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sequencing of whole genome, whole exome and
transcriptome
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To evaluate the potential of an integrated clinical test to detect diverse classes of somatic and
germline mutations relevant to pediatric oncology, we performed three-platform whole-
genome (WGS), whole exome (WES) and transcriptome (RNA-Seq) sequencing of tumors
and normal tissue from 78 pediatric cancer patients in a CLIA-certified, CAP-accredited
laboratory. Our analysis pipeline achieves high accuracy by cross-validating variants between
sequencing types, thereby removing the need for confirmatory testing, and facilitates com-
prehensive reporting in a clinically-relevant timeframe. Three-platform sequencing has a
positive predictive value of 97-99, 99, and 91% for somatic SNVs, indels and structural
variations, respectively, based on independent experimental verification of 15,225 variants.
We report 240 pathogenic variants across all cases, including 84 of 86 known from previous
diagnostic testing (98% sensitivity). Combined WES and RNA-Seq, the current standard for
precision oncology, achieved only 78% sensitivity. These results emphasize the critical need
for incorporating WGS in pediatric oncology testing.
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linically important biomarkers for diagnosis, risk stratifi-

cation, and targeted therapy for pediatric cancers include

diverse types of somatic and germline genetic lesions!. For
example, the diagnostic workup of pediatric leukemia alone
evaluates the chromosomal ploidy (e.g. hyperdiploid for low risk,
hypodiploid for high risk), gene fusions (e.g. BCR-ABLI for high
risk, ETV6-RUNX1 for low risk, PML-RARA for targeted ther-
apy), complex re-arrangements (e.g. iAMP21 for high risk), copy-
number alterations (CNA) or sequence mutations (e.g. IKZFI
disruption for poor prognosis), and other structural variations
(e.g. FLT3 internal tandem duplication—ITD).

Traditional workflows to capture these diverse genetic
abnormalities in the clinic are complex and multimodal, often
including a combination of karyotyping, fluorescent in situ
hybridization, copy-number microarray, quantitative RT-PCR,
and Sanger sequencing. Such workflows lack the scalability and
flexibility necessary to incorporate recently discovered lesions and
are of limited use for studying cases with complex or non-
standard findings>~.

The growing need to simultaneously interrogate a large num-
ber of loci within a clinically-relevant timeframe has directed a
shift towards next-generation sequencing (NGS)>. Recently,
clinical NGS tests using targeted gene panels or whole exome
sequencing (WES) have been used to identify pathogenic
sequence mutations including single nucleotide variations (SNVs)
and small insertion-deletions (indels) in both adult®~® and
pediatric cancer studies®-10. Several studies also incorporated

transcriptome sequencing (RNA-Seq) for detection of gene
fusions and outlier expression!!!2. Whole genome sequencing
(WGS) is the most comprehensive platform for cancer genome
profiling. However, clinical adoption of WGS has been limited
to pilot studies involving very small numbers of cases (mostly <
10)!2-17 and the median turnaround time for generating the final
clinical report may exceed 100 days due to mandatory secondary
validation of variants by a CLIA-certified lab!>18,

We hypothesized that a multi-platform NGS test combining
WGS, WES, and RNA-Seq would improve both the compre-
hensiveness and the accuracy of detection and classification of
somatic and germline variants important for cancer diagnosis,
stratification, and treatment. Such testing could simultaneously
simplify the diagnostic algorithm by replacing gene-specific or
panel-based tests, remove the need for iterative testing and vali-
dation of the results by Sanger sequencing, and decrease the
burden on those reviewing cases. To date, such a comprehensive
approach remains largely unexplored, without any study to sys-
tematically evaluate the accuracy and diagnostic yield compared
to alternative approaches.

We carried out a pilot study of three-platform sequencing by
performing WGS and WES on paired tumor and normal samples
and RNA-Seq on tumor samples in a CLIA-certified, CAP-
accredited laboratory (Fig. 1a). Our selected 78 pediatric cancer
patients had known biomarkers of diverse types including SNVs,
indels, CNA and structural variants (SV) identified by multiple
molecular pathology assays (Fig. 1b). We developed an analytical
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Fig. 1 Design of clinical three-platform sequencing. a Overview of sequencing, variant detection, variant classification, panel review and report generation.
Chromothripsis was used as an annotation for ploidy report and we followed guidelines by Korbel and Campbell>°. b Selection of 78 pediatric cancer
patients with biomarkers identified by multiple molecular pathology assays
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pipeline to detect, integrate and cross-validate somatic!**® and

germline variants predicted by each platform and to perform pre-
liminary pathogenicity classification that was then reviewed by a
multidisciplinary expert panel. We performed extensive experi-
mental validation to establish the sensitivity and positive predictive
value (PPV) of three-platform sequencing, and assessed the diag-
nostic yield of clinically important somatic and germline variants of
each platform either alone or in combination.

We show that three-platform sequencing achieves both high
sensitivity of 98% of known pathogenic variants and a high PPV
of 97-99, 99, and 91% for somatic SNVs, indels and structural
variations, respectively. In contrast, 78% of the pathogenic var-
iants were detected by combined analysis of WES and RNA-Seq,
which represents the current gold standard for precision oncol-
ogy. The results of our study emphasize the critical need for
incorporation of WGS in clinical sequencing, particularly in the
context of pediatric oncology.

Results

Case selection. Seventy-eight pediatric cancer patients, including
36 with hematologic malignancies, 16 with brain tumors, and 26
with other solid tumors, were selected for three-platform
sequencing (Supplementary Data 1). These cases harbored
diverse types of clinically significant genomic alterations that had
been detected previously by a variety of molecular assays (Fig. 1b;
Supplementary Data 2). The cases were chosen to be broadly
representative of the pediatric cancers treated at our institution,
but also to be genetically heterogeneous with differing tumor
purity, ploidy, structural genome complexity, and mutational
burden (Supplementary Data 2 and 3). We specifically included
genetic lesions and tumor specimens that are challenging to
detect or interpret by NGS such as FLT3-ITD, KIAA1549-BRAF
fusion, variants from high-GC exons?!, complex structural rear-
rangements, and samples with low tumor purity, intra-tumor
heterogeneity, and/or tumor-in-normal contamination (Supple-
mentary Data 2, 3). The average tumor purity was 0.81 (range
0.21-1.00) and 14% (11/78) of the tumor specimens had purity <
0.5 (Supplementary Data 3).

