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Abstract

Reovirus infection induces dramatic changes in host mMRNA expression. We utilized oligonu-
cleotide microarrays to measure cellular mMRNA decay rates in mock- or reovirus-infected
murine L929 cells to determine if changes in host mRNA expression are a consequence of
reovirus-induced alterations in cellular mRNA stability. Our analysis detected a subset of
cellular transcripts that were coordinately induced and stabilized following infection with

the reovirus isolates ¢87 and c8, strains that led to an inhibition of cellular translation, but
not following infection with Dearing, a reovirus isolate that did not negatively impact cellular
translation. The induced and stabilized transcripts encode multiple regulators of TGF- B sig-
naling, including components of the Smad signaling network and apoptosis/survival path-
ways. The coordinate induction, through mRNA stabilization, of multiple genes that encode
components of TGF- signaling pathways represents a novel mechanism by which the host
cell responds to reovirus infection.

Introduction

Viral infection leads to changes in cellular steady state mRNA levels within infected cells.
Some of these alterations represent the cell’s innate antiviral response, while others are induced
by the invading virus in an attempt to sequester host antiviral responses and usurp the cellular
machinery for viral replication. Virus-induced changes in cellular gene expression are often
regulated through transcriptional mechanisms. For example, infection with many viruses
increases the transcription of genes involved in antiviral responses including the type I inter-
terons (IFN) as well as numerous IFN-stimulated genes (ISGs) (reviewed in [1, 2]). Although
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transcriptional regulation is important for mammalian cells to respond to their environment,
numerous mammalian genes are also regulated at the level of mRNA decay in response to a
variety of external signals (reviewed in [3, 4]. Virus-induced changes in cellular steady state
mRNA levels have also been shown to be regulated at the level of mRNA decay [5, 6].

In this study, we utilized reovirus infection to evaluate the effect of viral infection on host
cellular gene expression at the level of mRNA decay. Reovirus, a prototypic member of the
Reoviridae family, is a non-enveloped double-stranded RNA virus that has been studied exten-
sively as a model of viral infection [7]. This virus was a valuable model for us to examine the
effect of viral infection on mRNA stability for several reasons: i) the consequences of reovirus
infection are well documented and include induction of type I IFN, initiation of apoptosis,
inhibition of cellular translation, and a G1/S cell cycle arrest (reviewed in [7]); ii) global studies
on the impact of reovirus infection on cellular gene expression have been published [8-11];
and iii) reovirus isolates vary in their effects on infected cells [10, 12-14]. Since reovirus iso-
lates induce distinct changes in cellular gene expression, as well as distinct cellular responses to
infection, alterations in cellular gene expression following reovirus infection can be correlated
to specific phenotypes [10]. For example, in murine 1929 cells, reovirus isolates Dearing and
87 induce high levels of type I IFN, whereas cells infected with isolate ¢8 have a poor IFN
response [10]. As a consequence, numerous ISG transcripts are induced following infection
with isolates Dearing or ¢87, but not isolate c¢8 [10]. Additionally, infection with c87 or c8 lead
to an inhibition of cellular translation, whereas infection with Dearing does not [10, 12, 14].
Mechanisms for inhibition of cellular translation in response to reovirus infection involve
phosphorylation and inactivation of the alpha subunit of eukaryotic initiation factor-2 (eIF2a)
by the dsRNA-dependent protein kinase (PKR) or the ER-stress-induced kinase PERK [10].
We previously identified a specific subset of cellular transcripts that were induced following
infection with ¢8 and ¢87, which inhibit cellular translation, but were not induced following
infection with isolate Dearing, which does not inhibit cellular protein synthesis [10]. The
mechanisms for increased steady state expression of these cellular transcripts could involve
transcriptional and/or posttranscriptional mechanisms.

