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Abstract

While the neurobiology of simple and habitual choices is relatively well known, our current

understanding of goal-directed choices and planning in the brain is still limited. Theoretical

work suggests that goal-directed computations can be productively associated to model-

based (reinforcement learning) computations, yet a detailed mapping between computa-

tional processes and neuronal circuits remains to be fully established. Here we report a

computational analysis that aligns Bayesian nonparametrics and model-based reinforce-

ment learning (MB-RL) to the functioning of the hippocampus (HC) and the ventral striatum

(vStr)–a neuronal circuit that increasingly recognized to be an appropriate model system to

understand goal-directed (spatial) decisions and planning mechanisms in the brain. We test

the MB-RL agent in a contextual conditioning task that depends on intact hippocampus and

ventral striatal (shell) function and show that it solves the task while showing key behavioral

and neuronal signatures of the HC—vStr circuit. Our simulations also explore the benefits of

biological forms of look-ahead prediction (forward sweeps) during both learning and control.

This article thus contributes to fill the gap between our current understanding of computa-

tional algorithms and biological realizations of (model-based) reinforcement learning.

Author summary

Computational reinforcement learning theories have contributed to advance our under-

standing of how the brain implements decisions—and especially simple and habitual

choices. However, our current understanding of the neural and computational principles

of complex and flexible (goal-directed) choices is comparatively less advanced. Here we

design and test a novel (model-based) reinforcement learning model, and align its learn-

ing and control mechanisms to the functioning of the neural circuit formed by the hippo-

campus and the ventral striatum in rodents—which is key to goal-directed spatial

cognition. In a series of simulations, we show that our model-based reinforcement learn-

ing agent replicates multi-level constraints (behavioral, neural, systems) emerged from

rodent cue- and context- conditioning studies, thus contributing to establish a map

between computational and neuronal mechanisms of goal-directed spatial cognition.
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Introduction

The neurobiology of goal-directed decisions and planning in the brain is still incompletely

known. From a theoretical perspective, goal-directed systems have been often associated

model-based reinforcement learning (MB-RL) computations [1,2]; yet, a detailed mapping

between specific components (or computations) of MB-RL controllers and their brain equiva-

lents remains to be established. Much work has focused on brain implementations of single

aspects of MB-RL controllers, such as action-outcome predictions or model-based prediction

errors [3,4]. A more challenging task consists in mapping MB-RL computations to a systems-

level neuronal circuit that provides a complete solution to decision and control problems in

dynamic environments–or in other words, identifying the biological implementation of a com-

plete MB-RL agent rather than only one or more components.

The neuronal circuit formed by the (rodent) hippocampus and ventral striatum circuit is

particularly appealing, and can be productively taken as a “model system” to understand bio-

logical implementations of model-based computations during spatial navigation (see Fig 1A).

The hippocampus (HC) has long been implied in place-based and goal-directed navigation

[5]. Recent findings suggest that the role of hippocampus in goal-directed navigation may be

mediated by the strong projections from the hippocampal CA1 and subicular areas to the ven-

tral striatum (vStr) [6], which might convey spatial-contextual information and permit form-

ing place-reward associations [7–10]. From a computational perspective, the hippocampus

and ventral striatum may jointly implement a model-based controller for goal-directed choice

[8,11–17]. In this scheme, HC and vStr might be mapped to the two essential components of a

model-based reinforcement learning (MB-RL) controller [1,18]: the state-transition model,
which is essentially a model of the task that permits to predict the next location given the cur-

rent state (say, a given place) and chosen action, and the state-value model, which encodes the

(expected) reward associated to each state, respectively.

Different from a model-free controller, a model-based controller can use an explicit form of

look-ahead prediction (or internal simulation) that permits to imagine future trajectories and

covertly evaluate them [1]. Similar look-ahead predictions have been reported in the HC: at

difficult decision points, such as when they are at the junction of a T-maze, rodents sometimes

stop and produce internally generated sequences of neuronal activity in the HC that resemble

the sequential neuronal activity observed in the same area when they navigate through the left

or right branches of the T-maze [7,20]. These internally generated sequences may serve to seri-

ally simulate future spatial trajectories (e.g., a trajectory to the left and successively a trajectory

to the right). In turn, these look-ahead predictions might elicit covert reward expectations in

the vStr [9]. By linking spatial locations with reward information, the HC-vStr might thus

jointly implement a model-based mechanism that allows an animal to covertly simulate and

evaluate spatial trajectories [13,21], using a serial scheme that has some analogies with machine

learning algorithms (e.g., forward simulations in Bayes nets [22,23] or Monte Carlo rollouts in

decision trees [24]). Internally generated sequences were also reported during sleep or rest

periods in the hippocampus and associated structures such as the ventral striatum [25]; in this

case, they have been associated with multiple functions such as planning [26] and the off-line

“replay” of past trajectories for memory consolidation [27,28]–a mechanism that has inspired

early (DYNA [29]) as well as more recent (“experience replay” [30]) machine learning

schemes.

Here we present a biologically-grounded computational analysis of model-based RL, by

comparing side-by-side the behavior and neuronal activity of living organisms (rodents) and

of a probabilistic MB-RL agent, in cue- and context- conditioning tasks that depend on intact

hippocampal and ventral striatal (shell) function [19,31,32]. The results we report indicate that
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the MB-RL agent replicates the multi-level constraints (behavioral, neural, systems) emerged

from rodent cue- and context- conditioning studies. First, we show that the MB-RL agent cor-

rectly learns to obtain reward in multiple goal locations and develops contextual preferences

that are analogous to those of rodents. Second, we show that latent states emerging in the

state-transition and state-value models of the MB-RL agent show key coding properties of HC

and vStr neurons, respectively. Third, by comparing multiple variants of the MB-RL algorithm,

we show that forward (look-ahead) predictions—of the kind that can be associated to hippo-

campal forward sweeps [20]—improve both action selection and learning. This latter result is

important as the computational efficacy of model-based schemes based on forward sweeps has

been put into question [33].

Taken together, the results of this study speak to the possibility of aligning the MB-RL

scheme to the HC—vStr circuit to reproduce both behavioral and neuronal data. Establishing

this kind of mappings is particularly important to foster cross-fertilizations between reinforce-

ment learning and neurophysiology; for example, to identify specific algorithmic solutions

that the brain uses to face problems that are still challenging in machine learning, or con-

versely, to advance novel computationally-guided theories of neural processing [10,34].

Finally, our MB-RL scheme has two main features that go beyond the state of the art from a

computational perspective, and which are necessary for an adaptive agent to deal with open-

Fig 1. Spatial navigation in rodents: functional organization, scenario, and overall architecture of the model. (A) Structures in the rodent brain that are involved in

goal-directed navigation. HC-VS constitute the essential structures of the putative model-based control system, which supports goal-directed behavior. AT and MEC

provide input to the model-based control system. Output of the HC-VS circuitry may reach the cortex/mPFC via VP and MD. (B) The Y-maze used here and in [19].

Each room contains 3 goal locations, which can be cued with a light with different probability in three different phases (separate panels) according to the color legend.

See the main text for more explanation. (C) Sample grid cells providing systematic (spatial) information about the environment. (D) Architecture of our biologically

inspired model-based reinforcement-learning model for spatial navigation that combines non-parametric clustering of the input signal Pc(s|x), a state-transition model

PM(s0|s,a), and a state-value model PV(r|g,s) with lookahead prediction mechanism for learning and control. See the Methods for details. Abbreviations: AT, anterior

thalamus; HC, hippocampus; MD, mediodorsal thalamus; MEC, medial entorhinal cortex; mPFC, medial prefrontal cortex, VP, ventral pallidum, VS, ventral striatum.

https://doi.org/10.1371/journal.pcbi.1006316.g001
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ended situations. First, the MB-RL agent successfully faces the challenge to learn simulta-

neously three components: (the latent categories that form) the state space, the state-transition

and the state-value models. Our novel scheme that combines non-parametric and reinforce-

ment learning ensures that only the latent categories that afford accurate state-transition and

state-value functions are retained, thus linking inextricably the three learning processes. Sec-

ond, the MB-RL agent can deal with multiple goals in a native way, without the necessity of re-

learning.