Research WGS had been performed previously for 33 tumor-
normal sample pairs as part of the St. Jude Children’s Research
Hospital/Washington University Pediatric Cancer Genome Pro-
ject (PCGP). The average coverage of PCGP WGS for tumor and
normal samples ranged from 29X to 83X and 24X to 43X,
respectively, as low purity tumor specimens were sequenced at
high depth (Supplementary Data 3). Prior findings made from
PCGP provided an important benchmark for validating our
sequencing and analytical processes and for assessing the
sensitivity of three-platform sequencing. For the present study,
new clinical WGS, WES, and RNA-Seq data were generated for all
33 overlapping cases. DNA for 13 tumors and 17 normal samples
were re-extracted from a different isolate while the same
specimens were used for the remaining 20 tumors and 16 normal
samples.

Sequence coverage. DNA and RNA were extracted from frozen
tumor tissue while matched normal DNA was extracted from
peripheral blood, remission bone marrow, histologically normal
tissue, and sorted T-cells (Supplementary Data 1). Crucially, we
used a PCR-free whole genome sequencing strategy that mini-
mized amplification-related coverage bias and sequencing arti-
facts (Supplementary Fig. 1). We achieved a mean coverage for
tumor and normal WGS of 38X and 36X respectively, and 110X
and 103X for tumor and normal WES respectively (Supplemen-
tary Fig. 2; Supplementary Data 3). RNA-Seq had > 20X coverage
of 30% of exons for tumor total RNA (Supplementary Data 4).

90% of the germline WGS and 90% of the germline WES samples
met a target of > 80% coding exons with > 20X coverage required
for high-quality variant detection (Supplementary Data 4).

Analysis overview. We first analyzed sequence data with an
automated pipeline developed specifically for three-platform
sequencing. The pipeline detected both somatic and germline
SNVs, indels and ITDs, arm-level and focal CNAs and loss-of-
heterozygosity (LOH) as well as somatic SVs and RNA-Seq gene
fusions. It also estimated tumor purity using variant allele fraction
of polymorphic germline SNVs within CNA and LOH regions.
Central to our automated framework was cross-validation, where
evidence from two or three-platforms was combined to support
the validity of each variant. Preliminary variant pathogenicity
classification was carried out by automated searching of multiple
somatic and germline mutation databases and in silico prediction
of the functional impact of each variant.

Following the automated pipeline run, an analyst manually
reviewed high quality or cross-validated variants, flagging those
with potential clinical relevance. This included all types of
somatic variation genome-wide, as well as germline non-silent
mutations and CNAs affecting 61 cancer predisposition genes®?
(Supplementary Data 5). Where pertinent, mRNA expression,
aberrant splicing, and germline mosaicism were also investigated.
Lastly, the analyst assessed the existence of tumor-in-normal
contamination—for example, when leukemic blasts are found in
peripheral blood—by examining the mutant allele fraction (MAF)
of likely somatic mutations in the germline WGS and WES
samples. A multidisciplinary panel of experts then reviewed each
potentially clinically-relevant variant, taking into account all
available cross-platform information. Separate draft reports were
generated for committee-approved somatic and germline patho-
genic and likely pathogenic variants.

Integrative analysis of genomic alterations. An important aspect
of our analysis was the cross-platform integration of genomic
alterations. For SNVs and indels, this proved extremely useful in
eliminating false positive predictions (Supplementary Note 1).
The specific details of SNV and indel cross-platform validation
are included in the Methods section while our integrated SV/
CNA analysis is discussed below.

Structural and copy number abnormalities are key biomarkers
for pediatric oncology, and integrated SV/CNA/gene fusion
analysis using three-platform sequencing significantly improved
detection over any single platform. We detected somatic SVs
from WGS using CREST?, and performed integrative SV/CNA
detection using CONSERTING?* to identify subclonal or
complex SVs linked to CNAs. For comparison purposes, we also
performed CNA analysis on WES using the Sequenza algo-
rithm?°. We detected RNA-Seq gene fusions, ITDs and other
disruptions arising from truncations, promoter swaps and read-
through using Cicero (Li et al, in preparation). SVs/CNAs
derived from DNA were merged with matching RNA-Seq events,
allowing the analyst to review the variant and evaluate its
functional impact with a view of all available evidence (Fig. 2a).

An example of integrative DNA-RNA SV analysis is demon-
strated in the detection of a complex PDGFRA gene fusion in a
high-grade glioma (Fig. 2b). This sample contained a high-level
complex amplification that included exons 10-23 of PDGFRA
with exons 1-9 being excluded from the amplified region. Three
fusion transcripts were detected in RNA-Seq, connecting exon 1
of DIP2C located on chromosome 10 to each of exons 10, 11, and
12 of PDGFRA on chromosome 4. A DNA SV detected in WGS
has one breakpoint in PDGFRA intron 10 and the other in DIP2C
intron 1. In RNA-Seq, two fusion transcripts involving PDGFRA
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Fig. 3 Accuracy of somatic variant detection based on capture validation of 18 cases with PCGP data. a Design of capture validation for measuring

sensitivity and PPV of our analytical pipeline using somatic exonic SNV/indel detection as an example. For exonic SNV/indel, variants that passed the
cross-validation filter and had adequate coverage from custom capture sequencing were considered “predicted positives”. Predicted positives that were
validated by capture sequencing are considered true positives whereas all variants—including those that failed to be detected or those filtered by cross-

validation filtering—that were validated by capture sequencing are considered

‘actual positives”. b Summary of PPV (true positives/predicted positives) for

each variant type. The predicted positive variants for exonic indels and SNVs are the variants that pass the cross-validation filter, whereas other SNVs,
which refers to high-confidence non-exonic SNVs, are based on WGS only; as such, they are reported separately. Our test does not report non-exonic
indels, so they are omitted. € Summary of sensitivity (true positives/actual positives) for each variant type. For exonic SNV/indel, most of the variants are
detected by our variant detection pipeline on both WGS and WES (WGS+WES) platforms; of those that are detected by our pipeline on one platform,
results for WGS and WES were comparable, with slightly more detected by WGS. The “Missed” variants are the false negatives; they were removed by

cross-validation filtering or only detected by PCGP

exons 11 and 12 can be mapped to this DNA SV. However, the
fusion transcript involving PDGFRA exon 10 is mapped to a
different DNA SV that connects PDGFRA and DIP2C via an
intermediate segment on chromosome 11. This 3-chromosome
SV matched the boundary of a CNA with an estimated copy
number of 22 on PDGFRA and its connection to the PDFGRA
fusion was not recognized previously in our research profiling of
this tumor2®. The presence of multiple SVs, CNAs and fusion
transcripts suggests that DIP2C-PDGFRA re-arrangement may
have occurred independently either in the same tumor cell or in
different subclones and that the PDGFRA fusion resulted in a
constitutively active kinase?”-?® (see Supplementary Note 2 for
more details).