In this report, we investigate the role that mRNA decay plays in regulating host cellular
gene expression following reovirus infection. We used oligonucleotide microarrays to measure
mRNA decay rates in L929 cells that were mock-infected or infected with reovirus isolates
Dearing, c8, or c87. We detected a subset of transcripts that were coordinately induced and sta-
bilized upon infection with reovirus strains that induced host translational shutoff, i.e. strains
c8 and ¢87. The induced and stabilized transcripts encoded multiple regulators of transform-
ing growth factor-beta (TGF-p) signaling, including components of the Smad signaling net-
work (SSN) and apoptosis/survival pathways. TGF-f is a cytokine that has multiple activities
including immune modulation, promotion of fibrosis, control of cellular growth, and regula-
tion of apoptosis [15-20]. TGF-f production is activated following infection with a variety of
viruses [21-28], including reovirus [29, 30], suggesting that the TGF-p signaling cascade plays
arole in viral pathogenesis. In particular, regulation of apoptosis through TGF-p signaling
may be part of a host response to viral infection. Thus, the coordinate stabilization and up-reg-
ulation of transcripts that encode components of TGF- signaling pathways likely represent a
cellular anti-viral response to reovirus infection.

Methods and materials
Cells, viruses and viral infection

Murine L929 cells were maintained as suspension cultures as described previously [31]. Reovi-
rus isolates Dearing and c87/Abney are prototypic laboratory strains [32], and isolate c8 was
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previously described [31, 33]. Purified virions were prepared by CsCl density gradient centri-
fugation of extracts from cells infected with third-passage L1929 cell lysate stocks [34]. In order
to analyze three independent infections, each set of infections was initiated on separate days.
1929 cells were plated in 150 x 25 mm tissue culture plates and were allowed to incubate at
37°C for 4 h, after which time the medium was removed and cells were mock-infected or
infected with purified virions (Dearing, ¢87 or ¢8) at a multiplicity of infection (MOI) of 80
plaque forming units (PFU)/cell. After a 1.5 h viral adsorption at 37°C, medium was added
and samples were incubated at 37°C for an additional 18 h.

RNA isolation and microarray hybridization

At 19.5 h post-infection (p.i.), actinomycin D (Sigma, MO) was added at a final concentration
of 10 pg/ml to stop transcription by RNA polymerase I and total RNA was isolated at 0, 45, 90
and 120 min post-actinomycin D treatment using Trizol reagent (Invitrogen, CA) according
to the manufacturer’s instructions. Total RNA was purified with the RNeasy column (QIA-
GEN, CA); 15 ug of RNA was converted to cDNA using the Superscript custom kit (Invitro-
gen) with an oligo dT-T7 primer (Geneset, CO). The purified cDNA was used for an in vitro
transcription reaction using T7 RNA polymerase and biotinylated nucleotides following the
manufacturer’s protocol (ENZO Bioarray, NY). Biotinylated anti-sense cRNA was purified
with the RNeasy column; 15 pg was fragmented according to Affymetrix instructions’” and
hybridized to Affymetrix murine U74Av2 oligonucleotide microarrays (Affymetrix Inc., CA).
Microarrays were scanned on a Hewlett Packard Agilent 2200 confocal scanner (Bio-Rad Lab-
oratories, CA) and normalized signal intensities were obtained using Affymetrix MAS 5.0 soft-
ware as described previously [10].

Microarray data analysis

Expressed transcripts levels were determined as the average signal values with 95% confidence
intervals (95% CI) across three replicate arrays. Fold changes (FC) in expression between two
infection conditions were determined as the ratio of average signal values. P values were calcu-
lated using a two-sample t test assuming equal variance. We fit the log signal values over time
following actinomycin D treatment to a linear regression model over the linear portion of the
decay curves to calculate transcript half-lives as described in detail in a previous statistical sup-
plement [35]. A p-value of < 0.05 was used to identify differences in mRNA decay rates in
mock-infected cells compared to reovirus-infected cells.