Results

We report the results of a series of simulations, which aim to assess whether the novel MB-RL

agent introduced here replicates the multi-level constraints (behavioral, neural, systems) that

emerge from a context conditioning task, in which neural ensembles in rat hippocampus and

ventral striatum were simultaneously recorded [19].

Experimental set-up: Y-maze

The maze used in the animal study and in our simulations is a y-shaped symmetric arena con-

sisting of 3 identical square chambers rotated 120 degrees from each other and connected

through a central triangular passage, see Fig 1B. Each chamber contained three goal locations

located along the chamber walls, where reward was (probabilistically) delivered. Each reward

location had a cue light above it.

Our simulation follows the protocol used in the animal study [19] and consists of three

phases. In the first phase (Cue: cue conditioning), the correct goal location was cued with a

light; reward was delivered if the animal reached the goal location and made a nose-poke (but

note that we do not simulate the nose poke here). In the second phase (Context: contextual con-
ditioning), the correct goal location was cued with a light, too; but the probability of reward

(following a nose poke) depended on the chamber’s spatial position: south room goals brought

reward in 75% of the trials, whereas the other goals brought 25% reward. Finally, a context-con-
ditioning test (CX test) was performed, with no cues or rewards (i.e., "free run"), to probe the

animals’ acquired contextual place preferences.

The key behavioral result of the animal study, which we aim to reproduce in the MB-RL

agent model, is that the contextual preference for the south room goals is preserved in the last

(CX test) phase. We also aim to test whether the internal representations acquired by the two

key components (state-transition and state-value model) of the MB-RL agent during learning,

have coding properties that resemble HC and vStr activations, respectively, in the animal

study.

Brief introduction to the computational model

The computational model (MB-RL) is fully explained in the Methods section; however, we

shortly summarize it here for the sake of the reader. The model essentially includes three inter-

connected components: a latent state categorization mechanism, which permits to learn the

state representations that are useful to solve a task (e.g., place cells); a state-transition model,

which learns the contingencies between actions and future states (e.g., what location do I reach

by going left?) and a state-value model, which learns the utility of the states (e.g., is reaching

location x good or bad?).

There are three important aspects of the model to note (see the Methods section for further

details). First, we assume that state-transition and state-value models correspond to HC and

vStr, respectively, and they jointly permit to steer look-ahead predictions (analogous to hippo-

campal forward sweeps [20]). As we will discuss below, our simulations will compare different
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versions of the same MB-RL agent, which use, or not use, look-ahead predictions for learning,

control (action selection) or both.

Second, the MB-RL agent includes a mechanism that adaptively selects whether or not to

do a sweep, and the depth of the sweep, depending on the agent’s uncertainty and confidence

about the choice. Essentially, the depth of sweeps decreases when the agent becomes suffi-

ciently confident about its choice. However, a change in reward contingencies (e.g., the loca-

tion of reward) would produce a reversal of this effect—and the generation of longer sweeps.

This is because after failing to reach a reward at the expected location, the agent would become

again uncertain about its choice, hence triggering sweeps to minimize it before a choice [23].

Here we are interested in validating the computational efficiency of this mechanism, which

may potentially explain why VTE behavior increases rapidly when animals make errors follow-

ing a switch in reward contingency [20].

Third, most model-based planning algorithms start from a state space that is predefined by

the programmers. However, the brain has to simultaneously learn internal models to generate

predictions, and the states to be used by the model. In keeping, in the MB-RL agent, the learn-

ing processes required to acquire latent states and the (state transition and state value) models

that use the latent states are interdependent (see Eq 1 below). Here we are interested in validat-

ing this learning scheme, which permits learning latent states that not only entail high percep-

tual accuracy but also afford good prediction and control when used by the state-transition

and state-value models.

Behavioral analysis: Accuracy

Successful context conditioning was evaluated in [19] with a CX test: a “free-run” target prefer-

ence behavioral test in which the rats freely explored the maze for several minutes without any

cue or reward. During this period, to probe the animals’ learned preferences, statistics were

collected about their visitations of (and “nose pokes” in) rooms that in the previous Contextual
Conditioning phase were associated with high- and low-reward probabilities. Analogously, to

test the MB-RL agent’s learned preferences, we ran a free-run simulated test for 2,000 time

steps, in which the agent started from a small central area (3x3 units) and with random orien-

tation. In this simulation, action selection maximized the likelihood for (expected) reward

pooled from all the 9 goal locations; and the agent did not learn. To better clarify the behav-

ioral effects of conditioning in the MB-RL agent, we performed the same free-run test (and

without learning) also at the end of cue conditioning. Finally, and importantly, we envisaged

to compare different versions of the same MB-RL agent that uses, or not uses, look-ahead pre-

dictive mechanisms (analogous to hippocampal forward sweeps [20]) for both control / action

selection and (reward) learning—in order to assess the computational importance of these

mechanisms. Specifically, we compared four different versions of the MB-RL agent using a 2x2

design, which considers 2 controllers (i.e., using or not using forward sweeps) and 2 learning

procedures (using or not using forward sweeps); see Section 4 for details.

We expected that look-ahead prediction (or forward sweeps) to provide the agent signifi-

cant advantages for both control / action selection and (reward) learning; this result would be

particularly intriguing for action selection, given that the baseline controller uses the full fac-

torized distribution of reward and is thus computationally demanding. The results shown in

Fig 2 confirm our hypotheses, by showing an additive advantage of forward sweeps in both

action selection and learning. As shown in Fig 2A, the MB-RL agent that uses forward sweeps

in both action selection and learning (swControl+Reward), with average success of μ = 69%

(σ = 2) during the entire Cue Conditioning phase outperforms in amount of collected reward

the agent that uses forward sweeps only for control (swControl, μ = 62% (σ = 3), t(1,9) = 6.9,

Model-based spatial navigation in the hippocampus-ventral striatum circuit
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n = 10, p<0.001), the agent that uses forward sweeps only for learning (swReward, μ = 39%

(σ = 2), t(1,9) = 33.4, n = 10, p<0.001), and the agent that lacks them during both control and

learning (Baseline, μ = 36% (σ = 1), t(1,9) = 39.6, n = 10, p<0.001) and this advantage is evi-

dent from the very beginning of learning. For all the four agents, performance decreases after

the vertical dotted bar, in correspondence of the Contextual Conditioning phase—but this is

expected, given that less reward is available in this phase.

Fig 2B illustrates the same advantage in overall path length needed to reach the reward site

of the four agents. Along with the increased performance, the length of sweeps used for control

by the swControl+Reward and swControl agents decreases with time (Fig 2C). This is because

the agent’s decision certainty progressively increases (Fig 2D) as their state-value model

becomes more effective; in turn, the mechanism for sweep length control explained in the

Methods Section decreases length (we obtained equivalent accuracy and path length results

using a controller having a constant length of 9 and thus requiring more computational results;

results not shown). This result aligns well with evidence that hippocampal forward sweeps at

decision points progressively diminish during learning [20]—until they disappear when the

animal develops a habit (which we do not model here, but see [13]).

Behavioral analysis: Preferences after conditioning

As the above analysis confirmed the advantages of the MB-RL agent that uses forward sweeps

in both action selection and learning (swControl+Reward), we used this MB-RL agent for the

rest of our behavioral and neural analyses.

