4 (G4) comprised two, nine and
two isolates, respectively, which did not group with any
Stenotrophomonas species type strain (Fig. 3). Genomospe-
cies 5 (G5) included two isolates that grouped with P. hibis-
cicola ATCC 19867T. Isolate SM3123 was a singlet as it did
not group with any type strain within the genus Stenotro-
phomonas and is represented as genomospecies 6 (G6). The
genome similarity results for the 27 Smc clinical isolates
revealed their distribution over six genomospecies, among
which G1 belongs to S. maltophilia and the remaining
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genomospecies (G2–G6) are potentially novel species
(Table 2).

Pan-genome analysis

To obtain insight into the core genome, genomospecies-spe-
cific genes and strain-specific gene content, we performed
pan-genome analysis of S. maltophilia genomospecies along
with the type strains of Smc species. This analysis provided

a measure of the intra-genomospecies variation in gene con-
tent. The orthologous CDSs shared among Smc members is
1917, which is ~21.23% of the pan-genome size (9031
CDSs) (Fig. 4). The genomospecies-specific core genomes
ranged from 2840 to 4464 CDSs, representing ~31 to ~49%
of the pan-genome size (Fig. 4). Core genome size is smaller
than the group-wise core genomes. Among the group-wise
core genome genomospecies, G2 (2840 CDSs) and G1 (2861
CDSs) have smaller core genomes due to a large number of
genomes included in the analysis (Fig. 4). The strain-specific
genes ranged from two to 253 CDSs, a widely variable geno-
mic fraction (Fig. 4). Genomospecies G1 also had a small
number of strain-specific genes, which is again in concor-
dance with the fact that large numbers of the genomes were
included in the analysis (Fig. 4).

The pan-genome plot (Fig. 5) clearly shows that even after
the addition of all CDSs from 33 genomes, the plot is yet to
reach a plateau and further addition of genomes will
increase the pan-genome size. The power law regression
model shows that the pan-genome of the Smc is ‘open’, as
the g-parameter value (Bpan) is 0.45, and sequencing of iso-
lates from the Smc is required to identify all genes of this
complex. The core genome size decreases dramatically with
the inclusion of each new genome, the curve almost
approaches a plateau and further addition of new genomes
may result in decreased core genome size (Fig. 5). Similar
behaviour is observed in the plot of strain-specific CDSs
against the number of genomes, the number of strain-
specific CDSs gradually decreasing with the addition of new
genomes (Fig. S2).

Role of homologous recombination and mutations
in diversification of clinical S. maltophilia isolates

To investigate the role of homologous recombination and
mutations in the diversification of clinical isolates of S. mal-
tophilia, we used the application ClonalFramML. The aver-
age relative rate of recombination (R) to mutation (�) of the
Smc was estimated to be R/�=0.376066, mean DNA import
length was d=211 bp, and the mean divergence of imported
DNA was n=0.059. This suggests the occurrence of ~2.659
mutational events for each recombination event. The rela-
tive impact of recombination to mutation (r/m) is ~4.74
across the overall phylogeny of the Smc. To investigate the
effect of recombination on the phylogenetic tree topology
we used ClonalFrameML to reconstruct a more accurate
phylogeny by removing the genomic divergence generated
by recombination. Branch lengths of the ClonalFrameML
tree were not consistent with the ML phylogeny, indicating
the impact of recombination on the diversification of these
isolates (Fig. S3).

Resistome analysis

The resistome of a well-studied strain, S. maltophilia
K279a, has been characterized and data on its drug resis-
tance profile are available [24, 26]. We assessed the distri-
bution of known antibiotic-resistant and efflux pump
genes across various genomospecies of S. maltophilia

Fig. 1. Phylogenetic placement of S. maltophilia clinical isolates within

the genus Stenotrophomonas. ML reconstruction based on concatena-

tion of translated protein sequences of 23 phylogenomic reference

genes of clinical isolates and the type strains within the genus Steno-

trophomonas. Bar (0.05), the number of amino acid substitutions per

site. The phylogenetic clade representing the Stenotrophomonas malto-

philia complex is highlighted. Bootstrap values shown at nodes are the

percentage of 1000 replicates.
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clinical isolates (Fig. 6). The two chromosomally encoded
b-lactamases blaL1 (Zn2+-dependent metalloenzyme) and
blaL2 (serine b-lactamases), plus ampC, which are charac-
teristics of S. maltophilia [7], are present in all isolates
except SM 3123, which belongs to genomespecies G6 and
does not harbour any of these b-lactamases. Resistance to
the aminoglycosides group of antibiotics is mediated by
aminoglycosidase-modifying enzymes such as aminoglyco-
side 6¢-N-acetyltransferase (aac (6¢)-Iz) [47], aminoglyco-
side 2¢-N-acetyltransferase (aac (2¢)-Iz) [24],
aminoglycoside phosphotransferase (aph (3¢)-IIc) [48] and
streptomycin 3 phosphotransferase [24]. The distribution
of aac (6¢)-Iz and aac (2¢)-Iz is limited to the Smc as they
are present in six and 11 isolates, respectively, the major-
ity of which belong to genomospecies G1. The streptomy-
cin 3¢-phosphotransferase and aminoglycoside
phosphotransferase are present in all the isolates along
with other members of the Smc but absent from isolates
SM11522 SM38795, SM5815 and SM3123. The chloram-
phenicol acetyltransferase gene, cat, mediates resistance to
chloramphenicol, which is exclusively present in S. malto-
philia MTCC 434T and SM11522. All strains except
SM3123 carry the chromosomal Smqnr gene, which is