Analytical performance of somatic variant detection. We next
evaluated the performance of somatic variant detection by three-
platform sequencing. We focused our analysis on 18 cases that
had been sequenced in the PCGP and had validation sequencing
by custom capture. We used the variants that were successfully
captured during the validation experiment to evaluate sensitivity
and PPV.

To determine positives for calculating PPV, we used final
variant calls, which were the product of quality filtering, cross-
validation analysis to integrate variant calls from multiple
platforms (Methods), and manual review for all mutation types
except non-exonic SNVs, for which we included only high
confidence variants (Fig. 3a, Supplementary Data 6A-D). Three-
platform sequencing achieved high PPVs of 99% for 662 exonic
SNVs, 99% for 84 exonic indels, 97% for 12,978 other non-exonic
SNVs and 91% for 1493 SVs (Fig. 3b). We extended the analysis
to an additional 20 cases with capture validation but no PCGP
data, and observed similar validation rates of 98, 99, 98, and 86%,

respectively (additional data is made available online at https://
pecan.stjude.cloud/permalink/cts).

To evaluate sensitivity, we assembled a truth dataset composed
of validated variants detected by various molecular pathology
methods, PCGP and three-platform sequencing. Previously,
research WGS of matched tumor and normal samples was
performed at the Washington University Genome Sequencing
Center (WUGSC), and somatic variants were predicted by two
independent bioinformatics pipelines (St. Jude and WUGSC) and
validated by custom capture sequencing?!. Structural variation
prediction was unsuccessful in the PCGP for the case STHGG001
due to poor WGS quality, so this case was omitted from the
sensitivity calculation for SVs. Combining the validated variants
resulted in 695 exonic SNVs, 88 exonic indels and 1759 SVs.
Three-platform sequencing achieved a high sensitivity by
detecting 94% of SNVs, 94% of indels and 76% of SVs (Fig. 3c).

As shown in Fig. 4, a single osteosarcoma, SJOS013,
contributed 25% of the false negative exonic SNVs (10/42) and
75% of the false negative SVs (310/415) in our cohort. The
unusually low sensitivity was likely caused by sample character-
istics as tumor DNA from SJOS013 was re-extracted from a
different isolate. SN'Vs found by both studies exhibited a 50%
reduction in MAF in the clinical pilot sample relative to the
PCGP sample (Fig. 4b). By contrast, the corresponding relative
MAF values for an unrelated osteosarcoma (SJOS001) were in
near perfect agreement (Fig. 4a). The reduced sensitivity is,
therefore, most likely due to tumor heterogeneity and, specifically,
lower tumor purity of the sample analyzed by the clinical pilot
study. Another sample with low sensitivity in SNV detection
(79%) was SJHGGO001, in which the germline sample was taken at
limited autopsy from the cerebellum relatively close to the
pontine tumor. Although infiltrating tumor cells were not
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Fig. 4 Comparison of clinical-PCGP concordance of two osteosarcoma cases. For each case, two venn diagrams show overlap between PCGP calls and
clinical calls, and a scatter plot compares the SNV MAF obtained by capture validation performed during the present clinical study (x-axis) and previously
by the PCGP validation lab (y-axis). The SNVs used for a MAF plot included both exonic and non-exonic variants. The tumor samples used for both cases
were different than the tumor samples in PCGP, and both showed lower-than-average sensitivity. a MAFs from SJOSO01 SNV calls in PCGP and Clinical
were highly correlated, and the SVs and exonic SNVs showed higher correlation. b The lower tumor purity of the SJOS013 clinical sample is reflected in the
MAF distribution. Differences between the PCGP and clinical samples in this case reduced the measured sensitivity

identified microscopically, we estimated 25% tumor contamina-
tion. Surprisingly the false negative variants were subclonal in the
tumor and had comparable MAFs in tumor and normal. This
suggests that the infiltrating tumor cells contaminating the
normal tissue were dominated by a minor subclone in the bulk
tumor (Supplementary Fig. 3).

Finally, we evaluated limits of detection using a statistical
model and in silico resampling. The analysis showed a >95%
probability of detecting variants with a MAF of 0.1 (Supplemen-
tary Fig. 4, Supplementary Methods).

Detection of diverse types of pathogenic variants. We next
assessed the diagnostic yield of three-platform sequencing for all
78 cases (Fig. 5a). Our expert panel reviewed a median of 38
variants per case assigning “Pathogenic” (P) or “Likely Patho-
genic” (LP) status to 240 variants (229 somatic and 11 germline)
with an average of 3.1 P/LP findings per sample. The P/LP
somatic variants included 54 SNVs, 29 indels, 7 ITDs, 44 gene-
fusing SVs and T-cell receptor translocations, 59 gene-disrupting
SVs/focal CNAs and amplifications, 33 arm or chromosome level
CNAs and 3 LOH events. The P/LP germline variants included
eight SNVs, one indel, and two CNAs. Eighty-six P/LP variants
had previously been detected either by standard molecular
pathology and cytogenetics (n = 55) or exclusively as part of the
PCGP (n=31) (Supplementary Data 7A).

Despite less than 50% tumor purity in 11/78 cases (14%) and
nine cases with >5% tumor-in-normal contamination in match-
ing germline samples, three-platform sequencing detected all
abnormalities (55/55) found by standard molecular pathology
testing and all but two abnormalities (29/31) found additionally
by PCGP. The missing events were a high-level episomal MYCN
amplification in retinoblastoma SJRB051 and an FXRI-BRAF
fusion in low-grade glioma SJLGG026. These omissions were

likely due to heterogeneity between the PCGP samples and those
used for this study, and low variant frequency in the tumor,
respectively (see Supplementary Notes 3, 4). SJRB0O51 had a
complex genome structure (due to chromothripsis) that included
biallelic rearrangement of RB1 on chromosome 13 (Supplemen-
tary Fig. 5) with an estimated tumor purity of 0.75 and 0.97 for
the PCGP and clinical pilot sample, respectively (Supplementary
Data 3). While the CNAs and SVs on chromosome 13 were in
perfect agreement with PCGP results, the MYCN locus on
chromosome 2 lacked any read-depth increase or SV-supporting
reads which were prominent in the PCGP data (Fig. 5b and
Supplementary Note 3). The FXRI-BRAF fusion was originally
detected with a MAF of approximately 0.05 in 65X WGS
generated by the PCGP?°. Manual review of 37X WGS in this
study uncovered only two SV-supporting reads, insufficient for
the automated pipeline to call the variant (see Supplementary
Note 4).

Germline results included one case of trisomy 21, consistent
with the previous diagnosis of Down Syndrome, one intragenic
deletion of TP53 (medulloblastoma, discussed below), TP53
R280S (hypodiploid ALL), TP53 N235S (MPNST), mosaic IDH1
R132H (AML), truncations in PMS2 (high grade glioma), NFI
(low-grade glioma), APC (medulloblastoma), mosaic RBI (reti-
noblastoma), BRCA2 (rhabdomyosarcoma), and SDHA (GIST).
In most cases, a second somatic hit was evident in the tumor
sequence.

