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ABSTRACT: We report Phoenics, a probabilistic global
optimization algorithm identifying the set of conditions of an
experimental or computational procedure which satisfies
desired targets. Phoenics combines ideas from Bayesian
optimization with concepts from Bayesian kernel density
estimation. As such, Phoenics allows to tackle typical
optimization problems in chemistry for which objective
evaluations are limited, due to either budgeted resources or
time-consuming evaluations of the conditions, including
experimentation or enduring computations. Phoenics proposes new conditions based on all previous observations, avoiding,
thus, redundant evaluations to locate the optimal conditions. It enables an efficient parallel search based on intuitive sampling
strategies implicitly biasing toward exploration or exploitation of the search space. Our benchmarks indicate that Phoenics is less
sensitive to the response surface than already established optimization algorithms. We showcase the applicability of Phoenics on
the Oregonator, a complex case-study describing a nonlinear chemical reaction network. Despite the large search space,
Phoenics quickly identifies the conditions which yield the desired target dynamic behavior. Overall, we recommend Phoenics
for rapid optimization of unknown expensive-to-evaluate objective functions, such as experimentation or long-lasting
computations.

■ INTRODUCTION

Optimization problems are ubiquitous in a variety of
disciplines ranging from science to engineering and can take
various facets: finding the lowest energy state of a system,
searching for the optimal set of conditions to improve
experimental procedures, or identifying the best strategies to
realize industrial processes. They also have a rich history in
chemistry. For example, conditions for chemical reactions are
optimized with systematic methods like design of experiments
(DOE).1−3 More recently, optimization procedures assisted
chemists in finding chemical derivatives of given molecules to
best treat a given disease,4 finding candidates for organic
photovoltaics,5 organic synthesis,6,7 predicting reaction
paths,8−10 or automated experimentation.11−14 Often, these
applications are subject to multiple local optima, and involve
costly evaluations of proposed conditions in terms of required
experimentation or extensive computations.
Optimization problems are typically formulated with an

objective function, which for a given set of parameters returns
a measure for the associated merit. This relates, for example, to
measuring the yield of a chemical reaction conducted under
specific experimental conditions. In the past, a variety of
optimization algorithms have been developed. Gradient-based
algorithms, such as gradient descent,15 conjugate gradient,16 or
the more sophisticated BFGS,17 are efficient at finding local
optima. However, they require numerous evaluations, i.e.,

conducted experiments or computations, and are thus not well-
suited for optimization problems in chemistry where
evaluations of the objectives are often costly.
Lately, the development of methods for finding the global

optimum of nonconvex, expensive-to-evaluate objective
functions has gained resurgence as an active field of research.
Simplistic approaches consist in random searches, or system-
atic grid searches. While the advantages of random searches
have been demonstrated in the context of hyperparameter
optimization for machine learning models,18,19 systematic grid
search approaches like DOE were successfully applied to real-
life experimentation planning.1−3 More sophisticated methods
include genetic algorithms20,21 based on evolution strat-
egies,22,23 which are, for example, applied to the optimization
of nanoalloy clusters,24 or to resolve electronic spectra of
rotamers of organic compounds.25 Yet, such methods still
require many evaluations of the objective function.26

Bayesian optimization approaches have emerged as a
popular and efficient alternative during the past decade.27−33

The typical procedure of Bayesian optimization schemes
consists of two major steps: First, an approximation
(surrogate) to the merit landscape of the conditions is
constructed. Second, a new set of conditions is proposed for
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the next evaluation based on this surrogate. As such, Bayesian
optimization speculates about the experimental outcome using
all previously conducted experiments, and verifies its
speculations by requesting the evaluation of a new set of
conditions. Several different models have been suggested for
approximating the objective function landscape, ranging from
random forests (RFs),33−35 over Gaussian processes
(GPs),31,36 to Bayesian neural networks (BNNs).37,38 Like-
wise, a variety of methods for proposing new conditions from
the surrogate exists.28,31,39−42

Bayesian optimization has been successfully employed for a
variety of applications across chemistry. Examples include the
property optimization of functional organic molecules,43

calibrating high-throughput virtual screening results for organic
photovoltaics,44 or designing nanostructures for phonon
transport.45 Nevertheless, we identify three challenges in the
deployment of Bayesian optimization techniques:

(i) One challenge is the domain specificity of the surrogate
model: GPs typically perform well on continuous
objective landscapes, while RFs are typically more
suitable for discrete and quasidiscrete landscapes.
Unknown experimental response landscapes are more
amenable to methods which perform well on a large
variety of possible landscapes.

(ii) Another challenge is the parallelization capabilities:
Traditionally, Bayesian optimization methods are
sequential in nature, which prevents parallel evaluations
of the objective function, for instance, by using multiple
experimental platforms or computational resources. For
parallel evaluation, however, a procedure enabling the
generation of multiple informative parameter points is
needed. Prior work on batched Bayesian optimiza-
tion,46−50 and nonmyopic approaches,51 aimed to
resolve this problem, but requires additional computa-
tion compared to sequential optimization.