Our target rodent study reported that during "free run" in the CX test phase, animals

showed an increased preference for the room that yielded more rewards in the previous (Con-
text) phase [19]. The MB-RL agent correctly reproduces this pattern of behavioral results. As

shown on Fig 3A, in the CX test phase (in the absence of reward), the agent shows a significant

behavioral preference (number of reward-site visits) for the room that was previously most

rewarded (room1 vs. room3, t(1,9) = 4.3, n = 10, p = 0.002; room2 vs. room3, t(1,9) = 7.6,

n = 10, p<0.001), which matches the animal’s learned preference (and differed from an ana-

logue test executed right after cue conditioning: room1 vs. room3, t(1,9) = 1.5, n = 10, p = 0.16;

room2 vs.–room3, t(1,9) = 0.1, n = 10, p = 0.92). Fig 3B provides three representative trajecto-

ries before (blue trajectories) and after (red trajectories) context conditioning–the latter

Fig 2. Benefits of forward sweeps for action selection and control. (A,B) Learning performance (accuracy and length of the agent path to the goal). (C) Length of

sweeps used for control / action selection. (D) Decision (un)certainty during control / action selection.

https://doi.org/10.1371/journal.pcbi.1006316.g002

Model-based spatial navigation in the hippocampus-ventral striatum circuit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006316 September 17, 2018 6 / 28

https://doi.org/10.1371/journal.pcbi.1006316.g002
https://doi.org/10.1371/journal.pcbi.1006316


exemplifying the increased preference for the room that included highly rewarded locations in

the Context phase (black dots).

Neural-level analysis of conditioning

To further establish a parallel between the MB-RL agent and the HC—vStr circuit, we analyzed

the content of the latent states that emerged in the agent’s transition model PM(s0|s,a) and value
function PV(r|g,s) at the end of the Cue and Context Conditioning phases. We decoded the spa-

tial location corresponding to each latent state and created: (a) value maps for each target

showing for each spatial location the greatest reward across all head-directions and (b) transi-

tion maps showing how position could change after applying an(y) action at any orientation.

We also analyzed the effect of conditioning at the neural level: how the learned internal models

change and how this change affects behavior.

The neuronal analysis of HC and vStr cells after the cue conditioning task reported different

coding characteristics in the two areas, with the former showing high spatial selectivity and the

latter showing selectivity for reward- and task-related information, and place/reward combina-

tions [19]. The two components of the MB-RL agent acquire analogous coding preferences

after conditioning. Fig 4 shows the transition probabilities learned by the state-state (transi-

tion) model after Cue Conditioning (Fig 4A) and how they changed after Context Conditioning
(Fig 4B). In Fig 4, each green square corresponds to a place in the maze (i.e., the central square

corresponds to the central place of the maze) and the colors of the smaller squares code the

greatest probability of transitioning from the location of that state, regardless the direction, to

the location of any other state of the maze (shown are only the possible successors, i.e., nearby

locations), by executing any of the 3 actions available to the agent (see Methods section). The

more red the color of the cell, the higher the probability. In other words, this map shows the

spatial projection of the learned "successor states" (small squares) of each latent state (green

squares) implicitly coded in the agent’s probabilistic transition model—analogous to

Fig 3. Behavioral results of the simulations. (A) Preferences of the MB-RL agent after Cue Conditioning and after Contextual conditioning

(i.e., CX test). In the CX test, both agent and animals show a preference to visit targets in the room that was previously most rewarded. (B)

Sample trajectories of the agents during these tests (after Cue Conditioning, blue; after Context Conditioning, or CX test, red).

https://doi.org/10.1371/journal.pcbi.1006316.g003
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"successor representations" [35,36]. For example, the green squares near the center include

transitions to all directions while the green squares on the borders only include transitions

towards the center. In other words, the learned transition probabilities encode the actual tran-

sitions available in the environment, reflecting the idea of HC encoding a navigational "cogni-

tive map" [5]. Furthermore, importantly for our analysis, these codes only change (remap) to a

minor extent between the Cue and Context Conditioning phases (Fig 4B)—in keeping to what

was reported empirically [19]. Essentially, the changes reflect a consolidation of the same tran-

sition model, not a remapping, due to additional training during the Context conditioning
phase.

Fig 5 shows the value of each place (i.e., the learned probability of obtaining reward in the

place) when a goal location is selected or cued, as learned by the state-value function compo-

nent of MB-RL agent after Cue Conditioning (Fig 5A) and how these values changed after Con-
text Conditioning (Fig 5B). The nine outer big Y-shapes represent the possible goal sites; inside

each of them, the colors code the probabilities of obtaining reward while starting from any spe-

cific location in the maze—the darker red the color, the higher the probability. The central Y-

shape represents the combined value function across all goal sites, which is effective when the

goal is not cued, as in the behavioral CX test. These probabilities relate well with key coding

properties of vStr neurons in [19]. If one assumes that the current goal is unknown, as in the

CX-test, one can see the same rotational invariance in the model (Fig 5A, the central Y-shape)

as in sample vStr neurons (Fig 5C; for more samples, see [19]). This aligns well with the idea

that vStr neurons might encode place-reward associations and these in turn can be condi-

tioned on a specific goal, possibly provided by prefrontal areas [37] or vicariously from hippo-

campal forward sweeps [21,38].

Fig 4. Neural representation of state transitions in the state-state model. Latent states developed by the state-transition models averaged across all 10 learners after

the Cue Conditioning phase (A); and the changes due to Contextual Conditioning, i.e., the differences between probabilities before and after Contextual Conditioning (B).

Each image from the transition model PM(s0|s,a) encodes the greatest likelihoods PM(xy(s0)|xy(s), a) across all head-directions and actions to step from the location xy(s)
of a given latent state (place) s to nearby places xy(s0) located within the range of an(y) action from the location of the current place, following any of the available

actions, i.e., the (probabilistic) location of the successors of every state. The locations xy(s) and xy(s0) of s and s0 are decoded using an inverse of the function providing

input to the Dirichlet model. Note that, as expected, the decoding procedure is not perfect—hence the gaps in the maps.

https://doi.org/10.1371/journal.pcbi.1006316.g004
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Note that the probabilities emerging in the state-value model are closely related to reward

functions of RL, which can be used to learn a policy from the current state [1] and, in a model-

based scheme, to retrieve covert expectations of reward using mental simulation or forward

sweeps [13,21,23]. As usual in RL, the value of reward places is temporally discounted such

that places farther from goal sites have lower values. This creates a sort of gradient or "tessella-

tion" of the task, which might reflect not only proximal distance but also other information

such as phases or subtasks that are necessary to secure a reward [19].

Importantly, the coding of value in the state-value model changes drastically after Contex-
tual Conditioning (Fig 5B). While after Cue Conditioning one can observe full rotational sym-

metry, after the Context Conditioning a marked preference is evident for the goal locations in

the most rewarded (lower; south) room—which also explains the behavioral results of Fig 2.

This change of preference can be better appreciated if one considers the distribution of the

change of values associated with latent states in the state-value model after Contextual

Fig 5. Neural representation of value in the state-value model. Latent states developed by the state-value model averaged across all 10 learners, after the Cue
Conditioning phase (A); and how they change after Contextual Conditioning, i.e., the differences between probabilities before and after Contextual Conditioning (B); and

the activity of three sample vStr neurons drawn from the experiment in [19] (C). The images in (A, B) represent the greatest value PV(r = 1|g,xy(s)) across all head-

directions attributed to a given spatial position xy(s) for a given target g. Each image represents one target and its location in the plot corresponds to its location in the Y-

maze. The central image represents the combined value function across all targets. It is rotationally symmetric after the rotationally symmetric reward delivered during

Cue Conditioning (as some of the vStr rodent-neurons; see insets C) and becomes asymmetric during the context conditioning phase. The spatial positions xy(s) are

decoded from the latent states s using an inverse of the function providing input from the grid cells.

https://doi.org/10.1371/journal.pcbi.1006316.g005

Model-based spatial navigation in the hippocampus-ventral striatum circuit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006316 September 17, 2018 9 / 28

https://doi.org/10.1371/journal.pcbi.1006316.g005
https://doi.org/10.1371/journal.pcbi.1006316


Conditioning (Fig 6). Specifically, there is a decrease of all the state values (given that reward is

less frequently available), but the value of states corresponding to the less rewarded rooms

(blue, mean change of -0.29 across all learners) decreases significantly more than those of the

more rewarded rooms (red, mean change of -0.17 across all learners; t(1,9) = 25.0, p<0.001).