All but two P/LP SNV/indels (90/92) had cross-platform WGS/
WES support. The two variants exclusive to WGS, SH2B3 R216fs,
and FLT3 D835Y, were poorly covered in WES across all samples
(mean WES coverage was 0 with a range of 0-3.2X; Supplemen-
tary Fig. 6, Supplementary Note 5). An additional five variants
were detected by WGS alone but had supporting reads in WES,
but too few for de novo detection; details are provided in
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the Supplementary Methods and Supplementary Data 7C. We
also noted that 13 P/LP SNV/indels with MAF ranging from 0.01
to 0.17 were detected by WES alone but manually cross-validated
by WGS. The majority (10/13) of these variants had MAF below
0.1, indicating higher WGS coverage may increase the power for
detecting these subclonal variants (Supplementary Data 7B).

Structural variants (including ITDs) accounted for 46% (110/
240) of P/LP variants and benefited the most from the multi-
platform approach. ITDs ranged from 24 to 96 bp, and were
detected by several different combinations of WGS, WES and/or
RNA-Seq with WES performing the best overall finding 6/7. For
gene-fusing SVs, 83% (35/42) had two-platform support while
17% (7/42) were supported by only one platform. Specifically,
WGS enabled detection of fusions with low expression (e.g.
KMT2A-MLLT3, ETV6-RUNXI1, and KIAA1549-BRAF)—which
we confirmed by inspecting RNA-Seq expression values of
partner genes (Supplementary Data 7A) and by performing RT-
PCR (Supplementary Note 6, Supplementary Table 1)—whereas
RNA-Seq recovered potentially repeat-associated and complex
rearrangements difficult to detect or interpret using genomic
DNA alone (e.g. RUNXI-RUNXTI1, BCLI1IA-GRIP2, FYCOI-
RAFI, and KMT2A-AFFI). Thus, relying on RNA alone would
have caused us to miss 3/42 gene fusions (7%). Additionally,
WGS allowed us to unambiguously identify two T-cell receptor
rearrangements, TCR-LMO2, with no RNA junction support but
the high expression and TCR-NKX2-1 with an RNA junction 1.3
kb downstream of the target gene.

Diagnostic yield of two versus three-platform sequencing. The
utility of three-platform sequencing is highlighted when we
consider the yield of all P and LP variants found by each platform
independently: RNA-Seq detected 18% (43/242), WES (including
WES-derived CNAs) detected 62% (149/242) and WGS had the
highest standalone platform value, detecting 89% (216/242).
Three-platform sequencing, detected 99% of variants (240/242).
We compared three-platform sequencing with the current gold
standard of combined WES and RNA-Seq. For the purposes of
this study, we evaluated the approach of combined WES and
RNA-Seq on a research basis rather than as a full clinical assay
validation. Combined WES and RNA-Seq identified 78% (188/
242) of P/LP variants. The lower yield relative to three-platform
sequencing was mostly driven by focal and exon-poor CNVs (n =
36) that were not detected in our exome-only copy number
analysis (Supplementary Fig. 7, Supplementary Data 8). Notable
missed alterations included focal and intragenic disruptions of
CDKN2A, CREBBP, ETV6, MYB, NF1, NR3C2, PAXS5, PTEN, RBI,
and TP53 (Supplementary Data 7A and Supplementary Fig. 7).

Novel findings due to the inclusion of WGS. In addition to
robust detection of P/LP variants, three-platform sequencing
provided biological insight into our patient samples. For example,
the acute myeloid leukemia SJAML030006 had a DEK-NUP214
fusion. Manual review found the same SV junction in approxi-
mately 4% of the matched normal WGS reads—indicating 8%
tumor in normal contamination (Fig. 6a, Table 1). This was not
surprising as the normal sample, acquired one month after
diagnosis, was known to contain 10-15% blasts. The same tumor
had a FLT3-ITD but we did not detect any SV junctions in the
matched normal in spite of the ITD having a higher tumor MAF
(due to chromosome 13 LOH) than the fusion. Statistical mod-
eling of variant frequencies and read depth showed that the
discrepancy was unlikely to have occurred by chance (p = 0.00046
by binomial test). This is consistent with a model in which DEK-
NUP214 was an early genomic alteration, present in all tumor
cells at diagnosis, while the FLT3-ITD was acquired later and
present in approximately 80% of the tumor. The FLT3-ITD
subclone, which also contained the DEK-NUP214 alteration, was
eradicated/diminished by therapy, while those with only DEK-
NUP214 remained (Fig. 6a).

A second example illustrates the detection of a germline
mutation by three-platform sequencing that may impact therapy.
SIMB030020 was classified as a medulloblastoma with sonic
hedgehog (SHH) pathway activation by immunohistochemistry, a
standard clinical assay®), but lacked any canonical somatic
mutations in the SHH pathway. Three-platform sequencing
revealed a biallelic loss of TP53: the first hit came from a 22 kb
deletion of exons 1-9 in the germline, consistent with a new
diagnosis of Li Fraumeni syndrome, and the second from a 13.7
Mb somatic deletion of chromosome arm 17p (Fig. 6b). This focal
deletion was below the resolution of WES CNA analysis and was
only detected by WGS. The tumor had a highly rearranged
genome with high-level focal amplifications of MYCN (319 CN;
660 FPKM), CCND2 (123 CN; FPKM 2516) and GLI2 (11 CN;
FPKM 24). Co-amplification of MYCN and GLI2 have been
described previously in SHH medulloblastoma3%-32 and, in the
context of TP53 pathway defects, is associated with a very poor
outcome3334, Following WHO guidelines, the combined findings
allowed us to classify the tumor as a medulloblastoma, SHH-
activated, TP53-mutant. However, the amplification and extre-
mely high expression of CCND2 (among the highest in >900
PCGP tumors) suggested that the RB pathway was also
compromised in this tumor. This amplification may have
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Table 1 Variant frequencies in AML with residual tumor in the germline sample

Variant Mutant reads Total reads MAF in % Cells in  Mutant reads in  Total reads in MAF in % Cells in

in tumor in tumor tumor tumor germline germline germline germline
DEK_NUP214 15 34 0.44 88% 4 103 0.04 7.7%
FLT3 ITD 96 120 0.8 80% 0 121 0 0%

potential therapeutic implications as tumors overexpressing
Cyclin D family members can respond to CDK4/6 inhibition3>3°.