(iii) The third identified challenge is computational
efficiency: Optimization strategies involving substantial
additional computation are only applied efficiently if the
time required to suggest a new set of conditions does
not significantly exceed the execution time of the
experiment. As such, the optimization procedure should
be computationally efficient compared to the time
required to evaluate the objectives of the considered
problem, e.g., to run the experiment.

The Probabilistic Harvard Optimizer Exploring Non-
Intuitive Complex Surfaces (Phoenics) algorithm introduced
in this study tackles the aforementioned challenges by
supplementing ideas from Bayesian optimization with concepts
from Bayesian kernel density estimation. More technically, we
use BNNs to estimate kernel distributions associated with a
particular objective function value from observed parameter
points. Consequently, our approach differs from the traditional
use of BNNs in the Bayesian optimization context, where
objective function values are predicted from BNNs directly.
Employing the estimated kernel distributions, we can construct
a simple functional form of the approximation to the objective
function. As a consequence, the computational cost of
Phoenics scales linearly with the dimensionality of the search
space and the number of observations, without the cost of
numerous full evaluations of the BNN. Phoenics is available for
download on GitHub.52

We propose an inexpensive acquisition function, which
enables intuitive search strategies for efficient parallelization.
This is achieved by simultaneously proposing multiple
parameter points with different sampling policies at negligible
additional cost. Those policies are biased toward exploration or
exploitation of the search space tuned by an intuitive
hyperparameter. A synergistic effect is observed when
proposing batches of parameter points with different sampling
policies. Our batching policy not only helps to accelerate the
optimization process, but also reduces the total number of
required function evaluations. It is therefore to be seen as an
improvement over trivial parallelization.
In what follows, we start with a brief overview of related

works. Then we detail the mathematical formulation of
Phoenics. We further discuss performance results of Phoenics
on analytic benchmark functions and compare to other
Bayesian optimization methods. Before concluding we further
highlight the applicability of our approach on the Oregonator,
a model system for chemical reactions, on which we
demonstrate the deployment of the proposed optimizer for
practical problems in chemistry.

■ BACKGROUND AND RELATED WORK

A plethora of global optimization algorithms has been
developed to solve problems in different contexts, with
different assumptions. The landscape of experimental
responses could possibly be nonconvex, for instance, in
scenarios where high reaction yields can be achieved with
multiple different experimental conditions. Suitable optimiza-
tion algorithms therefore need to be capable to overcome local
optima to successfully find the global optimum.
The most straightforward approaches to global optimization

include random searches, grid searches, and (fractional)
factorial design strategies.1−3 While grid searches are
embarrassingly parallel, they do not account for results
obtained from recently executed experiments/computations.
Computationally more involved methods, such as simulated
annealing,53,54 particle swarm,55,56 or evolutionary strat-
egies,22,23 are able to make informed decisions about the
next conditions to evaluate by accounting for results from
recent evaluations.
Recently, Bayesian optimization has gained increased

attention as an alternative global optimization strategy as it
was shown to reduce redundancy in the proposed conditions
and, thus, locates global optima in fewer objective evalua-
tions.57 Bayesian optimization is a gradient-free strategy for the
global optimization of possibly noisy black-box functions,
which we denote with f from hereon.27−30 It consists of two
major steps: (i) construct a surrogate to f and (ii) propose new
parameter points for querying f based on this probabilistic
approximation.
In the first step, the surrogate model is constructed by

conditioning f on a prior ϕprior(θ) over the functional form,
which is described by parameters θ. The parameters θ of the
prior distribution are refined based on observations of n pairs

= { } =x f( , )n k k k
n

1 of parameter values xk, denoting, for
instance, experimental conditions, and corresponding objective
function values f k = f (xk), denoting the experimental responses
such as reaction yield. The functional prior ϕprior is updated
based on observations n to yield a more informative posterior
ϕpost. With more and more observations n, the posterior ϕpost

yields a better approximation and eventually converges to the
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objective function in the limit of infinitely many distinct
observations, thus perfectly reproducing the experimental
response landscape.
In the second step of the general Bayesian optimization

procedure, this surrogate model is used to propose new
conditions for future evaluations via an acquisition function.
Bayesian optimization therefore relies on both an accurate
approximation to the objective function and also the
formulation of an efficient acquisition function.
Constructing the Objective Function Approximation.

A popular choice for modeling the functional prior ϕprior on the
objective function are Gaussian processes (GPs),30,31,50,58 and
random forests (RFs).33−35,59 GPs associate every point in the
parameter domain with a normally distributed random
variable. These normal distributions are then constructed via
a similarity measure between observations given by a kernel
function. A GP therefore provides a flexible way of finding
analytic approximations to the objective function. Training a
GP, however, is computationally costly as it involves the
inversion of a dense covariance matrix, which scales cubically
with the number of observations. Due to this limitation, GPs
are typically used in relatively low-dimensional problems with
an optimum that can be found in relatively few objective
function evaluations. RFs are a collection of regression trees,
which, in contrast to decision trees, have real numbers at their
leaves. RFs have been shown to perform particularly well for
categorical input data and classification tasks. RFs are therefore
successfully applied to objective functions with discrete or
quasidiscrete codomain. The computational cost of training a
RF scales as n n( log ) with the number of observations and
linearly with the dimensionality of the parameter space.
Recently, Bayesian neural networks (BNNs) have been