Reverse transcription real-time PCR

Reverse transcription real time PCR (RT-PCR) was used to validate changes in transcript level
and mRNA decay rates of three transcripts that were found to be up-regulated and stabilized
following infection with certain reovirus isolates: Gdf15, Tgif, and Myc. Total cellular RNA
from the same reovirus infections as described above was used for real time RT-PCR. RNA
was converted to cDNA by using StrataScript™ reverse transcriptase (Stratagene) and gene spe-
cific primers. PCR amplifications were performed in a BioRad iCycler thermocycler by using
the QuantiTect™ SYBR Green PCR Kit (QIAGEN) with the following cycling conditions: initial
heating at 95°C for 13.5 min, followed by 40 cycles of 3-step temperature cycling at 95 °C for
10, 55.6 °Cfor 10 s, and 72 °C for 30 s. Data was analyzed using the iCycler software and stan-
dard curves were generated to measure transcripts levels, which were normalized to the level
of HPRT transcript. The normalized values at each point were then used to generate mRNA
decay curves. Oligonucleotide primers (Integrated DNA Technologies Inc) were: Gdf15 5’
CCG AGA GGA CTC GAA CTC AG 3',5" GTA GGC TTC GGG GAG ACC 3';Hprt
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5’ GGT GAA AAG GAC CTC TCG AA 3’,5'" AGT CAA GGG CAT ATC CAA CA 3';
c-Myc 5’ TGA AGG CTG GAT TTC CTT TG 3’,5’ TTC TCT TCC TCG TCG CAG
AT 3’;Tgif 5’ TCC TAG AAA CCC CAG CTT CA 3’,5" GCT GCT GAT GAG GAA
AGG TC 3’.

Results

We profiled the changes in L929 cellular gene expression and mRNA decay rates that occurred
as a consequence of infection with reovirus isolates c87, c8 and Dearing. At 19.5 h p.i., a time
point where reovirus-induced host translational shutoff is well established [10], ongoing tran-
scription was arrested by addition of actinomycin D and global mRNA expression levels were
measured after 0, 45, 90 and 120 min of actinomycin D treatment using Affymetrix U74Av2
microarrays as described previously [35, 36]. This experiment was performed three separate
times for each reovirus isolate and the mRNA half-life with 95% confidence interval (95% CI)
was calculated for over 6500 expressed transcripts based on a model of first order decay. The
transcript levels and mRNA decay rates for all transcripts expressed under at least one condi-
tion are shown in S1 Table and the complete set of raw data has been deposited into the NCBI
GEO Database (accession # GSE119061). The numbers of transcripts that were up-regulated
and/or stabilized in reovirus-infected cells compared to mock-infected cells are shown in
Table 1.

We observed the stabilization (p < 0.05) of 349, 253, and 51 cellular transcripts after infec-
tion with reovirus isolates c87, c8, and Dearing, respectively. A complete list of the stabilized
transcripts and their decay rates are displayed in S2 Table. Of the stabilized transcripts,

172 were stabilized following infection with both c87 and c8 isolates, whereas only 24 tran-
scripts were stabilized after infection with all three isolates. We also noted the destabilization
(p < 0.05) of a small number of transcripts in 1929 cells following infection with these same
reovirus isolates, but there was poor correlation between isolates; only four transcripts were
destabilized following infection with both ¢87 and ¢8 and no destabilized transcripts were
common to all three isolates.

We evaluated the steady state mRNA levels of stabilized cellular transcripts to determine
whether or not stabilization following reovirus infection correlated with changes in overall
levels of these transcripts. Following c87 infection, 70 cellular transcripts were up-regulated
(p < 0.05) and stabilized (p < 0.05); 40 transcripts were up-regulated and stabilized following
c8 infection (Table 1). Of these, 26 transcripts were up-regulated and stabilized following
infection with both of these reovirus isolates. In contrast, only two transcripts were up-regu-
lated and stabilized following infection with Dearing, the reovirus isolate that did not inhibit
cellular translation. Using more strict criteria to identify transcripts that were up-regulated
(FC > 2.0 and p < 0.05) in reovirus-infected cells, we identified 31 transcripts that were up-
regulated and stabilized following c87 infection and 41 transcripts that were up-regulated and
stabilized following c8 infection; 13 were up-regulated and stabilized following infection with
both isolates that led to an inhibition of host protein synthesis. We did not identify any tran-
scripts that were up-regulated > 2-fold and stabilized following infection with strain Dearing.