responsible for resistance to quinolones. The gene spgM,
involved in lipopolysaccharide biosynthesis and moder-
ately involved in resistance to gentamicin, nalidixic acid,
ceftazidime, piperacillin-tazobactam, polymyxin B, poly-
myxin E and vancomycin [49], is also present in the all
isolates under study. The sul gene, which is responsible
for resistance to the trimethoprim/sulfamethoxazole class
of antibiotics [27], is not present in any of these isolates.
There are five families of efflux pumps reported to be
present in S. maltophilia: the resistance-nodulation-cell-
division (RND) family, major facilitator superfamily
(MFS), small multidrug resistance (SMR) family, ATP-
binding cassette (ABC) family, and multidrug and toxic
compound extrusion (MATE) family [25, 26], which are
present in all the isolates under study with a few excep-
tions (Fig. 6). The well-characterized RND-type efflux
pumps in the S. maltophilia genome are smeABC, sme-
DEF, smeIJK, smeOP, smeVWX and smeYZ. Apart from
smeABC, the remaining RND-type efflux pumps are pres-
ent in all the isolates under study. smeABC is absent
from SM325416, SM38795, SM3123 and P. hibiscicola
ATCC 19867. The emrAB efflux pump belonging to the
MFS family is present in all the isolates under study, and

Fig. 2. Phylogenetic tree based on protein sequences of 400 core genes of 27 S. maltophilia clinical isolates under study and the type

strains of members of the Smc. Nodes overlaid with a black dot represent a bootstrap value of >95%. Different highlighted colours

represent different clades. Species type strains are marked (T). Bar (0.1), the number of amino acid substitutions per site.
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confers resistance to hydrophobic antibiotics and com-
pounds such as nalidixic acid, thiolactomycin and organo-
mercurials [26]. SMR family pumps are considered
responsible for resistance to b-lactams, macrolides, tetra-
cyclines and quaternary ammonium compounds [50]. The
sugE and emrE pumps are well-characterized SMR efflux
pumps in S. maltophilia and are present in all the isolates.
Two efflux pumps belonging to the ABC transporter fam-
ily, smrA and macAB, were previously characterized from
S. maltophilia and are present in all the isolates under
study. The smrA pump is known to confer resistance to
fluoroquinolones and tetracycline [50] and the mac-
ABCsm efflux pump confers intrinsic resistance to amino-
glycosides, macrolides and polymyxins, which are present
in all the isolates under study [51]. A unique tripartite
fusaric acid efflux pump fuaABC responsible for fusaric
acid resistance was reported in S. maltophilia [52], and is
reported to be present in all isolates except SM3123.
There are two genes, pmpM and norM, encoding MATE

efflux pumps [26], which are present in all the isolates
and are known to be responsible for resistance to the
quinolone family of drugs that includes ciprofloxacin,
norfloxacin and ofloxacin.

DISCUSSION

Stenotrophomonas is a taxonomically challenging genus due
to multiple taxonomic revisions in the past. S. maltophilia is
an emerging opportunistic pathogen with high genetic
diversity and is the only species in the genus that is known
to be responsible for clinical infections. However, another
species, S. africana, was isolated from human infections,
and was later reclassified as S. maltophilia [53, 54]. Whole-
genome sequencing of the type strains and historically asso-
ciated reference strains revealed that S. africana represents
another species of clinical importance [13]. Thus, there is a
need to assess the intra-species diversity among clinical
isolates of S. maltophilia. Advancements in sequencing

Fig. 3. Heatmap of ANI and dDDH values among 27 clinical isolates with the type strains of members of the genus Stenotrophomonas

under species delineation thresholds. The left side heat map represents ANI and the right side dDDH values. Colour variation in heat

maps shows the variation in identity values as shown by the scale on the bottom. Isolate names highlighted with the same colour

belong to the same genomospecies, and those that do not group with any isolate under study are highlighted as black.

Table 2. List of genomospecies identified among 27 clinical isolates of S. maltophilia along with their species status

Genomospecies Species Isolates

Genomospecies 1 (G1) S. maltophilia SM20065, SM3226, SM325416, SM7180, SM7882, SM480, SM11522, SM2546, SM4416, SM100, SM19467

Genomospecies 2 (G2) Novel SM30540, SM5815

Genomospecies 3 (G3) Novel SM17711, SM24179, SM6957, SM1911, SM13670, SM760, SM1006, SM3112, SM16975