employed for Bayesian optimization,37,38 retaining the
flexibility of GPs at a computational scaling comparable to
RFs. In contrast to traditional neural networks, weights and
biases for neurons in BNNs are not single numbers but instead
sampled from a distribution. BNNs are trained by updating the
distributions from which weights and biases are sampled.
Acquisition Functions. The ideal acquisition function

finds the adequate balance between exploration and
exploitation. Exploration of the entire parameter space should
be favored when no observations in vicinity to the global
optimum have been made yet, and the acquisition function
should only sample close to the global optimum once its
general location has been determined.
One of the earliest and most widely applied acquisition

functions is expected improvement and variants thereof.28,31,39

Expected improvement aims to measure the expected amount
by which an observation of a point in parameter space
improves over the current best value. Exploration and
exploitation are implicitly balanced based on the posterior
mean and the estimated uncertainty. More recently, alternative
formulations of acquisition functions have been developed.
The upper conf idence bound method exploits confidence
bounds for constructing an acquisition function which
minimizes regret.42 Variants of this acquisition function have
been designed specifically to be applied in higher-dimensional
parameter spaces.49,50 Predictive entropy estimates the negative
differential entropy of the location of the global optimum given
the observations,40,41 and has been shown to outperform
expected improvement and upper confidence bound acquis-
itions.

Batched Bayesian Optimization. Many practical appli-
cations involve time-consuming evaluations of the objective
function, but are amenable to parallelization. Examples include
the execution of experiments on multiple experimental
platforms or the distribution of computational models across
multiple processors. Batched Bayesian optimization has been
suggested with different assumptions and applicability
scenarios. Marmin et. al proposed derivative-based expected
improvement criterion for synchronous batch-sequential
Bayesian optimization.48 Other methods include approaches
for estimating the expected objective function value for future
observations,31,50 or look ahead procedures.51 In addition,
ensemble procedures have been proposed where new batches
of samples are proposed from GPs trained on subsets of the
available data.46,47 However, all proposed batch optimization
methods require substantial additional computation compared
to sequential evaluation strategies. A computationally less
demanding batch optimization strategy has been proposed in
the context of RF optimization.33−35 Due to the computational
efficiency of RF models, batch optimization is realized by
running several RF optimization instances in parallel, while
sharing and contributing to the same observation data set.

■ FORMULATING PHOENICS

In this section we present the mathematical formulation of
Phoenics. We assume that evaluations of the objective are
expensive, where the cost could be related to any budgeted
resource such as required execution time, experimental
synthesis of chemical compounds, computing resources, and
others. Phoenics combines ideas from Bayesian optimization
with concepts from Bayesian kernel density estimation
(BKDE).60 The overall workflow of Phoenics is schematically
represented in Figure 1 and follows the general principles of
traditional Bayesian optimization. At each iteration, a surrogate
model is constructed, from which new conditions are
proposed. In the following we detail how the surrogate
model is constructed (Figure 1a−c) and how the surrogate
model can be biased toward particular sampling strategies, i.e.,
exploration or exploitation, using an intuitive sampling
parameter (Figure 1d).

Approximating the Objective Function. We suggest to
use BNNs to estimate the parameter kernel density from the
observed parameter points in an autoencoder-like architecture.
As such, the BNN is used to nonlinearly estimate the density of
the observed parameter points x (see Figure 1b). A particular
realization of the BNN represents a map projecting parameter
points into the parameter space, i.e,  →BNN: d d. Thereby,
we can construct an estimate to the parameter kernel density,
which corresponds to a particular observed objective function
value. The use of a BNN for the construction of the surrogate
guarantees flexibility in the approximation as it has already
been reported that BNNs are versatile function approximators
at a favorable linear scaling with the number of observa-
tions.37,38 Details on the BNN architecture are reported in the
Supporting Information (see Sec. S.3).
The implementation of Phoenics supports the construction

and training of the surrogate model using either the PyMC3
library,61,62 or the Edward library.63 In both cases, the model
parameters θ of the BNN are trained via variational inference.
We start the sampling procedure with 500 samples of burn-in
followed by another 1000 iterations retaining every 10th
sample. This protocol was fixed for all tasks.
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We can construct an approximation to the kernel density
from the distributions of BNN parameters learned from the
sampling procedure. In particular, for observed conditions n
we compute the kernel densities, which are then used to
approximate the objective function. The kernel density pk(x)
generated from a single observed parameter point xk (see
Figure 1b) can therefore be written in closed form in eq 1,
where ⟨·⟩ denotes the average over all sampled BNN

architectures, and xpred denotes the parameter points sampled
from the BNN
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We formulate the approximation to the objective function as
an ensemble average of the observed objective function values
f k taken over the set of computed kernel densities pk(x) (see eq
2).64,65 In this ensemble average, each of the constructed
distributions pk(x) is rescaled by the value of the objective
function f k observed for the parameter point xk (Figure 1c).
Note that α converges to the true objective f in the limit of
infinitely many distinct function evaluations, as the kernel
densities pk become more peaked due to the increasing
precision in the Gaussian prior. Details are provided in the
Supporting Information (see Sec. S.5).
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This approximation to the objective function allows for
inexpensive evaluations for any given parameter point x as
repetitive, full BNN evaluations are avoided.