A subset of the transcripts that were up-regulated (p < 0.05) and/or stabilized (p < 0.05)
following infection of 1929 cells with c87 or ¢8 are listed in Table 2. A complete list is found
in S3 Table. These transcripts encode various components of the TGF-f signaling pathway
(Fig 1), including cell cycle inhibitors and regulators of transcription, apoptosis and stress
responses. In particular, many encode protein components of the SSN, which regulates tran-
scription associated with cell cycle arrest, differentiation and apoptosis [37-41]. This suggests
that the SSN is involved in a coordinated cellular response to infection with reovirus isolates
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Table 1. Number of cellular transcripts that were stabilized and up-regulated following reovirus infection.

Strain c87 Strain c8 Strain Dearing Strains c87 and c8 All 3 Strains
Up-regulated (p<0.05) 709 481 590 305 205
Up-regulated (FC > 2-fold, p<0.05) 347 200 210 143 88
Stabilized (p < 0.05) 349 253 52 172 24
Stabilized and Up-regulated (p < 0.05) 70 49 2 26
Stabilized and Up-regulated (FC > 2-fold, p < 0.05) 31 41 0 13

https://doi.org/10.1371/journal.pone.0204622.t001

Table 2. Subset of transcripts that were stabilized or up-regulated following reovirus infection.