This result is coherent with a body of literature implying vStr in the coding of reward expec-

tancies [21] and would imply a sensitivity for changing reward contingencies (see Discussion).

This is in sharp contrast with the states in the state-state transition model (black), which essen-

tially does not change (mean change of 0.01 across all learners).

Finally, Fig 7 provides analysis of the sweeps for action selection generated during the two

conditioning phases. During Cue Conditioning, sweep length increases at decision points, e.g.,

the center of the maze and nearby densely located targets (Fig 7A). This simulates the rodent

data that consistently show longer internally generated sequences at branch points [15], [23].

In turn, Fig 7B shows how sweep length changes after Context Conditioning. Notably, when

the agent is in a location that is far away from targets with low reward probability, it needs lon-

ger sweeps to accumulate sufficient evidence about the most valuable action. Instead, sweep

length remains the same or decreases for highly rewarded targets.

Discussion

Computational methods of reinforcement learning have been widely used to analyze neuronal

data [2,39–41]. However, this has been done far more systematically for model-free RL–mostly

associated to habitual behavior—than for model-based RL methods [22,23,42]–more associ-

ated to goal-directed behavior and planning. A challenge consists in mapping the components

of a MB-RL agent to a neural circuit that offers a complete, systems-level solution to goal-

Fig 6. Changes in the state-state and state-value models after contextual conditioning. This figure shows what

changes the Contextual Conditioning procedure produces in the probability values of states in the state-state or

transition model (black), and in the state-value model, where states correspond to the most rewarded (red) or less

rewarded (blue) rooms. For clarity, we only show the changes of states having a probability that is greater than 0.05 (for

the state-state model) and 0.5 (for the state-value function). This choice of thresholds in motivated by the fact that in

the state-value function we are interested in verifying changes in the states carrying significant value information (e.g.,

those regarding the goal states or their neighbor’s), not in the many states that have a low probability value in all

situations (see Fig 5).

https://doi.org/10.1371/journal.pcbi.1006316.g006
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directed choice, rather than a single aspect of it (e.g., the dynamics of dopaminergic neurons

and their relations to reward prediction error).

Rodent research suggests that the neuronal circuit formed by the hippocampus (HC) and

ventral striatum (vStr) might implement model-based computations in spatial navigation. In

this scheme, the HC learns a state-transition model (permitting to predict future states) and

the vStr learns a state-value model (encoding goal-dependent state values). The HC might then

predict future trajectories (e.g., using forward sweeps and ripple-associated replay) and vStr

might covertly evaluate them, permitting to select the best (that is, reward-maximizing) course

of action [12,13,21]. To provide a computationally-guided analysis of this idea, here we

designed a Bayesian model-based reinforcement learning (MB-RL) agent and tested it in a

challenging contextual conditioning experiment that is dependent on hippocampal and ventral

striatal function [19].

The results of our simulation show that the MB-RL agent procedure can reproduce animal

data at multiple—behavioral, neural, systems—levels. At the behavioral level, the agent shows

place preferences that are analogous to rodents [19]. Key to this result is the fact that the

agent’s value function is conditioned on goal information. Here, in other words, goal informa-

tion acts as a “context” and permits the agent to learn multiple goals, as required by the experi-

mental set-up [19]. This possibility is precluded to other RL controllers that are only

optimized for a single value function (or goal) and thus lack context sensitivity [1] but is

important to scale up RL methods to real-world situations that involve multiple potential

goals. At the neural and systems levels, the agent develops internal codes that reproduce key

signature of hippocampal and ventral striatal neurons [19]. This is important to establish deep

relations between formal methods and neurophysiology that potentially span multiple levels of

analysis—from computational to algorithmic and implementational [43]. Finally, in our pro-

posed model, hippocampal sweeps can contribute to both action selection and learning. Our

comparison of multiple MB-RL schemes shows that mechanisms of look-ahead prediction that

Fig 7. Analysis of sweeps. Length of sweeps during control / action selection, for each target (separate Y-maze images) and each spatial location (dots in the Y-mazes).

Sweep length is color-coded. (A) Sweep length after Cue Conditioning. (B). Change of sweep length after Context Conditioning.

https://doi.org/10.1371/journal.pcbi.1006316.g007
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resemble hippocampal forward sweeps improve both control and learning. There has been

some recent skepticism around the idea of using look-ahead prediction for control and learn-

ing, based on the fact that prediction errors tend to accumulate over time [33], which would

cast into doubt the idea that hippocampal sequences may serve predictive or planning roles.

Furthermore, alternative proposals have cast model-based control (and hippocampal function)

in terms of backward [42] or a combination of forward and backward inference [22]. Our

results suggest that the limited form of look-ahead prediction that we adopt is computationally

advantageous, thus lending computational-level support for theories that assign forward

sweeps a predictive role [44,45].

The MB-RL agent is related to other computational models of model-based spatial deci-

sions [22,23,46–52] that use various forms of forward planning. Different from these architec-

tures, the MB-RL agent includes a nonparametric module that learns a “state space” in an

unsupervised manner while the agent learns the task, and which works synergistically with the

other components of the architecture. Indeed, the state space representations emerging from

the nonparametric learning procedure ensure that only states that afford good prediction and

control are retained. Using end-to-end learning (i.e., from perception to action) helps keeping

the various learning procedures (state space, action-state and state-value learning) coordinated

and is more effective and biologically realistic than using a staged approach—still popular in

RL—in which unsupervised state space learning is seen as a generic preprocessing phase. From

a computational perspective, this approach can be considered to be a novel, model-based

extension of a family of Bayesian methods that have been successfully applied to decision-mak-

ing problems [53–57]. It is also important to note that our approach does not require learning

a separate state space (or sensory mapping) for each goal; rather, multiple spatial goals share

the same state space—which implies that our MB-RL agent can deal natively with multiple

goals. This is different from most current deep RL approaches, which require learning a new

state space for each problem or task (but see [1]). In our set-up, sharing the state space is effec-

tive because all goals correspond to spatial locations—or in other words, they all lie in the

same low-dimensional state space that supports spatial navigation. This reliance on a relatively

low-dimensional state space makes spatial navigation quite special and tractable, both in

machine learning and the brain; it is thus possible that brain areas that support goal-directed

processing outside navigation domains rely on more complex computational solutions that

remain to be fully established [10,58,59].

At the neurophysiological level, the latent states that emerged in the agent’s state-state and

state-value models during conditioning share important similarities with HC and vStr coding,

respectively—and in particular the selectivity for space vs. reward-predictive information and

place/reward combinations, respectively. Our computational model thus provides a detailed

(yet to some extent abstract) mapping between specific components of model-based control-

lers and neuronal circuits. Establishing this sort of mappings is important if one aims to the

cross-fertilization of current research in reinforcement learning / artificial intelligence and

neurophysiology; for example, to probe in detail neuronal solutions to challenging machine

learning problems. Indeed, one should expect that the neuronal networks in the HC and vStr

(as well as other brain structures) have been optimized over time to solve the challenging prob-

lems that animals must face every day, and cracking this neural code might be helpful to design

artificial agents with similar abilities. In this respect, a limitation of the model proposed here

concerns the simplifying assumptions on HC and vStr coding and their respective roles in

model-based control. For simplicity, we mapped one-to-one HC to state-transition and vStr to

state-value models. However, this sharp division is likely to be simplistic and both neural cod-

ing and computational roles of the HC-vStr circuit are certainly more complex. HC cells show

some sensitivity to goal and reward information [60] and remap from cue-on to cue-off and
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spontaneous goal site approach [19]. Furthermore, vStr can code information that goes beyond

scalar reward expectations; it can code for example item- or object-specific information, such

as the expected reward associated to a specific food or other characteristics of a task, including