The final examples demonstrate novel variants detected by
WGS that would be difficult to detect by WES or RNA-Seq. The
first was a 50 kb somatic deletion detected by WGS CNA analysis
but not by WES within DNMT3A in neuroblastoma
SJNBL030014. A novel in-frame transcript lacking exons 3-6
was detected in RNA-Seq (Fig. 6¢). Aberrant splicing was present
in 30% of the transcripts and in the absence of supporting
evidence from WGS would have simply been considered an
alternatively spliced isoform. Although DNMT3A is a known
driver gene in AML?, the significance of this finding in
neuroblastoma is uncertain at present.

Similarly, WGS detected a 96 bp NOTCHI-ITD in T-ALL,
SJMLL002. This ITD was atypical as it encompassed 70 bp of
intron 27 and the first 26 bp exon 28. As the ITD extended into
an intron, the region had very low coverage by WES and no ITD
was detected by this platform. Cross-validation by RNA-Seq and
in silico translation showed that the ITD preserved the reading
frame (Supplementary Fig. 8); we hypothesize it was functionally
equivalent to recurrent NOTCH]I juxtamembrane region ITDs in
T-ALL3S,

Discussion

A multidisciplinary clinical genomics working group was estab-
lished at St. Jude Children’s Research Hospital to develop and
validate three-platform sequencing for molecular diagnosis of
pediatric oncology patients. We assessed the test's PPV and
sensitivity according to the guidelines by both CAP3° and the
Next Generation Sequencing-Standardization of Clinical Testing
working groups*0. We demonstrated experimentally that three-
platform sequencing had near perfect PPV and sensitivity, pro-
ducing a high yield of clinically relevant P/LP variants.

The three-platform sequencing approach provided a unique
opportunity to assess the value of adding WGS to other genome-
wide platforms more commonly used for clinical tumor profiling.
We showed that, independently, WGS detected 89% of P/LP
variants compared to only 62% by WES and 18% by RNA-Seq.
When used in combination, three-platform sequencing detected
99% of P/LP variants compared to only 78% using combined
WES and RNA-Seq. On a per subject basis, 36/78 (46%) had one
or more additional P/LP variants detected by the three-platform
test when compared to combined WES and RNA-Seq. We con-
sider these disparities important to highlight in an era of preci-
sion oncology.

Three-platform sequencing confers several advantages over
single-platform NGS and alternative multi-platform approaches
such as a targeted NGS gene panel, exome plus RNA-Seq or copy
number microarray. First, it allows robust detection of variants
that a single NGS platform might miss or prove difficult to
interpret, such as repeat-mediated/complex translocations, gene
fusions with low expression and focal CNAs.

Second, it easily facilitates clinical reporting of newly dis-
covered driver genes, for example, IGH-DUX4 and IGH-EPOR
rearrangements in B-ALL#142, By contrast, adding new genes to a
panel-based test requires laborious cycles of re-design, re-

sequencing, and re-validation, as well as additional patient tissue
or nucleic acids.

Third, the high accuracy achieved by cross-platform validation
obviates the need for secondary validation (Fig. 3, Supplementary
Note 7). Our validation capture experiment showed that an SNV
or indel can be considered validated if it can be detected inde-
pendently in both WGS and WES. Likewise, if a focal CNA or
RNA-Seq fusion is supported by a WGS SV, it is virtually certain
to be a true genomic alteration. Our data show that, para-
doxically, combined tumor/normal WGS/WES/RNA-Seq analysis
produces a similar number of reviewable mutations (a median of
38 variants per case) as a small, 50-100 gene, unpaired NGS
panel*3. This simultaneously removes the need for iterative test-
ing and decreases the burden on those reviewing and signing out
cases. These related innovations have decreased turnaround time
to the point where real-time clinical testing can happen. Gen-
eration of a curated mutation report from raw sequencing data
was estimated to take 8 days based on batch analysis of the
samples used in the study. Allowing for library preparation and
sequencing time, we extrapolated a clinical turnaround time of
28-42 days. We have since deployed three-platform sequencing
as a clinical service and achieved a median turnaround time of
31 days from sample receipt to report, which is comparable to a
median turnaround time of 3 weeks reported in two recent
clinical genomic studies that employed tumor exome sequen-
cing** or integrated panel/selected transcriptome sequencing®>.

Fourth, integration of WGS and RNA-Seq enhances our power
to classify SVs and CNAs. RNA-Seq can, for example, show
disruption of the reading frame caused by an intragenic CNA (e.g.
NFI in SJHYPO120). Outlier RNA-Seq expression can also help
us discover the likely drivers within complex chromothripsis
rearrangements or co-amplifications (e.g. MYCN, GLI2, and
CCND2 in SJMB030020) and assess the functional impact of
immunoglobulin and T-cell receptor translocations (e.g. TCR-
LMO2 in SJTALL077). Without this corroborating evidence, the
functional impact of such events can merely be considered pre-
dictions, making their interpretation difficult4®.

Lastly, three-platform sequencing can serve as a discovery
engine. Despite efforts by the PCGP and other pediatric cancer
genomics initiatives, many uncommon pediatric tumors require
improved genomic characterization, and three-platform sequen-
cing generates candidates for functional follow-up (e.g. DNMT3A
in neuroblastoma). Further, the incorporation of WGS could, in
the future, allow for assessment of telomere length®”-48, detection
of viral integration*’, and discovery of driver mutations in non-
coding regions®%>1,

The disadvantages of three-platform sequencing are the com-
puting infrastructure required for data storage and analysis, and
the cost of sequencing. Data retained from each paired patient
sample occupies 150-200 Gb and, in line with our clinical
laboratory protocols, must be rapidly accessible for 6 months
which is estimated to cost $25 per case in a cloud computing
platform. For this pilot study, sequencing was carried out using
Mlumina HiSeq 2000/2500 machines at a cost of $25,000/case
($18,000 for 30x WGS). However, costs have since been reduced
to $8,600/case ($6,600 for 45x WGS) in our clinical service as
samples are now sequenced on HiSeq 4000 machines. The

| (2018)9:3962 | DOI: 10.1038/541467-018-06485-7 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

increase in WGS coverage from 30x to 45x in clinical service,
when integrated with 100x WES data, is expected to improve the
power for detecting variants with variant allele frequency > 0.1
from 95.7 to 99.1% (Supplementary Fig. 4). We anticipate that
technology development will further reduce the cost for both
computing and sequencing. As treatment of pediatric cancer
typically costs hundreds of thousands of dollars, the precision of
integrative genomic profiling offered by three-platform sequen-
cing outweighs the extended time for secondary validation and
the potential for missing ~20% pathogenic variants in pediatric
cancer.