Transcript Description Gene Symbol Mock Strain c87 Strain c8
HL(min) |95%CI FC  HL(min)  95% CI FC  |HL(min) |95% CI
Up-regulated (p < 0.05) and Stabilized (p < 0.05); c87 and c8
*growth differentiation factor 15 Gdf15 69 [47,124] 18.24 | >480 [101,>480] | 12.07 | >480 [115,>480]
*MAD homolog 7 (Drosophila) Smad7 67 [52,95] 4.03 | 197 [89,>480] 1.87 | 199 [90,>480]
*dual specificity phosphatase 1 Duspl 50 [39,68] 3.65 | >480 [112,>480] 3.65 | 104 [57,>480]
“myelocytomatosis oncogene Myc 44 [37,55] 2.59 | 366 [108,>480] 2.20 | 183 [83,>480]
*vascular endothelial growth factor A Vegfa 119 [79,240] 2.44 | >480 [226,>480] 3.49 | >480 [156,>480]
*TG interacting factor Tgif 94 [76,124] 2.33 | >480 [217,>480] 2.59 | 468 [174,>480]
*Kruppel-like factor 5 Klf5 115 [82,192] 2.18 | >480 [149,>480] 1.78 | >480 [179,>480]
coagulation factor III F3 77 [55,130] 7.79 | >480 [115,>480] 5.16 | >480 [128,>480]
nuclear receptor subfamily 1, group D, member 1 Nr1dl 125 [89,207] 4.97 | >480 [294,>480] 3.79 | >480 [174,>480]
nuclear factor, interleukin 3, regulated Nfil3 65 [49,100] 2.77 | 171 [75,>480] 2.85 | 184 [77,>480]
B-cell translocation gene 1, anti-proliferative Btgl 152 [109,250] 1.68 | >480 [398,>480] 2.15 | >480 [209,>480]
CDC like kinase 4 Clk4 78 [59,115] 3.29 | >480 [128,>480] 2.99 | >480 [174,>480]
Up-regulated (p < 0.05) and Stabilized (p < 0.05); c87
*dual specificity phosphatase 2 Dusp2 91 [60,180] 3.31 | >480 [120,>480] 1.57 | 371 [96,>480]
*growth arrest and DNA-damage-inducible 45 beta | Gadd45b 53 [40,79] 2.18 | 139 [63,>480] 3.21 | 80 [48,259]
*MAD homolog 2 (Drosophila) Smad2 216 [153,368] 1.28 | >480 [286,>480] 1.15 | >480 [335,>480]
immediate early response 3 Ter3 49 [37,71] 4.22 | 230 [75,>480] 2.17 | 113 [56,>480]
nucleoporin 62 Nup62 146 [101,264] 1.73 | >480 [196,>480] 1.06 | 188 [104,>480]
seven in absentia 2 Siah2 72 [56,100] 1.78 | >480 [174,>480] 1.29 | 454 [129,>480]
Up-regulated (p < 0.05) and Stabilized (p < 0.05); c8
*signal transducing adaptor molecule 1 Stam 222 [142,>480] 1.45 | >480 [341,>480] 1.81 | >480 [340,>480]
*MAD homolog 1 (Drosophila) Smadl 163 [123,242] 1.16 | >480 [>480,>480] 1.36 | >480 [252,>480]
B-cell leukemia/lymphoma 6 Bcl6 49 [41,61] 1.01 | >480 [130,>480] 1.86 | 273 [105,>480]
cyclin G2 Ceng2 93 [71,134] 0.67 | >480 [215,>480] 241 | >480 [229,>480]
TGFB inducible early growth response Tieg / KIf10 61 [51,75] 0.69 | 287 [126,>480] 1.49 | 145 [88,397]
EAF transcription factor 1 E4fl 373 [216,>480] | 1.24 | >480 [443,>480] 1.58 | >480 [>480,>480]
Stabilized (p < 0.05); c87 and c8
*mitogen activated protein kinase kinase kinase 1 Map3kl 77 [59,108] 0.48 | >480 [157,>480] 1.27 | 399 [128,>480]
*Cbp/p300-interacting transactivator, CITED2 Cited2 71 [56,97] 0.69 | >480 [138,>480] 147 | 264 [110,>480]
*BCL2-like 11 Bcl2l11 67 [52,94] 0.86 | 348 [112,>480] 0.79 | 261 [102,>480]
*Son of sevenless homolog 2, (Drosophila) Sos2 93 [63,174] 0.97 | >480 [120,>480] 1.57 | >480 [121,>480]
*B-cell leukemia/lymphoma 10 Bcl10 374 [239,>480] 1.10 | >480 [>480,>480] 1.18 | >480 [455,>480]
*TANK-binding kinase 1 Tbk1 121 [85,210] 1.04 | >480 [142,>480] 1.20 | >480 [170,>480]

*Transcripts shown in Fig 2.

https://doi.org/10.1371/journal.pone.0204622.t1002
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Fig 1. Real time RT-PCR validation of transcript up-regulation and stabilization. Murine L929 cells were infected for 19.5 h with reovirus
isolates 87, c8 and Dearing or mock (M) infected. Actinomycin D was added to stop transcription and total cellular RNA was purified 0, 45, 90,
and 120 min post-actinomycin D treatment. The same RNA was used for both microarry and real time RT-PCR. Tgif, Gdf-15 and c-Myc
mRNA levels were measured by real-time RT-PCR using gene specific primers and transcript levels were normalized to the level of the HPRT
transcript. Data shown are from three independent experiments. Each point represents the mean + standard error of the mean.

https://doi.org/10.1371/journal.pone.0204622.g001

c8 and ¢87. In contrast, none of the transcripts encoding components of this pathway were up-
regulated and/or stabilized following infection with isolate Dearing, suggesting that reovirus
isolates differ in their ability to induce changes in the decay of cellular transcripts encoding
SSN components. The finding that strains that induced stabilization of transcripts encoding
components of the SSN network also induced cellular translational inhibition suggests that the
SSN network and inhibition of translation could be linked.