(for example) intermediate steps to goal locations [19]. This suggests a more complex architec-

ture in which HC and vStr do not map one-to-one to components of a model-based controller

but may realize model-based computations in a more distributed manner; and in which they

form a latent task model that encodes task variables that are more abstract than spatial codes,

permitting “tessellating” tasks into behaviorally meaningful events (e.g., task phases that lend

to reward delivery) and forming hierarchies. Understanding how the brain tessellates and

organizes the state space hierarchically may be particularly important for the success of future

model-based reinforcement learning algorithms. Current model-based RL methods suffer

from the problem that, during long look-ahead searches, errors sum up; for this, in practice,

most practical applications use model-free solutions. However, in principle, endowing model-

based methods with the ability to exploit relevant task structure (e.g., milestones or subgoals)

may mitigate this problem, by making forward search more abstract and hierarchical (or “sal-

tatory”) [61–63] or by avoiding chaining too many consecutive predictions [33]. To this aim,

unsupervised state representation methods (including deep learning methods) that are able to

identify latent task structure may be productively incorporated into model-based control sys-

tems—yet it remains to be studied in future research how to handle or bound (hierarchical)

state representations that may solve realistic problems [36,64–68]. An alternative possibility

consists in learning a more complex state space (successor representations) that afford implicit

prediction [35,69]. Finally, it is important to remark that overall brain architecture for model-

based spatial navigation plausibly includes other areas in addition to HC and vStr. For exam-

ple, in rodents prelimbic cortex may be particularly important to decide whether or not to

engage the model-based system (or to initiate a deliberative event [20,23]) and to code for spa-

tial goals [37]. More broadly, the hippocampus cross-talks extensively with cortical areas, espe-

cially during sleep—and this cross talk can be essential to train not only the cortex as usually

assumed [70] but also the hippocampus [14,15,71]. Realizing a complete, systems-level archi-

tecture for goal-directed spatial cognition remains an open challenge for future research.

In sum, our results highlight the viability of model-based methods to study goal-directed

spatial navigation, in the same way model-free methods have been widely adopted to study

habitual action control [22,23,42]. Our comparison of alternative MB-RL schemes shows that

forward sweeps are useful for both learning and control / action selection. Indeed, our results

show that the MB-RL agent that includes both kinds of forward sweeps is the most accurate

and the one with lowest uncertainty. This result, again, connects well to neurophysiological

evidence that implicates (prospective) internally generated hippocampal sequences to both

learning / memory function [27,72] and decision [20,26]. Our approach has a number of

implications from both computational and neurophysiological perspectives, which we address

next.

From a computational perspective, it is worth noting that the results that we present here

may be obtained by a model-free RL system, augmented in various ways (e.g., by using various

goals as part of the state classification system). Two points are however important, the former

related to coding parsimony, and the latter related to biological plausibility. First, separating

the transition function from the value function (which is typical of model-based systems)

makes the realization of multiple goals more “economic” from a coding perspective. In the

classical RL approach, a Q-value function encodes the expected cumulative future reward for

each state and action, but for one single goal [73]. The addition of multiple goals in the Q-

value function would increase learning time dramatically. In contrast, adding novel goals to

our model-based RL approach requires just learning the new value associated to each state.
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Second, and importantly, a pure model-free RL approach would fail in navigation tasks that

are typically associated with the hippocampus, such as detour tasks [74]. This is because

model-free RL methods lack the required flexibility to rapidly adapt to novel contingencies

(e.g., a change of the reward or goal location, or of the state transitions, as in the case of

detours).

Another interesting approach to understand predictive aspects of hippocampal coding is in

terms of successor representations (SR) [35,69,75,76]—or prospective codes at the single cell

level. Our approach is distinct from the successor representation (SR) approach [35,69,75,76],

for four main reasons. Firstly, the two approaches target two distinct (possibly complemen-

tary) forms of predictive coding in the hippocampus. Our approach addresses predictive cod-

ing at the level of sequential activation of multiple cells, e.g., theta sequences and forward

sweeps at decision points [13,20]. Rather, the SR addresses predictive coding at the level of sin-

gle cells; and in particular the backward expansion of place fields (in CA1), which can be con-

sidered a form of predictive representation of future states or locations [69]. Secondly, the two

approaches use two distinct computational schemes (model-based versus model-free or

hybrid) to engage in predictive processing. In our model-based approach, predictions about

future locations (and their value) are generated by engaging the state-transition and state-

value models on-line, to perform forward sequential planning and policy selection. This

requires learning a one-step probability transition model PM(s0|s,a) and a probabilistic cumula-

tive value function PV(r|g,s). Rather, the SR approach does not require engaging an internal

model for forward prediction during planning (although some variants of SR learn a model

and engage it off-line, to "train" SR [29,76]). This is because a SR essentially caches a series of

predictions (e.g., of future occupancies) into a single state representation. More formally, the

SR approach learns the future occupancy Ms(s0) function, or the probability to occupy any

state s0 following a specific policy (standard, on-policy method) or any policy (extended, off-

policy method [76]) starting from state s. Using this function, the SR approach can be sensitive

to future events without engaging a model on-line. Thirdly, our approach and the SR have dis-

tinct trade-offs. Our model-based approach has the highest flexibility (because all knowledge

embedded in the model is used on line) but also the highest computational cost. The usefulness

of SR rests on the possibility to decompose the cumulative value function into a product of SR

and local reward. The SR approach permits using predictive representations in a model-free

manner, thus skipping (costly) model-based computations during planning and choice. Exten-

sions of the SR approach permit to have roughly the same flexibility as model-based

approaches, in challenging situations like detour and revaluation tasks [76]. At the same time,

a prediction generated using a SR is usually less specific than a model-based prediction, as the

SR marginalizes over all possible sequences of actions. Finally, and most importantly here, the

two approaches would assign different roles to internally generated hippocampal sequences.

Our model-based approach uses internally generated hippocampal sequences for both learning

and on-line decision-making and planning. Rather, in the SR approach internally generated

hippocampal sequences are not required for on-line decision-making or learning (although

some variants of SR use sequences for off-line training, i.e., experience replay [29,76]). In most

navigation scenarios, decisions can be done using a single SR (comparable to a single place cell

or a small population of place cells [69]), hence this approach would not explain per se why the

hippocampus should encode theta sequences, after sufficient learning. Of course, the two

forms of prediction entailed by our model-based and the SR approach are not mutually exclu-

sive, but can be productively combined; for example, by using sequences of SR (rather than

"standard" place cells) within a model-based scheme. The efficiency and biological plausibility

of such combined scheme remains to be tested.
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At the neurophysiological level, the proposal advanced here is that the hippocampus

encodes a model or cognitive map of spatial transitions and uses this model for state estima-

tion (self localization) and forward inference (prediction / planning). In our scheme, these

computations are intimately related. The same model can support different functions (e.g., self

localization, forward or even retrospective inference), depending on the specific "message

passing": state estimation may rely on the cross-talk between input structures of the hippocam-

pus that encode the observations or inputs of the model (putatively, LEC and MEC) and the

hippocampus proper (putatively, dentate gyrus and CA3-CA1) [22]; forward prediction is

more dependent on the hippocampus proper (recurrent dynamics in CA3, and CA3- CA1

connections) [13,14,22]; whereas a complete goal-directed decision requires the interplay of

the hippocampus with other brain areas that may putatively encode goal states (mPFC [77,78])

and/or state values (vStr [19,25]). The complete systems-level circuit supporting goal-directed

decisions has not been systematically mapped. However, various studies point to the impor-

tance of dorsolateral and ventromedial prefrontal cortex, and orbitofrontal cortex in support-

ing model-based computations [3,79] (but see [80] for evidence that orbitofrontal cortex may

participate in post-decision processes rather than model-based decision).

Our computational scheme is quintessentially model-based; however, it permits to dynami-

cally modulate the degree of model-basedness and its temporal horizon. In this scheme, there

is no fundamental difference between theta sequences observed during "standard" navigation,

and forward sweeps that occur at choice points, and which stretch much farther in space [7].