In summary, we show that three-platform sequencing offers
many advantages over the existing NGS-based clinical sequencing
workflows. Incorporation of WGS increased the yield of P/LP
variants by 20% compared with combined WES and RNA-Seq,
the current gold standard for precision oncology®?, improved the
utility of RNA-Seq and provided highly accurate variant cross-
validation. Higher WGS coverage would further improve sensi-
tivity for detection of subclonal structural variations, which is
important for samples with low tumor purity or high intra-tumor
heterogeneity. In recognition of the value of experimentally-ver-
ified, multi-platform NGS data for developing future research and
clinical applications, the raw and processed sequence data used in
this study can be accessed via the St. Jude Pecan (Pediatric can-
cer) Data Portal in St. Jude Cloud at https://pecan.stjude.cloud/
permalink/cts.

Methods

Patient samples selection. We selected 78 pediatric cancer cases, treated at St.
Jude Children’s Research Hospital for a wide range of cancer types (Fig. 1b,
Supplementary Fig. 1) with informed consent through our institutional review
board (IRB) approved protocol in accordance with the Declaration of Helsinki (St
Jude IRB# XPD09-018; PCGP). Paired tumor and normal samples were obtained
either as fresh frozen tissue, genomic DNA or total RNA samples. Nucleic acids
from all fresh frozen tissue samples were extracted (genomic DNA from both
tumor and normal, total RNA from the tumor) and sequencing was performed
according to standard operating procedures in our Molecular Pathology CAP/
CLIA laboratory.

Nucleic acid extraction and purification. Before DNA or RNA extraction, leu-
kemia samples with < 70% blasts or no available matched normal/remission tissue
and sufficient material were flow-sorted based on antibody markers (CD45, CD3,
CD34, CD19, and CD33) as determined by our clinical immunopathology tests.
DNA was directly extracted from fresh frozen or flow-sorted tumor tissue using
phenol-chloroform and treated with RNase A to remove residual RNA. RNA was
extracted using TRIzol reagent (Thermo Fisher Scientific) and further purified
using the RN Aeasy Mini Kit (QIAGEN). DNA and RNA integrity was assessed by
agarose gel electrophoresis and Agilent 2100 BioAnalyzer (Agilent Technologies),
respectively. DNA and RNA concentrations were measured using a Qubit Fluo-
rometer (Thermo Fisher Scientific).

WGS, WES, and RNA-Seq library preparation and sequencing. WGS libraries
were constructed using the TruSeq DNA PCR-Free sample preparation kit (Illu-
mina, Inc., CA) following the manufacturer’s instructions. WES libraries were
prepared using the TruSeq exome enrichment kit v1 (Illumina) per manufacturer’s
instructions, with some modifications (Supplementary Methods). For RNA-Seq
libraries, we used a TruSeq total RNA protocol, as, unlike the TruSeq mRNA
protocol, it can provide strand information using less RNA, even in sub-optimal
samples. Total RNA-Seq analysis also enabled detection of both coding and non-
coding RNA, along with other long intergenic noncoding RNA (lincRNA), small
nuclear RNA (snRNA), and small nucleolar RNA (snoRNA). RNA-Seq libraries
were constructed using the TruSeq Stranded Total RNA Kit, with Ribozero Gold
(Ilumina, Inc., CA) per manufacturer’s recommendations, with slight modifica-
tions (Supplementary Methods).

After library quality and quantity assessment, each WGS tumor or normal
sample was sequenced in three lanes of a v3 flow cell on a HiSeq2000 or HiSeq2500
instrument (Illumina, Inc, CA); WES samples were sequenced in pools of five to
seven across three lanes and RNA-Seq samples were sequenced in pools of five to
seven in one lane of a v3 flow cell (HiSeq2000/2500). Where necessary, additional
sequencing (top off) was performed in Rapid mode sequencing (HiSeq2500) to
ensure data analysis was completed in a clinically appropriate time frame.

Hybrid Capture Validation. Validation experiments were essentially as described
previously>>. Briefly, capture oligos were designed to encompass putative SNV,
SVs, and indels and used as input for NimbleGen Seqcap EZ solution bait sets. The
library construction and target enrichment were performed per the manufacturer’s
instructions (Roche) using repli-G (Qiagen) WGA DNA. Enriched targets were
sequenced on the same platform as above using paired-end 100-cycle sequencing.
Putative variants were recovered using the same bioinformatics pipelines as below.

For Capture Validation (CapVal), we used the following algorithm to determine
the validation status: First we obtained the mutant and reference allele counts for
each marker in the corresponding sample, requiring a minimum base quality of 15
for SNVs and 5 for indels. A marker with 0 mutant reads and > 20 total reads in
tumor sample is called “Wildtype”. A Fisher’s Exact test was then performed on the
tumor and normal CapVal read counts. When mutant reads are present in the
normal samples, markers with Fisher’s Exact P-value > = 0.05 or P-value <= 0.05
and normal MAF > = 0.2 were called germline. Markers with P-value < = 0.05 are
called “Somatic”. To account for tumor-in-normal contamination (e.g. case
SJHGGO003_A), we required tumor MAF > 0.05 if mutant reads were observed in
the normal sample for “Somatic” calls. In addition, we manually inspected markers
with P-value greater than 0.05 and adjusted the validation status to “SOMATIC”
for 16 SNVs and 4 indels (annotated with an asterisk (*) in Supplementary Data 6A
and B, due to reduced coverage in germline DNA or tumor-in-normal
contamination (e.g. IFFO1.M364fs in SJHGGO003_A). Since homopolymer artifacts
are frequently observed in WES/CapVal, we also required > = 10 mutant reads in
the CapVal data if the homopolymer marker was discovered by WES only,
regardless of the CapVal depth.

As a result, 88 indels were called “SOMATIC” after validation, of which 3 were
from PCGP. We identified 89 indels from our Clinical pipeline, of which 84 indels
were covered in CapVal, and 83 validated as “SOMATIC”. This corresponds to a
sensitivity of 94.3% (83/88) and a PPV of 98.8% (83/84). Similarly, 695 SNVs were
called “SOMATIC” after validation, of which 34 were from PCGP. We identified
794 SNVs from our Clinical pipeline which included the cross-validation filtering
process, of which 662 were covered in CapVal, and 653 were validated somatic.
This corresponds to a sensitivity of 94% (653/695) and a PPV of 98.6% (653/662).
For non-exonic SNVs (other SNVs), we are able to calculate PPV but not sensitivity
because capture validation was performed only for variants detected and passed the
filters in the clinical pilot study.

Assessment of analytical performance. Sensitivity and PPV were calculated
using the set of variants that underwent capture validation and were covered after
sequencing and alignment. We assessed PPV (true predicted positives divided by
total predicted positives) rather than specificity (true predicted negatives divided by
actual negatives) because the extremely high number of assessable positions inflates
specificity beyond utility. For calculation of sensitivity, a variant was counted as a
false negative in the clinical pilot study if it was not detected or was detected but
filtered out by cross-validation.