Acquisition Function. In the resulting approximation α
we effectively model the expectation value of f for a given
parameter point x based on prior observations. However, the
parameter space could contain low-density regions, for which
the objective function approximation α(x) is inaccurate (see
Figure 1c).
With these considerations, we propose an acquisition

function based on the kernel densities pk(x) for observations
n detailed in eq 3. The acquisition function differs from the

approximation to the objective function (see eq 2) by an
additional term puniform(x) in the numerator and the
denominator, which denotes the uniform distribution on the
domain (see Figure 1d). In the numerator, puniform(x) is scaled
by a factor λ, referred to as the sampling parameter from
hereon. Note that this modification to α does not affect its
convergence behavior (see the Supporting Information, Sec.
S.5)
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The introduced parameter λ effectively compares the
cumulative height of each rescaled density estimate pk(x) to
the uniform distribution. While the pk(x) are constructed from
the knowledge we acquired from previous experiments, puniform
is used as a reference to indicate the lack of knowledge in
parameter space regions where little or no information is
available yet. The sampling parameter therefore balances
between acquired knowledge and the lack of knowledge, which
effectively tunes the exploitative and explorative behavior of
the algorithm.
Figure 1d illustrates the behavior of Phoenics on a one-

dimensional objective function with different λ values. In this
example, the acquisition function is constructed from eight
observations indicated in green. Note that the acquisition
function approximates the value of the objective function at
observed parameter points. Acquisition functions which were
constructed from a more positive λ show low values only in the
vicinity of the observation with the lowest objective function
value. In contrast, acquisition functions which were con-

Figure 1. Illustration of the workflow of Phoenics. (A) Unknown,
possibly high-dimensional, objective function of an experimental
procedure or computation. The objective function has been evaluated
at eight different conditions (green), which comprise the set of
observations in this illustration. (B) The observed conditions are
processed by a Bayesian neural network yielding a probabilistic model
for estimating parameter kernel densities. Note that the probabilistic
approach allows for a higher flexibility of our surrogate model
compared to standard kernel density estimation. (C) The surrogate
model is constructed by weighting the estimated parameter kernel
densities with their associated observed objective values. (D) The
surrogate can be globally reshaped using a single sampling parameter
λ to favor exploration (red) or exploitation (blue) of the parameter
space.
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structed from a more negative λ show low values far away from
any observation. The choice for the value of the exploration
parameter λ can therefore be directly related to explorative or
exploitative behavior when proposing new conditions based on
the global minimum of the surrogate. With a large positive
value of λ, Phoenics favors exploitation, while a large negative
value favors exploration. When λ = 0, the acquisition function
shows no preference for a particular sampling strategy. Details
on the global optimization of the surrogate are provided in the
Supporting Information (see Sec. S.6).
From Figure 1d we see that distinct points in parameter

space are proposed based on particular values of the
exploration parameter λ. The best choice of λ for a given
objective function is a priori unknown. However, with the
possibility to rapidly construct several acquisition functions
with biases toward exploration or exploitation, we can propose
multiple parameter points in batches based on different
sampling strategies. The newly proposed parameter points
are then evaluated on the black-box optimization function in
possibly parallel evaluation runs.

■ RESULTS AND DISCUSSION
In this section we report the performance of Phoenics and
compare it to four frequently used optimization algorithms:
particle swarm optimization (PSO),55,56 covariance matrix
adaptation evolution strategy (CMA-ES),22,23 as well as
Bayesian optimization based on GPs and based on RFs.
PSO is implemented in the “pyswarms” python module.66

An implementation of CMA is also available in the “cma”
module.67 Default settings as provided by the modules have
been used for both optimization algorithms. The “spearmint”
software package performs Bayesian optimization using GPs
and the predictive entropy acquisition function.31,36 Batch
optimization is implemented in spearmint via estimating the
expected objective value for future evaluations. The SMAC
software employs RF models and allows for batch optimization
by running multiple RF instances sharing the same set of
samples.33−35

Chemical systems can have complex, qualitatively different
response surfaces. As chemical reactions are time-consuming to
evaluate, we therefore assess the performance of each of these
three algorithms on a set of 15 benchmark functions covering a
large range of qualitatively diverse response surfaces for
problems in chemistry. The employed functions are well-
established benchmarks and include continuous and convex,
nonconvex, or discrete functions with possibly multiple global
minima. A complete list of the employed objective functions as
well as their global minima is provided in the Supporting
Information (see Table S.1).
For reliable performance estimates we executed 20

independent optimization runs initialized with different
random seeds, unless noted otherwise. During each run we
record the lowest achieved objective function value after each
iteration. We compare the averaged lowest achieved objective
function values by relating to results from simple random
searches. Each random search was run for 104 objective
function evaluations, and results were averaged over 50
independent runs initialized with different random seeds.
The average lowest achieved objective function values of the
random search runs are summarized in the Supporting
Information (see Table S.2).
Our benchmark calculations indicate that Bayesian-based

optimization algorithms outperform PSO and CMA-ES. As a

matter of fact, after 200 function evaluations, PSO and CMA-
ES yield significantly higher deviations from the global
optimum than the three studied Bayesian optimization
algorithms. Even when increasing the number of function
evaluations by an order of magnitude, from 200 to 2000, PSO
(and CMA-ES) fails to achieve lower deviations than the ones
obtained with Phoenics after 200 evaluations for 12 (and 13)
out of 15 objective functions. We therefore restrict our further
analyses and comparisons to only Phoenics, GP optimization,
and RF optimization. The benchmark results conducted with
PSO and CMA-ES are detailed in the Supporting Information
(see Figure S.6)