These are part and parcel of the same model-based (theta-paced) inferential mechanism that

runs continuously during navigation (or outside navigation, during sequential processing

[81]). Whether or not a more intensive, far-reaching sweep occurs depends on a trade-off

between its costs (e.g., costs of computation and the time consumed by it) and benefits (e.g.,

whether or not engaging in far-looking prediction is useful for action selection). From a

computational perspective, one can characterize the benefits of a far-reaching sweep by con-

sidering the (epistemic) value of information that it may make accessible [23,52]. This would

explain why sweeps predominantly occur at difficult choice points [7], and why repeated expo-

sure to the same contingencies lowers choice uncertainty, thus rendering deep search unneces-

sary. In keeping, our information-theoretic approach automatically determines the utility of

performing a forward sweep and sets its depth, by considering the initial uncertainty and the

value of the to-be-acquired information [23,82]. Neurophysiologically, the decision of whether

or not to engage in deep search has been hypothesized to involve the prelimbic area (in

rodents) [20].

The current MB-RL implementation has a number of limitations, which we briefly summa-

rize here. First, the neurophysiological implementation of internally generated neuronal

sequences is more sophisticated than our simplified implementation; for example, there are at

least two classes of internally generated sequential activity patterns, termed theta sequences

(and sometimes forward sweeps) [7,38,83] and sharp wave ripple sequences (also called replay)

[84], which have different neurophysiological signatures and possibly different (albeit coordi-

nated) roles; see [13] for a review. Replay activity in the hippocampus has already inspired var-

ious methods for improving learning (e.g., experience replay [30]) or hybridizing model-free

and model-based computations (e.g., DYNA [29]); understanding neuronal sequential activity

in more detail might permit going beyond these metaphorical mappings and potentially design

improved algorithms. A second, related limitation of the current model is that only focuses on

forward replays and does not take into account backward replay, which may have a separate

computational role. Both forward and backward replays are observed at rest periods (e.g., dur-

ing sleep), suggesting that they are useful for consolidating the internal model [14]. However,

recent evidence suggests that reverse replays are more prominent during the awake state, after
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(novel) reward observations [85,86]. This makes sense if one considers that backward replays

may help learning from recent rewards, possibly using some sort of "eligibility trace" [87] to

update the current model or the current policy. More broadly, one may conceptualize replays

in terms of epistemic actions that aim at gathering (the best) evidence to improve the internal

model [52]. In this perspective, it becomes plausible that different kinds of memory contents

need to be accessed during sleep, before a choice and after obtaining a reward; see [88] for a

recent computational characterization of hippocampal replay in terms of prioritized memory

access. Endowing the current model with the ability to "direct" (forward or backward) replays

to informative memory content—possibly using a mechanism that marks memories or places

with saliency information [89]—is an open research objective. Third, since head direction

input is used to classify latent states, the resulting place fields are directional. While place cells

often have some directionality in their fields, our model does not account for non-directional

or omnidirectional aspects of the fields. This also implies that in order to select an action, the

MB-RL agent needs to know its orientation (using e.g., head direction cells). This design

choice was made for the sake of simplicity and has no major implications for the phenomena

we were interested in; however, extending the model to obtaining omnidirectional place fields

(e.g., as shown in Fig 4, in which place fields are averaged across all directions) would help

reproducing more accurately neurophysiological data. Furthermore, our model treats the (hip-

pocampal) state space as flat. An interesting alternative possibility that deserves future investi-

gation is that the hippocampal code is hierarchically organized along a septo-temporal axis,

with more temporal cells that encode information that are broader in space (e.g., place and

grid cells having larger firing fields [90–92]). Hierarchical organization of the state space can

be productively investigated in our framework by rendering the Bayesian nonparametric

approach hierarchical, or manipulating its concentration (α) parameter. A final limitation of

the current model is that it uses simplified grid cells. Several modeling approaches have been

proposed that explain grid cells in terms of (for example) attractors [93,94], oscillators [95] or

an eigendecomposition of state space [69], which may be exploited to develop more realistic

grid cells within our proposed model.

Methods

MB-RL agent: Sensors and action primitives

The MB-RL agent is characterized by position and orientation information, provided as real

values, relative to a coordinate system with a unit step size. The y-maze is centered on the ori-

gin of the agent’s coordinate system and the overall diameter of the maze is about 16 arbitrary

units. The agent could move with constant speed using three action primitives: (i) step 1.5

units forward, (ii) turn 90 degrees to the left and make a 1.5-units step, and (iii) turn 90 degrees

to the right and make a 1.5-units step. The effective turn and step size were noisy values

(Gaussian noise, σ = 0.1). At each discrete time moment, the agent selects one of the three

actions and moves; after each action, it obtains sensory information and (sometimes) reward.

The MB-RL agent receives sensory information from two sensors: a head-direction (i.e.,

orientation) sensor h and (a simplified model of) grid cells G; the agent has no further position

or proximity sensors. In the rat, head-direction cells located in the postsubiculum part of the

HC and in the anterior thalamic nuclei discharge as a function of the horizontal orientation of

the head, also in darkness, within a preferred sector extending about 90 degrees that persists

even for weeks [96] and are hypothesized to drive place fields [97]. In keeping, our orientation

sensory unit h provides a discrete, 4-level signal that reduces the true orientation to four non-

overlapping 90-degree sectors.
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In turn, information about the spatial regularities derives by the so-called grid cells located

in the medial entorhinal cortex (MEC) as reviewed in [98]. The discharge pattern of each grid

cell resembles a hexagonal grid characterized by spatial frequency (spatial range from, e.g., 0.3

to 3 m), phase, and orientation (see Fig 1C). Several models propose detailed explanations of

how this pattern could be produced, e.g., oscillatory interference [95] and attractor networks

[93]. Here we used a simplified mathematical model that constructs the typical hexagonal pat-

tern of the grid cells by summing three 2D sinusoidal gratings oriented π/3 apart [99]:

G x; yð Þ ¼ 2
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Þ

�
, where ki = 1. . .3 stand for 2D oriented ramps with spa-

tial phase r0 = [x0,y0]. We equipped our model with 11 grid cells with spatial frequencies rang-

ing from 2 to 7 cycles per maze (step 0.5) and randomly drawn grid orientation and phase

(samples in Fig 1C). Each grid cell provides a binary signal sampled on a unit-step grid. The

binary signal from all grid cells was combined multiplicatively to provide a signal G with about

500 different levels.

Finally, in order to simplify the recognition of target goal sites, we endowed the agent with

an implicit target-recognition mechanism, which provides target identity (but not position,

which has to be inferred on the basis of the above sensory information). Upon approaching

the target within a unit distance, the MB-RL agent receives reward with a given probability,

which depends on the experimental phase (see below).

MB-RL agent: Architecture

The synthetic agent was implemented as a (Bayesian) model-based reinforcement learning

(MB-RL) controller, having three key components (Fig 1D). This and the following figures

illustrate the model using the formalism of Bayesian networks, which show the model variables

(circles) and the conditional distributions (rectangles) linking them.

Latent state categorization mechanism. The latent state categorization mechanism

learns to categorize the combined head-direction and grid-cell input signal x = G×h into latent

states s containing implicit spatial information. This component abstracts the acquisition of

place cells [5], which form the model’s emergent (latent) state space on top of which state-tran-

sition and state-value models are learned. The non-parametric categorization of the internal

input signal is implemented using a growing probability distribution Pc(s|x) whereby each

novel input signal extends the distribution with a new conditional entry. The new entry is ini-

tialized according to a Dirichlet process mixture, also known as the Chinese restaurant process

(CRP) [100], with a prior that accounts for the popularity of the categories developed thus far.

Critically, this categorization is further updated to account for behaviorally relevant transition

contingencies (see later).

State-transition model. The state-transition model learns the effects of executing a given

action primitive a in the emergent latent state-space domain: s × a! s0 where s0 is the expected

latent state after the transition. This model is intended to abstract the functions of the hippo-

campus. It is implemented as a conditional multinomial probability distribution PM(s0|s,a)

~Cat(θ) parametrized by a Dirichlet conjugate prior θs,a(s
0)~Dir(α) that keeps a count of the

number of time each state s0 is reached when the agent started from state s and selected action

a.