In Supplementary Data 7A, variants that had support in a platform that was
insufficient for detection but sufficient to cross-validate a call from another
platform were labeled as Rescue. These variants are considered false negatives in
the rescue platform alone.

Data quality control. Two main quality controls were used in the analysis pipeline.
(i) Coverage QC used the percent of exons from a de-duplicated BAM file with
average coverage greater than a sequencing-type-specific cutoff (see Results sec-
tion). Samples initially failing QC had top-up sequencing performed. We did not
impose a specific QC cutoff for duplicate reads, rather we based our coverage
calculation on reads not marked as duplicates for all three platforms. (ii) The
CONSERTING copy number profile plot was visually inspected for a highly
fragmented copy number profile that we have seen as an infrequent but recurrent
library preparation artifact.

Mapping and SNV/indel calling. All computational analysis happened on a
dedicated compute and storage infrastructure designed and implemented by the
High Performance Computing Facility at St. Jude. The analysis pipeline is outlined
in Supplementary Fig. 9. We initially evaluated the sensitivity and PPV of our
pipeline using the well-characterized COLO-829 cell lines®* (Supplementary
Methods). COLO 829 (ATCC® CRL-1974™) and COLO 829BL (ATCC® CRL-
1980™), were obtained from ATCC (American Type Culture Collection, VA, USA).

DNA reads were mapped using the backtrack algorithm (“aln” and “sampe”
steps) of BWA 0.5.9%°. At the time the mapping was performed, BWA 0.5 was the
latest stable version of BWA, as 0.6 and 0.7 were being released with frequent bug
fixes. The changelogs of BWA versions 0.6 and 0.7 do not list any significant
change to BWA backtrack. Aligned files were merged, sorted and de-duplicated
using Picard tools 1.65 (broadinstitute.github.io/picard/).

RNA reads were mapped using our StrongARM pipeline, described
previously?®. Paired-end reads from RNA-seq were aligned to the following four
database files using BWA: (i) the human GRCh37-lite reference sequence, (ii)
RefSeq, (iii) a sequence file representing all possible combinations of non-
sequential pairs in RefSeq exons and, (iv) the AceView database flat file
downloaded from UCSC representing transcripts constructed from human ESTs.
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Additionally, they were mapped to the human GRCh37-lite reference sequence
using STAR. The mapping results from databases (ii)-(iv) were aligned to human
reference genome coordinates. The final BAM file was constructed by selecting the
best of the five alignments.

Gene-level read count was generated using HTseq-count®® and FPKM value
was calculated based on the transcript models in GENCODE v19.

We called SNVs and Indels in WGS and WES using Bambino®’, initially
requiring that all reads were primary alignments and had a mapping quality of at
least 1. The variant allele required a minimum of three supporting reads with a
read quality 20 or better at the target site and within a + 5 nucleotide window. If
there were at least two reads supporting the variant, at least one of them must have
had 10+ nt of flanking sequence.

SNV/indel filtering and cross-validation. As described previously, preliminary
SNV/indel calls were filtered to remove those whose contributing reads aligned
perfectly to another locus. Predicted indels were realigned using a
Smith-Waterman approach?!. The filtered variants were classified into high or low
quality based on evidence of NGS read coverage and quality for supporting its
presence in tumor and absence in the matching germline.

A variant was considered cross-validated if it met any of the following criteria:
(1) automated detection by both WGS and WES; (2) automated detection by one
platform (i.e. WGS or WES); the mutant allele had at least 1 supporting read in
tumor and was absent in normal in the other platform; (3) automated detection by
one platform as a high-quality variant; the mutant allele was absent in normal (read
depth >20X) in the other platform; (4) automated detection in one platform as a
high-quality variant with > 20X coverage in normal; the mutant allele has at least
1 supporting read in RNA-seq. To extract read count from a sequencing platform
where the mutation was not detected automatically, we implemented a “matrix”
code which counts reads not flagged as optical/PCR duplicates and have base
quality =15 at the queried variant site. These read counts were used for cross-
validation.

Manual review was performed for exonic variants that passed the above-
mentioned computation filtering. Non-exonic variants were not manually
reviewed. Given the 2% difference on the validation rate between exonic SNVs
(99%) which involves manual review and non-exonic SNVs (97%) which relies on
the automated computational analysis, we estimate that manual review improves
PPV by 2%.

All filtered variants were annotated using in-house scripts. Annotations were
extensive and included an effect on protein coding sequence, population frequency,
frequency in PCGP and the Catalogue Of Somatic Mutations In Cancer (COSMIC;
http://cancer.sanger.ac.uk/cosmic) and various functional predictions. Hotspot
mutations within BRAF at low depth were detected using clinsek tpileup (version
0.1; https://bitbucket.org/wanding/clinsek)S.

SV/CNV/fusion calling. SV detection used CREST2? and CNV detection used
CONSERTING?%. To improve sensitivity, CREST was run using four configura-
tions: (i) standard tumor/normal, (2) tumor-only, (3) highly sensitive tumor/
normal mode restricted to a configurable list of 43 genes known to be involved in
pathologic fusions, (4) highly sensitive tumor/normal mode restricted to loci in the
proximity of a copy number change point (CONSERTING-CREST)?%. SV junc-
tions were annotated according to read strand orientation and genes at break-
points. Calling of CNVs and LOH was performed using CONSERTING under
standard parameters and these results were used for purity estimation (see below).
CNVs and SVs were used to assess chromothripsis following the guidelines by
Korbel and Campbell®.

CNV and LOH detection from WES used the Sequenza algorithm under
recommended parameters?®. This analysis was carried out as a research analysis.
To estimate false negatives for sub-arm P/LP CNAs in WES (excluding iAMP 21 B-
ALL samples), we took WGS copy number segments from CONSERTING in bed
format and identified the segment overlapping or within the gene of interest. In the
case of GLI2 amplification in SJMB030020, the gene was split over several distinct
amplified copy number segments so we used the gene co-ordinates themselves as
our region of interest. We next overlapped the Sequenza WES copy number
segments bed file with our regions of interest and looked for any segment overlap
requiring a log2-fold shift of + 0.2 for gains and losses respectively in WES.
However, even with a less stringent threshold of + 0.1, no additional segment
overlaps were identified. Potential segment overlaps between WGS and WES were
manually reviewed to confirm that the effect on gene function e.g. one copy
deletion, two copy deletion or amplification was consistent between WES and
WGS. To identify potential false calls in WES, we identified WES segments with a
log2 shift of + 0.2 with no corresponding segment in WGS. We then annotated
these segments for gene and cancer gene content using our clinical pipeline. We
manually identified copy number segments worthy of committee discussion and
potential classification.