Analytic Benchmarks. Phoenics was set up with three
different values for the sampling parameter, λ ∈ {−1, 0, 1}, to
assess the effectiveness of a particular parameter choice. In
Figure 2 we report the number of objective function

evaluations required by each of the optimization algorithms
to reach an objective function value lower than the average
lowest value found in random searches. Optimization traces for
these runs on all 15 objective functions are reported in the
Supporting Information (see Figure S.3).
We find that GP optimization, as implemented in spearmint,

generally quickly finds the global minimum if the objective
function is strictly convex. In contrast, RF optimization, as
implemented in SMAC, quickly finds the global minimum of
objective functions with a discrete codomain. The performance
of Phoenics varies with different values of the sampling
parameter λ. When favoring exploitation over exploration, i.e.,
λ > 0, the algorithm performs better if the objective function
features narrow and well-defined funnels (e.g., Ackley in Figure
2a or Schwefel in Figure 2c). With this choice for the sampling
parameter, the algorithm is slightly biased toward exploring the
local region around the current optimum. This behavior,
however, is unfavorable in other cases, for instance, when the
objective function has a discrete codomain (e.g., dAckley in

Figure 2. Number of objective function evaluations required to reach
objective function values lower than the average lowest achieved
values of random searches with 104 evaluations for Phoenics (λ ∈
{−1, 0, 1}), RFs, and GPs. Results are reported for the Ackley (A),
Dejong (B), Schwefel (C), and dAckley (D) objective functions.
Details on the benchmark functions are provided in the Supporting
Information, Sec. S.1.
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Figure 2d). Since parameter points in the vicinity to the
current optimum likely yield the same value if the objective
function is discrete or quasidiscrete, Phoenics performs better
on such objective functions when favoring exploration over
exploitation, i.e., λ < 0.
Developing a Collective Sampling Strategy. The

dependence of the performance of Phoenics on the sampling
parameter λ could be eliminated by marginalizing over this
parameter. Marginalization over the sampling parameter would
effectively average out the advantageous effects of a bias
toward exploitation for some objective functions and toward
exploration for other objective functions.
The shape of the objective function is a priori unknown, so

suitable choices of the sampling parameter cannot be
determined beforehand. However, since the sampling param-
eter can be directly related to the explorative and exploitative
behavior of the algorithm we follow an approach to take full
advantage of the sampling policy. We suggest to propose
parameter points based on multiple different sampling
parameter values. Note that values of λ are chosen beforehand
and are kept fixed throughout the optimization procedure.
Given a set of observations n the construction of several

objective surrogates with different values of λ is computation-
ally cheap. This allows us to suggest multiple parameter points
at each optimization iteration, which are proposed from more
explorative and more exploitative parameter values, at almost
no additional cost. With the observations on the simple
benchmarks we would expect a synergistic effect of this batch
optimization over sequential optimization with a single
sampling parameter value. As parameter points can be
proposed with both a bias toward exploration and a bias
toward exploitation, we expect the number of required
objective function evaluations to decrease. In addition,
suggesting a batch of parameter points in one optimization
step allows for the parallel evaluation of all proposed points,
which accelerates the optimization process.
The behavior of the three studied optimization algorithms

under parallel optimization on the Ackley objective function is
highlighted in Figure 3. Full results on the entire benchmark
set are reported in the Supporting Information (see Sec. S.8).
Figure 3 depicts the minimum achieved objective function
values for different runs with a different number of parallel
evaluations of the objective function averaged over 20
independent runs. The minimum achieved objective function
values are presented per number of objective function
evaluations (left panel) and per batch evaluation (right panel).
We find that both spearmint and SMAC achieve low

objective function values in fewer batches with an increasing
number of points p proposed in each batch. While increasing
the number of samples proposed per batch initially significantly
improves the performance with respect to the number of
proposed batches, this advantageous effect quickly levels off
until there is no significant improvement beyond six samples
per batch. However, when comparing the minimum achieved
objective function values with respect to the total number of
objective function evaluations, we did not observe any
significant difference between runs with a different number
of samples proposed per batch.
In contrast, Phoenics shows a different behavior. Our

algorithm not only reaches lower objective function values in a
fewer number of batches when proposing more samples per
batch, but also shows a better performance when considering
the total number of function evaluations. This synergistic effect

demonstrates that Phoenics indeed benefits from proposing
points with multiple sampling strategies in cases in which
proposed samples are evaluated sequentially.
The performance improvement of Phoenics when proposing

