Skip to main content
. 2018 Sep 13;20(37):24263–24286. doi: 10.1039/c8cp02473a

Table 5. Electron collisions.

No. E Thr (eV) Reaction (rxn) Rate a , b Ref.
Elastic scattering and momentum transfer
1 0.00 e + He → He + e f(E) 82 and 83
2 0.00 e + H2O → H2O + e f(E) 84 and 89
3 0.00 e + O2 → O2 + e f(E) 90
Electron impact excitation and ionisation
4 19.80 e + He → He* + e f(E) 82 and 83
5 20.62 e + He → He* + e f(E) 82 and 83
6 24.58 e + He → He+ + e f(E) 82 and 83
7 4.77 e + He* → He+ + 2e f(E) 91 c
8 3.90 e + He2* → He2+ + 2e 2.06 × 10–13e–4.28/Te 92 d
9 0.20 e + H2O → H2O + e f(E) 84 e
10 0.45 e + H2O → H2O + e f(E) 84 e
11 0.47 e + H2O → H2O + e f(E) 84 e
12 13.50 e + H2O → H2O+ + 2e f(E) 84
13 13.50 e + OH → OH+ + 2e f(E) 93
14 1.97 e + O → O(1D) + e f(E) 94
15 4.19 e + O → O(1S) + e f(E) 94
16 13.62 e + O → O+ + 2e f(E) 94
17 11.65 e + O(1D) → O+ + 2e f(E) 91 c
18 9.43 e + O(1S) → O+ + 2e f(E) 95 c
19 0.02 e + O2 → O2 + e f(E) 90 f
20 0.19 e + O2 → O2 + e f(E) 90 e
21 0.19 e + O2 → O2 + e f(E) 90 e
22 0.38 e + O2 → O2 + e f(E) 90 e
23 0.38 e + O2 → O2 + e f(E) 90 e
24 0.57 e + O2 → O2 + e f(E) 90 e
25 0.75 e + O2 → O2 + e f(E) 90 e
26 0.98 e + O2 → O2(a 1Δ) + e f(E) 90
27 1.63 e + O2 → O2(b 1Σ) + e f(E) 90
28 4.50 e + O2 → O2 + e f(E) 90 g
29 12.06 e + O2 → O2+ + e f(E) 90
30 0.02 e + O2(a 1Δ) → O2(a 1Δ) + e f(E) As rxn 19 h
31 0.19 e + O2(a 1Δ) → O2(a 1Δ) + e f(E) As rxn 20 h
32 0.19 e + O2(a 1Δ) → O2(a 1Δ) + e f(E) As rxn 21 h
33 0.38 e + O2(a 1Δ) → O2(a 1Δ) + e f(E) As rxn 22 h
34 0.38 e + O2(a 1Δ) → O2(a 1Δ) + e f(E) As rxn 23 h
35 0.57 e + O2(a 1Δ) → O2(a 1Δ) + e f(E) As rxn 24 h
36 0.75 e + O2(a 1Δ) → O2(a 1Δ) + e f(E) As rxn 25 h
37 0.65 e + O2(a 1Δ) → O2(b 1Σ) + e f(E) 96 i
38 3.52 e + O2(a 1Δ) → O2 + 2e f(E) As rxn 28 h
39 11.08 e + O2(a 1Δ) → O2+ + e f(E) As rxn 29 h
40 0.02 e + O2(b 1Σ) → O2(b 1Σ) + e f(E) As rxn 19 h
41 0.19 e + O2(b 1Σ) → O2(b 1Σ) + e f(E) As rxn 20 h
42 0.19 e + O2(b 1Σ) → O2(b 1Σ) + e f(E) As rxn 21 h
43 0.38 e + O2(b 1Σ) → O2(b 1Σ) + e f(E) As rxn 22 h
44 0.38 e + O2(b 1Σ) → O2(b 1Σ) + e f(E) As rxn 23 h
45 0.57 e + O2(b 1Σ) → O2(b 1Σ) + e f(E) As rxn 24 h
46 0.75 e + O2(b 1Σ) → O2(b 1Σ) + e f(E) As rxn 25 h
47 2.87 e + O2(b 1Σ) → O2 + e f(E) As rxn 28 h
48 10.43 e + O2(b 1Σ) → O2+ + 2e f(E) As rxn 29 h
Super-elastic collisions
49 –19.80 e + He* → He + e f(E) 82 and 83 j
50 –1.97 e + O(1D) → O + e f(E) 94 j
51 –4.19 e + O(1S) → O + e f(E) 94 j
52 –0.98 e + O2(a 1Δ) → O2 + e f(E) 90 j
53 –1.63 e + O2(b 1Σ) → O2 + e f(E) 90 j
54 –0.65 e + O2(b 1Σ) → O2(a 1Δ) + e f(E) As rxn 37 j
Electron impact dissociation
55 0.00 e + He2* → 2He + e 3.8 × 10–15 97
56 13.50 e + H2O → O(1S) + 2H + e f(E) 84 and 98
57 7.62 e + H2O → H + OH + e f(E) 84 and 99
58 9.00 e + H2O → H + OH + e f(E) 84
59 13.00 e + H2O → H2 + O(1D) + e 2.42 × 10–14Te–0.062e–22.42/Te 78 k
60 8.80 e + H2 → 2H + e f(E) 100
61 11.37 e + H2 → 2H + e f(E) 101
62 12.96 e + OH → O + H + e f(E) 102 l
63 e + H2O2 → 2OH + e 2.36 × 10–15 103 m
64 6.00 e + O2 → O + O + e f(E) 90
65 8.40 e + O2 → O(1D) + O + e f(E) 90
66 10.00 e + O2 → O(1D) + O + e f(E) 90
67 5.02 e + O2(a 1Δ) → O + O + e f(E) As rxn 64 h
68 7.42 e + O2(a 1Δ) → O(1D) + O + e f(E) As rxn 65 h
69 9.02 e + O2(a 1Δ) → O(1D) + O + e f(E) As rxn 66 h
70 4.37 e + O2(b 1Σ) → O + O + e f(E) As rxn 64 h
71 6.77 e + O2(b 1Σ) → O(1D) + O + e f(E) As rxn 65 h
72 8.37 e + O2(b 1Σ) → O(1D) + O + e f(E) As rxn 66 h
73 2.60 e + O3 → O + O2 + e 1.7 × 10–14Te–0.57e–2.48/Te 74 and 104