State-value model. The state-value model learns the value r of each latent state s given a

goal or target g. This model is intended to abstract the functions of the ventral striatum. The

state-value model defining the reinforcement contingencies is implemented as a conditional

binomial probability distribution of reinforcement Pv(r|g,s)~B(φ) (rewarded: r = 1, not

rewarded: r = 0) parameterized by a Beta-conjugate prior φg,s(r)~Beta(β). For each combina-

tion of g and s, the model (through its conjugate prior) accounts for the number of successes
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(reward) and failures (no reward) during the entire learning experience (see later for details).

Note that at difference with most RL models, the value of states depends on the current goal g.

This is in keeping with evidence that vStr encodes item-specific values, not just scalar values

[8].

MB-RL agent: Control mechanism

We tested the behavior of the simulated agent in conditions that mimic the experimental

manipulations of the animal study [19]. During the cue conditioning (Cue) and contextual con-
ditioning (Context) phases, action selection (i.e., the Bayesian inference of the next action) was

conditioned on a specific cued target g; this corresponds to the fact that, in the animal study,

the correct goal location was cued with a light. Rather, during the context conditioning test (CX
test) phase, action selection operated in a “free-running mode” in which the target was not

externally cued and the animal was able to navigate and search for a reward freely.

To select an action, the control mechanism first reads the combined input signal xt from

the head-direction sensor and the grid cells and uses the categorization distribution to select

the corresponding most likely latent category, or state st = argmaxs Pc(s|xt). Then, assuming a

Markov Decision Process, inferential action selection maximizes the likelihood to obtain

reward for a given target or goal: at = argmaxaP(r = 1|g,st,a). Assuming further that the value

depends only on the landing state following the selected action, we can factorize the value dis-

tribution: P(r|g,s,a) = ∑s0 Pv(r|g,s0) PM(s0|s,a). Thus, the control mechanism could use the state-

transition model PM(s0|s,a) to simulate action execution, and the state-value model PV(r = 1|g,

s0) to evaluate the (immediate) expected outcomes under the various possible actions. Note

that in practice, evaluating all the latent states would require high computational costs, espe-

cially for a large latent state-space–and such exhaustive evaluation would consider subsequent

states that are highly unlikely, e.g., two states that lie in different corners of a maze. A more

effective approach would consist in using an approximation that only evaluates the state s̃ that

most likely would be visited upon executing a given action a : ~s ¼ argmaxs0PMðs0jst; aÞ; and

this approach could generalize to simulated further transitions for deeper value prediction. In

the simulations below, we compare the behavior of two control mechanisms: a controller that

uses a form of lookahead prediction (forward sweeps) and one that dispenses from using it

(baseline).

Baseline (Shallow) controller

The baseline controller shown in Fig 8 selects the action ai that maximizes the immediately

obtainable reward, i.e., at ¼ argmaxaiPðr ¼ 1jg; st; aiÞ locally predicted with the help of the state-

transition and state-value models: ~si ¼ argmaxs0PMðs0jst; aiÞ and at ¼ argmaxiPVðr ¼ 1jg;~siÞ,

which we can combine in a single expression: at = argmaxa PV(r = 1|g,argmaxs0PM(s0|st,a)). How-

ever, this one-step prediction method is quite myopic as it does not consider future events.

Controller using look-ahead prediction or forward sweeps

We designed an action selection mechanism based on forward sweeps (Fig 9) that generalizes the

idea of local value maximization by using a limited form of forward search: it performs one forward

sweep for each available action primitive ai in order to estimate the future value obtainable as a result

of applying this action. For each action ai, the policy first simulates one transition that starts from

the current state and applies that action: st � ai ! ~si
1

where ~si
1
¼ argmaxs0PMðs0jst; aiÞ. Then it iter-

atively performs a series of simulated transitions, each one locally maximizing the expected reward

without restriction on the action: ~sij ¼ argmaxs0Pvðr ¼ 1jg; argmaxs0PMðs0j~sij� 1
; :ÞÞ. Reward
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evidence ~r i for each action ai gradually accumulates along each step of each sweep: ~ri
j ¼
P

j¼1...l

Pvðr ¼ 1jg;~si
jÞ. The accumulated reward evidence drives stochastic action selection using the soft-

max function (here, with exponent coefficient β = 80).

We optimized the efficiency of our sweep-based approach by taking into account a cost-

benefit trade-off between the availability of more information and the computational costs

required to execute long sweeps. From a theoretical perspective, forward sweeps can be

stopped when there is sufficient discriminative evidence for action selection choice [23]. To

model this, we defined an information-based measure of decision certainty that uses the transi-

tion- and value- models to decide which action to simulate and how far to deepen the sweeps

(Fig 10). First, the value vs of being in a state s was defined as the negative uncertainty of the

probability to obtain reward in that state, i.e., vs = log2 Pv(r = 1|g,s). Then, the decision certainty

dij of taking action ai (assuming that it brings to state ~si) instead of action aj (expected that it

brings to state ~sj) was defined as the difference dij ¼ v~si � v~sj . Thus, to optimize sweep length,

at each depth we calculated the decision certainty d relative to the two actions with greatest

cumulative evidence for reward (see Supporting Information S1 File). Note that the log-

Fig 8. Shallow control mechanism. It exploits the state-transition and state-value models and local maximization to

predict the expected value ~r i of each action primitive ai and select the most valuable one. For each action primitive, the

mechanism first finds the latent state that most likely would be achieved by applying that action and then finds among

those states the predictably most valuable one. The action bringing to that state is the selected one: at = argmaxa
Pv(r = 1|g,argmaxs0PM(s0|st,a)).

https://doi.org/10.1371/journal.pcbi.1006316.g008

Fig 9. Controller using look-ahead prediction (or forward sweeps). The mechanism includes k sweeps, one for each available

action primitive, each consisting of l steps. At each step j, the mechanism first iteratively predicts the next latent state of each sweep i :

~sij ¼ argmaxs0Pvðr ¼ 1jg; argmaxs0PMðs0j~sij� 1
; aÞÞ and then accumulates the predicted value for that state: ~r ij ¼ ~r ij� 1

þ PVðr ¼ 1jg;~sijÞ.
The first transition of the i-th sweep departs from the current latent state st and applies action primitive ai while the following

transitions recursively depart from the predicted state in the previous step and use any action that maximize the predicted reward.

Finally, the mechanism selects the action that maximizes the cumulative predicted value: at ¼ argmaxi ~r i.

https://doi.org/10.1371/journal.pcbi.1006316.g009
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difference used to calculate this value implicitly normalizes the accumulated evidence into

probabilities. The sweeps were stopped when the decision certainty exceeded a threshold

(here, 0.15) and the action with the greatest accumulated evidence for reward was selected.

MB-RL agent: Learning procedure

In general, the objective of the MB-RL agent is to obtain maximum reward by moving from a

given start-position to a given goal-position, which may vary during the learning process (see

later). Following a MB-RL approach, starting from an empty memory, the system has to learn

a probabilistic model of the environment (i.e., the transitions from state to state in the maze)

and the distribution of reward given the target (or goal), which varies from trial to trial (here,

limited to 9 possible goals as in the rodent experiment). Learning thus consists in adjusting the

probability distributions of the two (state-state and state-value) agent models on the basis of

experience, using Bayes’ rule [101]. Importantly, like other deep RL experiments, the model is

not provided with a predefined state space, but also has to simultaneously learn to categorize

the internal input signal x = G×h into behaviorally useful (spatial) categories s that represent

the location of the agent in the maze. In sum, the agent has to simultaneously learn three

things: state-state and state-value models, and state space; and learning is end-to-end (i.e., all

parameters are trained jointly), see Fig 11.

In our simulations, learning consisted of a sequence of trials, each of which started from a

random position and had the goal to reach a randomly selected target within 32 time steps.