To validate our microarray mRNA decay data, we utilized real time RT-PCR to measure
mRNA levels from three selected genes: Tgif, Gdf15 and c-Myc. These transcripts encode
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Table 3. Comparison of transcript expression and half-life data obtained using real time RT-PCR or microarrays.

Transcript Mock Strain c87 Strain c8 Strain Dearing
HL(min) 95% CI FC HL(min) 95% CI FC HL(min) 95% CI FC HL(min) 95% CI

Tgif

RT-PCR 83 [71,103] 3.49 | >480 [>480] 3.69 | >480 [>480] 278 | 171 [147,195]

Microarray 94 [76,124] 2.33 | >480 [217,>480] 2.59 | 468 [174,>480] 1.55 | 113 [80,191]

Gdfis

RT-PCR 124 [85,174] 20.45 | >480 [>480] 18.24 | >480 [458,>480] 14.19 | 226 [151,>480]

Microarray 69 [47,124] 18.24 | >480 [101,>480] 12.07 | >480 [115,>480] 3.83 |63 [40,149]

Myc

RT-PCR 54 [47,61] 143 | >480 [>480] 260 | 339 [223,443] 185 |86 [75,98]

Microarray 44 [37,55] 2.59 | 366 [108,>480] 220 | 183 [83,>480] 1.89 |56 [41,88]

https://doi.org/10.1371/journal.pone.0204622.t003

important proteins that interface with the SSN and, based upon our microarray data, were up-
regulated and stabilized following infection with ¢87 and c8, but not Dearing. We generated
decay curves for the three transcripts by real time RT-PCR using the same RNA that was used
for the microarray analysis. Decay curves generated for these transcripts by real time RT-PCR
were very similar to the mRNA decay curves generated from the microarray analysis (Fig 1).
These data confirm that Tgif, Gdf-15, and c-Myc were up-regulated and stabilized following
infection with reovirus isolates ¢87 and c8 (Table 3). In contrast, infection with strain Dearing
led to little or no stabilization of these transcripts (Fig 1 and Table 3). We also performed west-
ern blotting using antibodies against the Tgif, Gdf-15 and c-Myc proteins and found that the
level of these proteins did not increase followinginfection with reovirus isolate c87 (S1 Fig).
Thus, the upregulation and stabilization of these transcripts did not correlate with increased
protein levels. This result is not surprising, as infection with this reovirus isolate led to an inhi-
bition of cellular protein synthesis.

Discussion

We found that multiple cellular transcripts encoding components of the SSN are coordinately
up-regulated and stabilized following reovirus infection. We hypothesize this is a cellular
response to reovirus infection meant to induce the apoptosis of infected cells, particularly
following infection with reovirus isolates that lead to the inhibition of cellular translation.
Numerous viruses, including reovirus, induce increased expression of TGF-f as part of the
host response to viral infection. Depending upon the integration of signals through the TGF-
receptor and other receptors, the SSN regulates the balance between apoptosis or cell growth
and survival (reviewed in [42]). In virus-infected cells, TGF-p signaling may play an antiviral
role by promoting the apoptosis of virus-infected cells, whereas in uninfected cells, signaling
through the SSN may play a role in protecting against apoptosis [29]. In addition to activating
the SSN, the TGF- family of receptors interfaces with several other signaling pathways,
including NF-kB, MAPK/ERK, p38 and JNK pathways [43-46]. These pathways influence the
SSN by regulating the phosphorylation of Smad proteins, which in turn, control cell prolifera-
tion, differentiation and migration through their role as transcription factors [39, 41, 47-49].
Smad transcription complexes are activated by TGF-f receptors 1 and 2. Following receptor
activation, Smad 2,3 complexes or Smad 1,5,8 complexes become phosphorylated and
interact with Smad 4, creating activated transcription complexes [38, 50]. These newly formed
Smad 4-containing complexes translocate into the nucleus, bind DNA, and activate target
gene transcription. Depending on other signals, however, Smad 6 and Smad 7 can repress
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phosphorylation and prevent activation of Smad transcription complexes by blocking their
translocation into the nucleus [39, 51, 52]. Smad 7 can also act in a feedback loop to repress
TGF-B signaling by inducing receptor ubiquitylation and protein degradation [53-55]. Thus,
depending on the integration of multiple signals, the SSN can activate or repress transcription
of a specific subset of cellular genes.