parameter points in batches at each optimization iteration is
demonstrated on all 15 considered objective functions in the
Supporting Information (see Sec. S.8). We ran our optimizer
with four different sampling strategies using sampling
parameter values evenly spaced across the [−1, 1] interval.
All four proposed parameter points are then evaluated before
we started another optimization iteration. For this particular
batching protocol, we find that Phoenics outperforms RF-
based optimization on all benchmark functions and GP-based
optimization on 12 out of 15 benchmark functions. If and only
if the objective function is convex, GP optimization finds lower
objective function values. In addition, we observe the
aforementioned synergistic effect of batch optimization for
12 out of 15 benchmark functions. Despite reducing the
number of optimization iterations by a factor of 4, the achieved
objective function values were found to be lower than values
achieved in sequential optimizations with all three considered
fixed sample parameter value.
We suggest that this improved performance of the algorithm

is due to the trade-off between exploration and exploitation.
The exploration samples systematically sample the parameter
space and ensure that the algorithm does not get stuck in local
minima, while the exploitation samples explore the local
environment of the current global minimum. This sampling

Figure 3. Average minimum objective function values for the Ackley
function achieved in 20 independent runs of the three optimization
algorithms studied in this work: our optimizer (Phoenics), spearmint
(GP), and SMAC (RF). For each run a different number of proposed
samples p was evaluated in parallel. Minimum achieved objective
function values are reported with respect to the total number of
objective function evaluations and the number of evaluated batches.
The dashed blue lines denote the minimum achieved error after 104 of
random search for reference.
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behavior is illustrated in Figure 4 for the Michalewicz function.
The optimization runs on the Michalewicz function were all

started from the same two random samples illustrated in black
for all three investigated optimization algorithms. Bayesian
optimization based on GPs as implemented in spearmint
(lower panels) tends to sample many parameter points close to
the boundaries of the domain space in this particular example.
RF optimization as implemented in SMAC (central panels),
however, shows a higher tendency of exploring the parameter
space.
Phoenics (Figure 4, upper panels) starts exploring the space

and quickly finds a local minimum in vicinity of one of the
initial samples. After finding this local minimum, samples
which are proposed based on a more exploitative (positive)
value of the sampling parameter λ explore the local
environment of this local minimum while samples proposed
from more explorative (negative) values of λ explore the entire
parameter space. As soon as the exploration points find a point
in parameter space with a lower value of the objective function,

the exploitation points jump to this new region in parameter
space and locally explore the region around the current best to
quickly converge to the global minimum.
Overall we have demonstrated that the value of the sampling

parameter λ in the proposed acquisition function clearly
influences the behavior of the optimization procedure toward a
more explorative behavior for more negative values of this
parameter and a more exploitative behavior for more positive
parameter values. Batched optimization improves the perform-
ance of Phoenics even in terms of total objective function
evaluations and reduces the number of required optimization
iterations.

Increasing the Number of Dimensions. Practical
chemistry problems are typically concerned with more than
just two parameters. In fact, chemical reactions can be
influenced by environmental conditions and experimental
device settings, and computational studies frequently employ
parameters to describe the system of interest. In this section we
illustrate the performance of Phoenics in parameter spaces with
dimensions k > 2.
We evaluate the performance of the three optimization

algorithms on the same objective function subset, but now
successively increase the dimensionality of the parameter space
from 2 to 20. Based on the results on batch optimization we
ran GP optimization and RF optimization with one point per
batch and the optimization algorithm introduced in this study
with four points per batch on each considered benchmark
function. Exploration parameter values were chosen to be
evenly spaced across the [−1, 1] interval.
For better comparisons we report the average deviation of

the lowest encountered objective function value from the
global minimum of each function taken over 20 independent
optimization runs. Average deviations achieved by each of the
optimization algorithms after 200 objective function evalua-
tions are depicted in Figure 5.

Figure 4. Progress of sample optimization runs of the three studied
optimization algorithms on the two-dimensional Michalewicz
function. Phoenics proposed a total of three samples per batch,
which were then evaluated in parallel. Each sample was suggested
based on a particular value of the exploration parameter λ ∈ {−1, 0,
1}. Left panels illustrate the parameter points proposed at each
optimization iteration while right panels depict the achieved objective
function values. Depicted points are more transparent at the
beginning of the optimization and more opaque toward the end.
Starting points for the optimization runs are drawn as black squares.

Figure 5. Average deviations taken over 20 independent runs between
the lowest encountered objective function value and the global
minimum achieved after 200 objective function evaluations for
different parameter set dimensions. Results are reported for Ackley
(A), Dejong (B), Schwefel (C), and dAckley (D). Uncertainty bands
illustrate bootstrapped estimates of the deviation of the means with
one and two standard deviations.
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We observe that Phoenics maintains its rapid optimization
properties for a variety of different objective functions even
when increasing the number of dimensions. In the case of the
Ackley function (Figure 5a) Phoenics appears to find and
explore the major funnel close to the global optimum faster
than the other two optimization algorithms regardless of the
number of dimensions. The paraboloid (Figure 5b) is an easy
case for the GP in low dimensions, but is optimized the fastest
by Phoenics when considering parameter spaces with seven or
more dimensions. No major differences are observed for the
Schwefel function (Figure 5c). However, in the case of a
discrete objective function (Figure 5d) Phoenics seems to have
a slight advantage over the other two optimizers for lower
dimensions and performs about as well as random forest
optimization for higher dimensions.