Fusion detection from RNA sequencing used our in house Cicero tool (Y. Li
et al. in preparation; source code is available upon request)—essentially the RNA-
Seq equivalent to CREST?3. ITD rearrangements were detected using Cicero in ITD
mode on aligned RNA-Seq and WES data for loci known to undergo ITD (FGFRI,
FLT3, PDGFRA, NOTCH1, KMT2A, EGFR, and PIK3R1I). We also performed a

FLT3 exon 14 hotspot check using Cicero-ITD on the FLT3 exon 14 regional reads
from WGS.

We also developed a method to match the predicted DNA fusions with
expressed RNA fusion products. Because of RNA splicing, fusion gene products
typically carry different breakpoints between DNA and RNA. Briefly, a 5’-end
breakpoint of a RNA fusion gene was linked to an SV in DNA if (1) the SV
orientation supported the fusion product and (2) the DNA breakpoint was the
same or downstream of the RNA breakpoint, up to the transcription end site.
Similarly, a 3’-end fusion breakpoint in RNA was linked to a DNA SV when (1) the
SV orientation supported the fusion product and (2) the DNA breakpoint was the
same or upstream of the RNA breakpoint up to the transcription start site. The
logic of linking method logic was validated using the oncogenic CI1orf95-RELA
fusion gene in ependymoma samples. While an existing program® failed to link
the Cllorf-RELA fusions from RNA and DNA samples, our method successfully
linked these fusions in all fusion positive samples tested.

Tumor purity estimation. A loss of heterozygosity (LOH) score was calculated as
the absolute difference between the allele fraction in tumor and germline sample
for heterozygous germline SNVs. For example, an SNV from a region with a clonal
single copy number loss and 100% tumor purity would have an LOH score of 0.5.
We used LOH scores from SNVs within tumor copy-neutral LOH or heterozygous
copy number loss regions (CNV value of between 0 and —1) to estimate tumor
purity for all whole genome sequencing (WGS) samples. We assumed that the real
genomic copy number of a single copy loss in x% of tumor cells could be estimated
as —x/100 with an LOH value of x/(400—2x). Assuming the remaining LOH signal
came from CN-LOH (CN-LOH in x% tumor cell resulted in a LOH value of x/
(100 x (2-CNA))), the tumor content in a region could be estimated as the sum of
the fraction with copy number loss and fraction with CN-LOH by: 2 x ai + (CNA)/
2 % (1-2 x ai).

Using tumor content estimates from various regions within the genome, we
performed an unsupervised clustering analysis using the mclust package (version
3.4.8; https://cran.r-project.org/web/packages/mclust/index.html) in R (version
2.11.1; https://www.r-project.org/). The CNV/LOH based tumor purity of the
sample was defined as the highest cluster center value among all clusters. We
further ran the mclust algorithm on mutant allele fractions for somatic SNVs in
diploid regions without LOH. The MAF based tumor purity of the sample was
defined as the highest cluster center value among all clusters. The final tumor
purity is defined as the larger of the CNV/LOH based estimate and the MAF-based
estimate (X Chen et al. in preparation; code available upon request).

Automated variant classification. Two main data sources were included in auto-
classification pipeline: COSMIC, and the St Jude GeDI database which hosts all
somatic lesions including SNV/indels, CNAs, and SVs identified by the St. Jude/
Washington University Pediatric Cancer Genome Project (available at https:/
pecan.stjude.org/#/home).

We first generated lists of genes recurrently mutated in cancer. To identify these
genes, we focused on validated non-silent coding somatic mutations that had either
an over-representation of truncation mutations (tumor suppressors) or a recurrent
hotspot mutations (oncogenes). For COSMIC, we included only mutations which
were experimentally verified and from genome-wide screens. To remove false
positive sites that were germline polymorphisms, we further filtered those that
overlapped with germline variants present in > 10 of the 6500 non-cancer
individuals sequenced by NHLBI GO Exome Sequencing Project (ESP, http://evs.
gs.washington.edu/EVS/). To mitigate the impact of hypermutable samples on
global mutation profile, we also identified and removed hypermutated tumors (> =
100 coding variants and top 10% highest mutated tumors of their published study).
PCGP samples were analyzed in a similar way and the resulting list was checked
against the literature.

Genes affected by structural variations were ascertained from three different
sources: (a) 23 fusion genes tested at the Molecular Diagnostic lab at St. Jude
Children’s Research Hospital; (b) Recurrent fusions identified by PCGP; and (c)
328 fusion genes resulting from chromosomal translocation identified by Cancer
Gene Census (http://cancer.sanger.ac.uk/cancergenome/projects/census/). Genes
affected by copy number abnormalities comprised of recurrent CNAs identified
from PCGP, and genes with known amplification (n = 16) or deletion (1 = 38)
identified by Cancer Gene Census.

SNVs/indels affecting one or more of our 565 genes and all CNAs/SVs were
flagged for manual review by our auto-classification software. Further, mutation
types consistent with a gene’s propensity to lose or gain function in cancer—for
example, truncation of a tumor suppressor, hotspot mutation in an oncogene or
amplification of a known gene target—resulted in an elevated review priority.

Pathogenicity assignment. We classified germline variants according to the
previous recommendations®!. However, as no consensus guidelines currently exist
for the joint classification of somatic coding/structural/copy number changes, we
classified these using a modified version of the same general scheme. Pathogenic
(P) variants comprised of. (i) Hotspot SNV/indel mutations from any cancer type
from known cancer genes (Supplementary Data 9). (ii) Nonsense/ frameshift/
splicing mutations in tumor suppressor genes where the gene was known to play a
role in that cancer type. (iii) Recurrent gene fusions, deletions, truncations,
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amplifications or arm-level abnormalities currently used for molecular diagnosis of
that cancer type. Likely Pathogenic variants were: (i) Any mutation type in a gene
linked to that cancer type but the functional impact of the change was unclear. (ii)
Mutations with an obvious functional effect on a cancer gene but in a tumor type
with no known association to that gene. Uncertain variants were those with an
unclear functional impact in a cancer gene not known to play a role in that cancer
type. However, rather than rigid adherence to these rules, our expert committee
reserved the right to apply clinical, biological and functional insight from labora-
tory studies to support or overrule any given classification.

Code availability. We make extensive use of previously published algorithms as
described above. Additional code used in this study is available upon request.

Data availability

Raw and processed sequence data used in this study has been deposited in St. Jude Cloud
and can be accessed via the St. Jude PeCan (Pediatric Cancer) Data Portal at https://
pecan.stjude.org/permalink/cts. Raw data is available under accession SJC-DS-11003.
Raw data is also available in EGA under accession EGAS00001002217.
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