Transcripts that were up-regulated and stabilized following reovirus infection included
SMAD 1, 2, 6 &7, Tgif, c-Myc, CITED2 and KLF5, which encode components of the SSN that
control transcription of genes that regulate apoptosis and cell growth [47, 50, 51, 53, 54]. Of
note, reovirus has been shown to preferentially infect and induce lysis of cells that express high
levels of c-Myc or other oncoproteins, suggesting that reovirus might exploit this oncogenesis
signaling pathways to preferentially kill cancer cells [56]. For this reason, reovirus infection is
a potential treatment of cancer [57]. Other up-regulated and stabilized transcripts encode
growth regulatory cytokines that impact the SSN (see Fig 2). For example, the transcripts
encoding Gdf15, a TGF-f superfamily cytokine, and Vegfa, an angiogenic endothelial cell
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Fig 2. Transcripts that encode components of the SSN or related proteins were up-regulated and/or stabilized following reovirus
infection. Signaling through the TGF-p family of receptors activate several pathways, including NF-xB, MAPK/ERK, p38, and JNK pathways.
These pathways regulate phosphorylation of Smad proteins, which in turn regulate cell survival and apoptosis. Transcripts shown in red were
up-regulated and stabilized following infection of L929 cells with reovirus isolates c87 and c8, transcripts shown in light orange were up-
regulated and stabilized following infection with isolate c87 or ¢8, transcripts shown in dark green were stabilized (but not up-regulated)
following infection with isolates ¢87 and ¢8, and transcripts shown in light green were stabilized (but not up-regulated) following infection with
isolate c87 or ¢8. This figure was created using Ingenuity Pathway Analysis software starting with the canonical pathway related to TGF-
signaling (right side of the figure), which was combined with transcripts related to apoptosis (left side of the figure). GDF15, VEGFA, DUSP1/2,
KLF5, and CITED2 transcripts were added manually based on their relevance to TGF- or apoptosis signaling pathways.

https://doi.org/10.1371/journal.pone.0204622.9002
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growth factor, were dramatically stabilized and up-regulated following infection with reovirus
isolates c8 and ¢87. Interestingly, Vegfa is induced by TGF- and acts in concert with TGF-
to induce the apoptosis of endothelial cells [58, 59]. In addition to growth factors, transcripts
encoding downstream regulators of kinase pathways that can also impact the SSN, including
Sos1, Sos2, Map3k3, Map3kl, Duspl, and Dusp2, were also up-regulated and/or stabilized.
The transcript encoding Stam, a cytokine signaling protein that interfaces with the SSN by acti-
vating c-Myc [60], was also up-regulated and stabilized in cells infected with reovirus isolates
c87 or c8.