74 5.72 e + O3 → O(1D) + O2(a 1Δ) + e 3.22 × 10–13Te–1.18e–9.17/Te 74 and 104
Dissociative ionisation
75 17.50 e + H2O → OH+ + H + 2e f(E) 84
76 25.00 e + H2O → O+ + 2H + 2e f(E) 84
(Dissociative) electron attachment
77 5.30 e + H2O → OH + H f(E) 84 and 105
78 4.43 e + H2O → H2 + O f(E) 84 and 105
79 4.30 e + H2O → H + OH f(E) 84 and 105
80 0.00 e + H2O2 → H2O + O f(E) 106
81 0.00 e + H2O2 → OH + OH f(E) 106
82 5.38 e + O2 → O + O f(E) 90
83 3.50 e + O2(a 1Δ) → O + O f(E) 107
84 2.85 e + O2(b 1Σ) → O + O f(E) As rxn 83 h
85 0.00 e + O3 → O2 + O f(E) 108
86 0.25 e + O3 → O2 + O f(E) 108
Electron detachment
87 1.55 e + H → H + e + e f(E) 109
88 3.37 e + OH → OH + e + e f(E) 110
89 2.70 e + O → O + e + e f(E) 111
90 4.00 e + O2 → O2 + e + e f(E) 174
Recombination
91 0.00 e + H2O+ → H + OH 8.6 × 10–14Te–0.5 112 and 113
92 0.00 e + H2O+ → 2H + O 3.05 × 10–13Te–0.5 112 and 113
93 0.00 e + H2O+ → H2 + O 3.87 × 10–14Te–0.5 112 and 113
94 0.00 e + H+·(H2O) → H + H2O 7.09 × 10–14Te–0.5 112, 114 and 115
95 0.00 e + H+·(H2O) → OH + H2 5.37 × 10–14Te–0.5 112, 114 and 115
96 0.00 e + H+·(H2O) → OH + 2H 3.05 × 10–13Te–0.5 112, 114 and 115
97 0.00 e + H+·(H2O)2 → H + 2H2O 1.84 × 10–12Te–0.08 116
98 0.00 e + H+·(H2O)3 → 3H2O + H 2.24 × 10–12Te–0.08 116
99 0.00 e + H+·(H2O)4 → 4H2O + H 3.6 × 10–12 116
100 0.00 e + H+·(H2O)5 → 5H2O + H 4.1 × 10–12 117
101 0.00 e + H+·(H2O)6 → 6H2O + H 5.13 × 10–12 117
102 0.00 e + H+·(H2O)7 → 7H2O + H 1.0 × 10–12 117
103 0.00 e + H+·(H2O)8 → 8H2O + H 4.1 × 10–12 As rxn 100
104 0.00 e + H+·(H2O)9 → 9H2O + H 4.1 × 10–12 As rxn 100
105 0.00 e + H2O+·(H2O) → H + OH + H2O 9.63 × 10–13Te–0.2 118 n
106 0.00 e + O2+ → 2O 3.72 × 10–15Te–0.7 119
107 0.00 e + O2+ → O + O(1D) 7.44 × 10–15Te–0.7 119 and 120
108 0.00 e + O2+ → 2O(1D) 7.44 × 10–15Te–0.7 119 and 120
109 0.00 e + O2+·(H2O) → O2 + H2O 7.22 × 10–13Te–0.2 118
110 0.00 e + O4+ → 2O + O2 5.17 × 10–14Te–1.0 118
111 0.00 e + O4+ → 2O2 2.76 × 10–13Te–0.5 86

aIn m3 s–1 and m6 s–1 for two- and three-body processes, respectively.

b f(E) denotes rate coefficients are calculated by the internal GlobalKin two-term Boltzmann equation solver using cross sections obtained from the indicated literature.

cCross sections are calculated from an expression in cited reference.

dCalculated assuming a Maxwell distribution function and cross sections from the given reference.

eVibrational excitation cross section included in cross section set for two-term Boltzmann solver. Vibrational states not simulated self-consistently in reaction kinetics.

fRotational excitation cross section included in cross section set for two-term Boltzmann solver. Rotations states not simulated self-consistently in reaction kinetics.

gElectronic excitation cross section included in cross section set for two-term Boltzmann solver. This electronic state is not simulated self-consistently in reaction kinetics.

hCross section estimated by shifting and scaling the corresponding cross section for the ground state by the excitation threshold of the excited state.

iBorn–Bethe fit to data in the cited reference.

jObtained from reverse process by detailed balance.

kIn the reference reaction rates were calculated using Bolsig+121 and cross sections obtained from the Morgan database122 for a He/H2O plasma.

lCross section assumed to be the same as that for CO.

mValue is approximated in reference based on cross section for electron impact dissociation of O2.

nValue is estimated in reference.