Upon approaching the target within one unit distance and this time limit, the artificial agent

received reward with a certain probability. Upon obtaining reward (or after the time limit had

expired), a new trial began. Like our animal study [14], learning was divided into two phases

that differed on reward distribution. In the first, Cue Conditioning phase that lasted for 2.000

trials, reaching a target within the time limit was rewarded with 100%. The starting position in

the first 360 trials of this phase was the central area (within 4 units from the center). In the sec-

ond, Contextual Conditioning phase that lasted for 700 trials, reward probability was 75% for

the targets in a selected high-reward chamber (fixed for each agent) and 25% for the targets in

the other two, low-reward chambers. The amount of reward obtained was increased to main-

tain the overall reward availability compatible to that in the first phase. The number of simu-

lated learning trials matched those of the animal experiment [19].

In our simulations, we test two different learning procedures: a baseline procedure and a

forward sweep procedure. The two procedures use the same methods for learning the state

space and the state-state (transition) models. However, they differ in how they learn the state-

value model. They both use the transition model to retrieve the value of possible future states

Fig 10. Information-driven adaptive sweep-depth. At each depth j is calculated discriminative certainty dj ¼

log
2
ð~rj max1Þ � log

2
ð~rj max2Þ for the two currently most valuable sweeps. Sweep depth increases until the selection

certainty exceeds a given threshold: dj> dthr.

https://doi.org/10.1371/journal.pcbi.1006316.g010

Model-based spatial navigation in the hippocampus-ventral striatum circuit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006316 September 17, 2018 20 / 28

https://doi.org/10.1371/journal.pcbi.1006316.g010
https://doi.org/10.1371/journal.pcbi.1006316


and to update the value function on-line; however, the baseline learning procedure uses a

short prediction (equivalent to a sweep of length 1) while the forward sweep procedure uses a

longer look-ahead (i.e., sweeps of length 9—a length that is compatible with forward sweeps

reported in the literature [7]).

Below we explain in detail how (the probability distributions of) the three components of

the MB-RL are learned. All the learning procedures essentially consist in performing Bayesians

update of the (conjugate priors of the) probability distributions, in the light of novel observed

evidence. Note that hereafter we distinguish the prior from the posterior distributions with the

help of additional time-index.

State space learning. State space learning uses Bayesian nonparametrics to categorize the

input signal, with Chinese Restaurant Process (CRP) priors over the emergent categories

[100]. This approach offers an unbounded latent space, but the CRP prior adapts the model

complexity to the data by expanding it in a conservative way. Thus, any novel, or unexper-

ienced so far input xn+1 is “assigned” to a new category or state snew with a small probability

Pc(snew|xn+1) = α/A (controlled by a concentration parameter α, here α = 20) or to previously ini-

tialized latent state si according to its popularity across all experienced input states Pc(si|xn+1) =

∑jPc(si|xj)/A where A = α + ∑i,jPc(si|xj) is a normalizing factor. At each time step t, an input signal

xt evokes the most probable input-specific latent state st ¼ argmaxsPt
cðsjxtÞ that is in turn used

for action selection and learning. Critically, the belief in the category-assignment Pt
cðsijxt� 1Þ

of the last input state xt−1 is scaled for every state si with the state-transition contingencies

Fig 11. Learning the latent state-space, the state-transition and state-value models. Given (1) the last input xt−1 and latent state st−1, (2) performed action at−1, (3)

observed new input xt, reward rt, and inferred latent state st, learning consists of (5) adjusting the categorization model Pt
cðsijxt� 1Þ to make it more congruent with the

state-transition model and updating the conjugate priors yst� 1 ;at� 1
ðstÞ and φg;st

ð:Þ of the state-transition and state-value models to accommodate the internal perception of

the experienced behavioral evidence (see the text for details). Notably, the update of the state-value conjugate is a Bayesian analog of TD-learning using predicted

discounted future value ~φ accumulated in (4) a forward sweep.

https://doi.org/10.1371/journal.pcbi.1006316.g011
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Pt
Mðstjsi; at� 1Þ (adapted from [56,102]):

Ptþ1

c ðsijxt� 1Þ ¼
Pt
Mðstjsi; at� 1ÞPt

cðsijxt� 1ÞP
jPt

Mðstjsj; at� 1ÞPt
cðsjjxt� 1Þ

ð1Þ

This method creates an implicit dependency between state space and state-state (transition)

learning, in the sense that states assignment or categorization is retained with higher probabil-

ity if it is congruent with the emergent transition model. Thus, a novel aspect of our MB-RL

approach is that state-transition and state-value learning work in synergy with category- (or

state-space-) learning to afford the acquisition of an effective internal model of the experienced

interactions with the external environment, from scratch.

Two technical points are worth noticing to contextualize our approach. First, our latent-

state model Pc(s|x) is a perceptual model, which permits inferring latent state s (e.g., the cur-

rent location) corresponding to the current sensory state x. This is distinct from the SR

approach [35,69,75,76], which encodes a predictive representation of future states (e.g., of

future locations). The two learning methods may seem similar, especially because we use a part

of the transition model PM(s0|s,a) to learn a behaviorally relevant space of latent states, see Eq

(1). However, it is important to note that we use the probability of the "source" state s, not of

the "outcome" s0, to adjust the perceptual model. This renders the state space and state transi-

tion model coherent, but does not yield predictive representations as in the SR approach. In

other words, the predictive aspect of the MB-RL agent consists in using model-based, look-

ahead prediction, as opposed to using predictive state representations as in the SR approach.

Second, in our simulations, the concentration (α) parameter plays a permissive role in the

expansion of the latent state-space: the smaller the α, the smaller the probability that new latent

states will be formed. This parameter operates only within the state space learning mechanism

and is fully distinct from the parameters of the other model components, such as the (informa-

tion-driven) mechanism that sets the depth of sweeps explained above, or the discounting

factors.

State-transition model. After executing an action at−1, the agent obtains a new observa-

tion (sensory measurement xt), infers the corresponding latent state st, and updates its transi-

tion distribution st−1 × at−1! st, i.e., learns the transition model (see Fig 11). To that aim, the

conjugate Dirichlet prior of the conditional multinomial distribution is updated with the new

evidence in the latent-space domain: y
tþ1

st� 1 ;at� 1
ðstÞ ¼ y

t
st� 1 ;at� 1

ðstÞ þ 1 and then normalized, to

obtain the posterior of the state-transition multinomial Ptþ1
M ðs

0jst� 1; at� 1Þ.

State-value model. The state-value model Pt
vðrjg; sÞ is updated using a temporal-differ-

ence (TD) like manner that at each learning step accounts for the past experience, or conjugate

prior φt
g;s, observed true reward rt, and predicted future value. The agent makes internal simu-

lations (or sweeps) of length l (here, l = 1 for the baseline learning procedure and l = 9 for the

forward sweep learning procedure) conditioned on the latent state st. During the sweeps, the

agent accumulates expected future values in terms of parameters of the conjugate distribution of

the model of reward, ~φ ¼
P

i¼1...l giφgt;~si
, applying a discount factor (here, γ = 0.90). At each step

i of the sweep, the BM-RL agent exploits a mechanism analogous to the forward sweeps used for

control to collect predicted state values. As shown on Fig 11, the mechanism uses the state-tran-

sition and the state-value models, and local maximization to infer the latent states of the sweep,

i.e., the states with the greatest reward expectancy among all the states that are achievable within

one action from the previous state: ~si ¼ argmaxs0Pvðr ¼ 1jg; argmaxs0PMðs0j~si� 1; :ÞÞ where

~s0 ¼ st . Then, the conjugate prior of the conditional binomial distribution of reward is updated

in a way that is analogous to temporal difference (TD) learning [1] and which considers the

(immediately) observed reward rt, and value φObs = [1 − rt,rt] and the (predicted) future value
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expectancy: φtþ1
gt;st
¼ φt

gt;st
þ aðφObs þ ~φ � φt

gt;st
Þ. The learning coefficient α decreases along with

time on a log scale (α = α0/log10(t), α0 = 1.5). This learning schedule gradually shifts the value-

learning policy, from relying on new evidence to exploiting acquired knowledge. Finally, the pos-

terior is obtained by normalizing the updated conjugate: Ptþ1
v ð: jgt; stÞ ¼ φtþ1

gt ;st
ð:Þ=
P

r¼0::1
φtþ1

gt ;st
ðrÞ.
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