Since the SSN regulates the balance between apoptosis and survival, it is possible that the
coordinate induction of SSN components through mRNA stabilization represents an attempt
by the virus-infected cell to undergo apoptosis. Some up-regulated and stabilized transcripts
encode components of receptor-mediated apoptosis pathways including: Bcl-10, which acti-
vates NF-kB [61]; Tbk1, which promotes anti-viral responses [62] and activates NF-«B [63];
Gadd45b, a NF-xB-inducible mediator of apoptosis [64]; and Bid, an important component of
caspase-induced apoptosis [65]. TGF-f signaling also leads to activation of NF-«kB and promo-
tion of apoptosis through the signaling protein TGF-p activating kinase 1 (Tak1) [45, 66, 67].
The NF-«B signaling network interfaces with the SSN by activating Smad 7, which feeds back
to repress TGF-B-induced transcription of genes that promote cell growth and survival [45,
68]. Thus, the outcome of the SSN—cell growth and survival versus growth inhibition and cell
death—is controlled by the coordinate integration of several signals. Following reovirus infec-
tion, not all cellular anti-viral responses lead to apoptosis; rather, a balance between death and
survival occurs [69, 70]. Cells attempt to avoid viral infection, but if unsuccessful, cell death
pathways are frequently activated. Meanwhile, viruses need to prevent cell death for a period
of time to ensure viral replication. Thus, the interplay between host anti-viral responses to pro-
mote death of infected cells and viral evasion mechanisms determines the fate of the cell.

We have previously demonstrated that reovirus isolates that led to an inhibition of cellular
translation (c87 and c8) also induced stress granule formation [8]. Others have shown that reo-
virus particles are recruited to stress granules during infection, and the stress response induced
by reovirus may be necessary for viral replication [71]. Here we demonstrate that infection
with the reovirus isolates that induced stress granule formation also caused the stabilization of
numerous cellular transcripts, including transcripts encoding components of the SSN and reg-
ulators of apoptosis. Perhaps, stress granule formation leads to the stabilization and sequestra-
tion of certain cellular transcripts, such as the transcripts that encode the regulators of the SSN
and apoptosis pathways we identified here. Thus, the stabilization and up-regulation of tran-
scripts that encode components of the SSN and associated apoptosis pathways may be part of a
cellular stress response in which these transcripts are stabilized within stress granules while the
cell determines its fate (cell death or survival).

Numerous other viruses have developed mechanisms to modulate or usurp TGF-f signal-
ing pathways, perhaps to prevent cell death and promote viral replication. For example, Kaposi
sarcoma herpes virus produces viral homologues of human interferon response factors that
function to regulate TGF-P signaling [72, 73]. Herpes simplex virus 1 down-regulates TGF-f
and Smad 3 expression in infected cells [74, 75]. Although this effect was reported to be due to
an HSV-1-encoded microRNA [74], other groups were unable to reproduce those results [76].
Human papillomavirus E6 and E7 proteins bind to specific Smad proteins, thereby inhibiting
the SSN [77, 78], and the human T cell lymphotropic virus 1 tax protein inhibits TGF-f signal-
ing through c-jun activation [79]. Other viruses, such as cytomegalovirus and BK virus, usurp
TGF-B signaling to promote viral replication [80, 81]. The fact that numerous viruses have
developed specific mechanisms to manipulate or evade the SSN suggests this pathway is
important for host anti-viral responses.
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Our findings demonstrate that transcripts encoding numerous components of the SSN are
coordinately up-regulated and stabilized following reovirus infection, suggesting that cells
have mechanisms to selectively recognize and stabilize specific subsets of cellular transcripts.
These transcripts may contain specific regulatory sequence(s) in common that allow them to
be selectively recognized by RNA-binding proteins or microRNAs. The finding that after reo-
virus infection, only a specific subset of transcripts undergo stabilization, rather than all tran-
scripts, suggests that alterations in general pathways for mRNA decay cannot explain our
results. It is possible that certain transcripts that are targets for translation-dependent mRNA
decay under normal conditions are stabilized when translation is inhibited following reovirus
infection. Nonsense-mediated mRNA decay, which is translation-dependent [82, 83], has
been shown to regulate the decay of transcripts involved in the TGF-p signaling pathway [84,
85]. For example, many of the transcripts involved in TGF-f signaling depicted in Fig 1 have
been shown to be targeted by nonsense-mediated decay, such as Smad?7 [85], DUSP1/3 [86],
GADD45B [87], and Myc [88]. Further work is needed to define the mechanism for the up-
regulation and stabilization following reovirus infection of the transcripts we identified which
encode specific components of the SSN.
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