■ APPLICATION TO CHEMISTRY
In this section, we demonstrate the applicability of Phoenics on
the Oregonator, a model system of a chemical reaction

described by a set of nonlinear coupled differential equations.68

In particular, we demonstrate how Phoenics can be employed
to propose a set of conditions for an experimental procedure.
The experimental procedure can then be executed with the
proposed conditions, and the results of the procedure are
reported back to Phoenics. With this feedback, Phoenics can
make more informed decisions and, thus, provides more
promising sets of experimental conditions, to eventually result
in the discovery of the optimal set of conditions.
Most chemical reactions lead to a steady-state, i.e., a state in

which the concentrations of involved compounds are constant
in time. While chemical reactions described by linear
differential equations always feature such a steady-state, more
complicated dynamics phenomena can arise for reactions
described by sets of nonlinear coupled differential equations.
With the right choice of parameters, such differential equations
may have a stable limit cycle, leading to periodic oscillations in
the concentrations of involved compounds.69,70

One of the earliest discovered reactions featuring a stable
limit cycle for a set of reaction conditions is the Belousov−
Zhabotinsky reaction.71,72 This network of chemical reactions
involves temporal oscillations of [CeIV] and [CeIII]. The entire
reaction network can be written as a set of three subreactions
listed in Scheme 1. For details on the mechanism we refer to a
brief summary in the Supporting Information (see Sec. S.10) as
well as to the literature.68,72−75

Models at different levels of complexity have been developed
to describe the dynamic behavior of the Belousov−
Zhabotinsky reaction.69,75−77 One of the simplest models of
this reaction is the Oregonator.68 The Oregonator consists of a
set of three coupled first-order nonlinear differential equations
for three model compounds X, Y, and Z, which are shown in
eqs 4−6. These equations involve five reaction constants ki, a
stoichiometric factor f, determined by the prevalence of one
subreaction over another subreaction, and the concentration of
two additional chemical compounds A and B. A map of eqs
4−6 to Scheme 1 is outlined in ref 68.

= − + −X
t

k AY k XY k BX k X
d
d

21 2 3 4
2

(4)

= − − +Y
t

k AY k XY fk Z
d
d 1 2 5 (5)

= −Z
t

k BX k Z
d
d 3 5 (6)

The set of differential equations in the Oregonator can be
reduced into a dimensionless form, such that the number of
correlated parameters is reduced to a smaller set of
independent parameters. This reduced version of the
Oregonator, presented in the Supporting Information (see
Sec. S.10), includes three dimensionless variables α, η, and ρ,
which describe the concentration of chemical species, and four
dimensionless reaction constants.
Phoenics is used to reverse engineer the set of reaction

conditions consisting of three initial concentrations (α0, η0,
and ρ0) and four reaction constants (q, s, w, and f) from the

Scheme 1. Subreactions of the Belousov−Zhabotinsky Reaction78

Table 1. Reaction Parametersa of the Reduced Oregonator
Model for the Belousov−Zhabotinsky Reaction

parameter target value range

s 77.27 0 ... 100
w 0.1610 0 ... 1
q 8.375 × 10−6 10−8 ... 10−4

f 1 0 ... 5
α0 2.0 × 107 104 ... 109

η0 3.3 × 103 103 ... 105

ρ0 4.1 × 104 103 ... 106

aTarget parameters induce the existence of a limit cycle, from which
chemical oscillations emerge. For finding these target parameters via
optimization we constrained the domain space to the reported ranges.
All reported quantities are dimensionless.

Figure 6. Average achieved losses for finding reaction parameters of
the reduced Oregonator model achieved by the five optimization
algorithms employed in this study. Correct periodicities of the
concentration traces are achieved for losses lower than 500.
Uncertainty bands illustrate bootstrapped deviations on the mean
for one standard deviation.
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concentration traces computed in the original publication.68

Parameter values yielding the target concentration traces are
reported in Table 1. The goal is 2-fold: (i) find a set of
conditions for which the dynamical behavior qualitatively
agrees with the behavior of the target, i.e., find chemical
oscillations, and (ii) fine-tune these conditions such that we
reproduce the dynamical behavior on a quantitative level. We
aim to achieve these two goals while keeping the number of
function evaluations, i.e., the number of experiments to run, to
a minimum. Note that this constraint along with the
dimensionality of the parameter space implies that grid
searches or gradient-based algorithms are not suited for this
problem.
Phoenics was run in parallel proposing four samples per

batch with λ equally spaced on the [−1, 1] interval. We
compare the performance to PSO in the pyswarms module,
CMA-ES in the cma module, GP optimization in spearmint,
and RF optimization in SMAC. Each of the five optimization
algorithms was used in 50 independent optimization runs for
150 evaluations.
All optimization procedures were carried out on a

constrained parameter space reported in Table 1. Note that
different choices of parameter sets within this bounded domain
can result in quantitatively and qualitatively different dynamical
behavior. In particular, parameter choices close to the target
result in oscillatory behavior, for which the reduced
concentrations α, ρ, and η change periodically over time,
while other parameter choices can break the limit cycle and
create a stable fixed point instead.68,74,77