Genomospecies 4 (G4) Novel SM10507, SM16360

Genomospecies 5 (G5) P. hibscicola SM1389, SM38795

Genomospecies 6 (G6) Novel SM3123
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technologies have enabled us to study the intra-species pop-
ulation structure based on genome sequence information
[55]. Therefore, we carried out a whole-genome sequencing
of 27 clinical isolates identified as S. maltophilia from a hos-
pital located in northern India. Phylogenetic analysis using
16S rRNA and 23 housekeeping genes with the type strains
of members of the genus Stenotrophomonas revealed that
the clinical isolates were distributed exclusively over the
Smc. This finding has implication for our understanding of
the ecology of clinical S. maltophilia isolates within the
genus, which is important for the utilization of other non-
pathogenic members of the genus Stenotrophomonas for
biotechnical purposes. Further phylogenomic and taxonoge-
nomic analysis revealed the heterogeneous structure of the
Smc. The current nomenclature suggests the presence of
only two valid species (S. maltophilia and S. pavanii) and
four misclassified species (P. hibiscicola, P. geniculata, P.
betele and S. africana) belonging to the Smc. Our analysis
suggests that there are six genomespecies among the clinical

isolates of S. maltophilia; thus, the Smc should include at

least ten distinct genomospecies. Genomospecies 1, which

belongs to the core S. maltophilia group, is a dominant

group (11/27 : 40.27%) among sequenced isolates followed

by Genomospecies 3, which is a putatively novel species (9/

27 : 33.33%) (Table 2). Two isolates from our study belong

to P. hibiscicola, suggesting that P. hibiscicola is a putative

novel species with an ability to cause human infections.

This study also highlights the importance of type strain

genomes in making accurate species assignments and in the

discovery of novel species in the post-genomic era.

The pan-genome analysis suggests that the Smc has an open

pan-genome and addition of newly sequenced genomes is

required to identify all genes in the Smc. The small core

genome size (21.23%) suggests high genetic diversity and

genomic heterogeneity among the isolates (Fig. 4). Further

recombination analysis suggests that there is selection pres-

sure acting on isolates of S. maltophilia for pathoadapation,

Fig. 4. Number of orthologous CDSs belonging to the core, genomospecies-specific and strain-specific genes across the Smc. Strain

names are given outside the circle. From outside to inside, the first and second circles represent the number of strain-specific CDSs

and genomospecies-specific core-genome CDSs, respectively. The third circle at the centre represents the number of core genome

CDSs of the Smc.
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which leads to the introduction of variations through

homologous recombination and mutations. The impact of
recombination is higher in the diversification of clinical
S. maltophilia isolates because a single recombination event
causes multiple nucleotide changes in the genome. How-

ever, the larger pan-genome, which is nearly five times
larger than the core-genome, suggests that variation medi-
ated by non-homologous gene transfer is also playing a role

in the diversification of clinical S. maltophilia isolates. The
novel genomospecies have a unique gene pool, which is dif-
ferent from S. maltophilia, suggesting that gene gain and
loss events are shaping the genomes of clinical S. maltophilia

isolates during the course of evolution.

Clinical isolates of S. maltophilia are well known for their
high level of intrinsic resistance to most of the commonly
used antibacterial agents, including b-lactams (cephalo-
sporin, carbapenems), macrolides, fluoroquinolones, ami-
noglycosides, chloramphenicol, tetracyclines and
polymyxins [7, 9, 25, 56]. In addition, the emergence of
resistance against the treatment of choice, trimethoprim-

sulfamethoxazole, is increasing [57, 58]. Along with intrin-
sic drug resistance genes, the multi-drug resistance pheno-
type is also mediated by intrinsically encoded efflux
pumps [26]. The distribution of well-characterized antibi-
otic resistance and efflux pump genes of S. maltophilia
across multiple novel genomospecies has provided insights
into its antibiotic resistance capability. Further varying lev-
els of resistant phenotype changes among these isolates
can be correlated with point mutations and expression dif-
ferences in resistant genes [59].

The identification of multiple genomospecies, which repre-

sent potential novel species of Stenotrophomonas, associated

with human infections can serve as an important asset to

clinicians. These clinical isolates of S. maltophilia are found

to be considerably different from each other, despite origi-

nating from the same hospital. Further studies supple-

mented with polyphasic approaches are underway to

ascertain if these putative genomospecies represent novel

species. This information can be helpful for clinicians to

manage infections caused by this clinically significant

Fig. 5. Pan and core genome analysis of S. maltophilia genomospecies. The size of S. maltophilia genomospecies pan-genome (blue)

and shared gene clusters (green) are plotted as a function of the number of Smc genomes sequentially considered. The continuous

curve represents calculated pan-genome size and the power-law regression model (ypan=Apan x
Bpan

+Cpan) was applied to the data. The

best fit was obtained with r
2=0.999, Apan=1344.45, Bpan=0.45 and Cpan=2525.33. The continuous curve represents the calculated core

genome size and exponential curve fit model (ycore=Acore e
Bcore.x

+Ccore) was applied to the data. The best fit was obtained with r
2

=0.96755, Acore=1775.67, Bcore=�0.08 and Ccore=1880.1. The pan and core genome size is 9031 and 1917, respectively.
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pathogen. Studies on the epidemiology, disease spectrum
resistance and virulence traits for infections caused by puta-
tive novel species are required for species-specific diagnosis
and treatment.
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