Concentration traces for a sampled set of reaction
parameters were computed with a fourth-order Runge−Kutta
integrator with adaptive time stepping. The integrator was run
for a total of 107 integration steps covering 12 full
concentration oscillations for the target parameter set. Sampled
concentration traces are compared to the target concentration
traces after a cubic spline interpolation. The distance (loss)
between the sampled traces and the target traces is calculated
as the euclidean distance between the points in time at which a
concentration trace reaches a dimensionless concentration
value of 100.

Average achieved losses for all three optimization algorithms
are displayed in Figure 6. Loss values between 300 and 500
indicate that the periodicity of the predicted concentration
traces resembles the periodicity of the target traces; i.e., the
predicted traces qualitatively agree with the target. Quantita-
tive agreement, i.e., matching traces, is only achieved for loss
values lower than about 100. Examples for concentration traces
yielding different losses are presented in the Supporting
Information (see Figure S.7).
Figure 7 shows concentration traces associated with the

lowest loss achieved by each of the three optimization
algorithms across all 50 independent runs. Phoenics is the
only algorithm reproducing qualitatively and quantitatively
target dynamic behavior within 150 optimization iterations. RF
optimization only finds parameter sets which qualitatively
agree with the target. GP optimization finds only in rare
occasions concentration traces in qualitative agreement with
the target. Both PSO and CMA-ES consistently yield high
losses for the first 75 evaluations, after which PSO slightly
improves but never reaches the degree of agreement achieved
by Phoenics.

Conclusion and Outlook. We introduced Phoenics, an
algorithm for global optimization in the context chemistry and
experimentation. Phoenics is designed for scenarios where the
merit of a set of conditions is evaluated via experimentation or
expensive computations, which can possibly be parallelized.
Our probabilistic optimizer combines Bayesian optimization
with conceptual aspects of Bayesian kernel density estimation.
As such, our algorithm is well-suited for applications where
evaluations of the objective function are expensive with respect
to budgeted resources such as time or money. Through an
exhaustive benchmark study, we showed that Phoenics
improves over optimization strategies based on particle swarms
or evolutionary approaches, as well as on existing Bayesian
global optimization methods and avoids redundant evaluations
of the objective.
We formulate an inexpensive acquisition function balancing

the explorative and exploitative behavior of the algorithm. This
acquisition function enables intuitive sampling policies for an
efficient parallel search of global minima. By leveraging
synergistic effects from running multiple sampling policies in

Figure 7. Time traces of dimensionless concentrations of compounds in the Oregonator model. Target traces are depicted with solid, transparent
lines while predicted traces are shown in dashed, opaque lines. Traces were simulated for a total of 12 dimensionless time units, but are only shown
for the first six time units for clarity.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00307
ACS Cent. Sci. 2018, 4, 1134−1145

1142

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00307/suppl_file/oc8b00307_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.8b00307


batches, the performance of the algorithm improves, and
requires a reduced total number of objective function
evaluations.
The applicability of Phoenics was highlighted on the

Oregonator, a model system describing a complex chemical
reaction network. Phoenics was able to determine the set of
seven experimental conditions reproducing a target dynamic
behavior in the concentrations of involved chemical species.
High degrees of qualitative and quantitative agreement could
be achieved with only 100 merit-evaluations of proposed
conditions despite the rich solution space containing both
steady-state systems and chemical oscillators.
We believe that Phoenics has the potential to be applied to a

wide range of problems, from optimization of reaction
conditions and material properties, over control of robotics
systems, to circuit design for quantum computing.79,80 All in
all, we recommend Phoenics for an efficient optimization of
scalar, possibly nonconvex, black-box unknown objective
functions.
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A.; Álvarez-Valtierra, L.; John, T. Y.; Meerts, W. L.; Pratt, D. W.;
Schmitt, M. Rotationally Resolved Electronic Spectroscopy of the
Rotamers of 1, 3-Dimethoxybenzene. Phys. Chem. Chem. Phys. 2017,
19, 21364−21372.
(26) Zhou, Z.; Li, X.; Zare, R. N. Optimizing Chemical Reactions
with Deep Reinforcement Learning. ACS Cent. Sci. 2017, 3, 1337−
1344.
(27) Kushner, H. J. A New Method of Locating the Maximum Point
of an Arbitrary Multipeak Curve in the Presence of Noise. J. Basic Eng.
1964, 86, 97−106.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00307
ACS Cent. Sci. 2018, 4, 1134−1145

1143

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscentsci.8b00307
http://pubs.acs.org/doi/abs/10.1021/acscentsci.8b00307
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00307/suppl_file/oc8b00307_si_001.pdf
mailto:alan@aspuru.com
http://orcid.org/0000-0002-8277-4434
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1021/acscentsci.8b00307
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