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ABSTRACT
MicroRNAs (miRNAs) are small non-coding RNAs with the potential as biomarkers for disease diagnosis,
prognosis and therapy. In the era of big data and biomedical informatics, computer-aided biomarker discovery
has become the current frontier. However, most of the computational models are highly dependent on specific
prior knowledge and training-testing procedures, very few are mechanism-guided or evidence-based. To the
best of our knowledge, untill now no general rules have been uncovered and applied to miRNA biomarker
screening. In this study, wemanually collected literature-reported cancermiRNA biomarkers and analyzed their
regulatory patterns, including the regulatory modes, biological functions and evolutionary characteristics of
their targets in the human miRNA-mRNA network. Two evidences were statistically detected and used to
distinguish biomarker miRNAs from others. Based on these observations, we developed a novel bioinformatics
model and software tool for miRNA biomarker discovery (http://sysbio.suda.edu.cn/MiRNA-BD/). In contrast to
routine methods that focus on miRNA synergic functions, our method searches for vulnerable sites in the
miRNA-mRNA network and considers the independent regulatory power ofmiRNAs, i.e., single-line regulations
between miRNAs and mRNAs. The performance comparison demonstrates the generality and precision of our
model, which identifies miRNA biomarkers for cancers as well as other complex diseases without training or
specific prior knowledge.
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Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs
approximately comprising 22–24 nucleotides. They regulate the
expression of more than 60% of human protein-coding genes by
base-pairing with their target messenger RNAs (mRNAs) [1,2].
Accumulating studies indicate that miRNAs play critical roles in
various biological processes [3], and that the aberrant expression
of these small molecules often leads to the occurrence and
development of complex human diseases, including cancers
[4,5], diabetes [6], and cardiovascular diseases [7]. Due to their
high sensitivity and specificity in patient samples, extensive
efforts have been made to infer miRNAs as biomarkers for
disease management and clinical decision making [8–10].

Most of the recent studies for miRNA biomarker discovery
have been experimental, where differentially expressed (DE)
miRNAs were first extracted from large-scale expression profiles
and low-throughput experiments were then conducted to validate
the results and understand disease pathogenesis [11–13].
However, detecting miRNA biomarkers using only experimental
techniques is often time consuming and costly due to the com-
plexity of biological systems. Thus, computational methods and
data-driven models should preferably be developed [14]. For
example, Madden et al. [15] proposed a model that combines
correspondence and co-inertia analysis to screen for disease-asso-
ciated miRNAs by analyzing gene expression data and miRNA-

gene interactions. By considering the synergic functions of
miRNAs, Xu et al. [16] constructed a miRNA target-dysregulated
network and defined four important features for prioritizing
miRNAs associated with human prostate cancer. Cun et al. [17]
developed an R-package called netClass to integrate biological
data and network analysis for biomarker signature discovery.
Zhao et al. [18] developed a framework that infers cancer-related
miRNAs based on gene expression profiles by the combined
analysis of miRNA-gene relationships and dysfunctional pathway
clustering. These approaches are scientifically valuable but the
models obtained are often dependent on the training-and-testing
procedure employed, and thus the precision of the predictions is
strongly related to the quality of the training data. In addition, no
general rules ormechanistic reasoning can be extracted from these
models. It is widely acknowledged that the detection of disease-
associated miRNAs is not the same as biomarker miRNA discov-
ery, where the lattermust be an indicator of a systematic change in
state from health to disease, not only associated with the dis-
ease [19].

Until now, most of the studies have focused on the func-
tional synergism among miRNAs as well as the multiple-to-
multiple relationships between miRNAs and mRNAs.
However, few have considered the sub-structure, especially
the vulnerable regulatory sites in the miRNA-mRNA regula-
tory network. Similar to the protein-protein interaction net-
work (PPIN) [20], the degree distribution of the human
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miRNA-mRNA regulatory network also follows a power law,
which implies that there are few miRNAs with stronger reg-
ulatory power [21]. In addition, some genes are regulated
independently by an individual miRNA. In this study, we
reconstructed the human miRNA-mRNA regulatory network
by focusing on the vulnerable regulatory interactions, i.e., the
single-line regulatory relationships between miRNAs and
mRNAs. We discovered two features as evidences for char-
acterizing biomarker miRNAs. First, they have a greater capa-
city for regulating genes independently compared with others
and they tend to uniquely target genes with high degrees, but
not hubs, in the human PPIN according to our cross-scale
investigation. Second, statistical analysis of their functions
showed that biomarker miRNAs are likely to target more
transcription factor (TF) genes. Based on these two features,
we developed an evidence-based bioinformatics model and
software tool called MiRNA-BD for MicroRNA Biomarker
Discovery. The executable file and related documents are
available for downloading at: http://sysbio.suda.edu.cn/
MiRNA-BD/. Our performance comparison indicated that
the model detected miRNA biomarkers precisely without
any model training. Translational applications to complex
diseases, e.g., prostate cancer [21,22], colorectal cancer
(CRC) [23], pediatric acute myeloid leukemia (AML) [24],
sepsis [25], and acute coronary syndrome [26], demonstrated
the good generality of the model, while further validations
based on in vitro q-PCR experiments and pathway analyses
convinced its predictive power [21–23].

Results

Biomarker miRNA characterization based on miRNA-
mRNA network analyses

As shown in Figure 1, we classified the miRNA-mRNA rela-
tionship into four types based on their regulatory mechan-
isms, and considered their regulatory modes and the
biological functions of their targets. Two measurements were
defined as follows to quantify the regulatory power of single
miRNAs in the network.

Measurement 1: The number of single-line regulation
(NSR) is the number of genes that are independently or
uniquely regulated by a single miRNA. Compared with sin-
gle-line regulation, genes targeted by more than one miRNA,
i.e., multiple-line regulation, would be more robust because
the alteration of one of the regulatory links could be compen-
sated for by others. We considered single-line regulation as a
vulnerable structure in the network and alterations of these

regulatory sites are important for the stability of the biological
system.

Measurement 2: TF gene percentage (TFP) is the percen-
tage of TF genes targeted by a single miRNA. TF genes are
functionally important in the biological system, so this mea-
surement can be used to quantify the functional importance
of a given miRNA.

For example, the NSR values of the four miRNAs in
Figure 1 are 2, 0, 1, and 3, and their TFP values are 0, 2/5,
1/2, and 3/5, respectively. We calculated NSR and TFP values
for the 618 miRNAs in the human miRNA-mRNA regulatory
network and two features were summarized as evidences for
characterizing biomarker miRNAs as follows.

Evidence 1: Biomarker miRNAs tended to have high NSR
values.

The distribution of the NSR values for miRNAs in the
human miRNA-mRNA network followed a power law, as
shown in Figure 2(a). Clearly, biomarker miRNAs had higher
NSR values than others (p-value <2.2E-16, Wilcoxon signed-
rank test), as illustrated in Figure 2(b), thereby indicating that
the biomarker miRNAs had greater single-line regulatory
power than other miRNAs. We categorized miRNAs in the
human miRNA-mRNA network based on their NSR values.
As shown in Figure 2(c), miRNAs in Group I had limited
single-line regulatory power. For the miRNAs with NSR > 0,
we further divided them into three groups (Group II-IV)
where the cutoffs of 4 and 8 were the median and the third
quartile of the NSR distribution, respectively. The results
indicated that the biomarker miRNAs were distributed statis-
tically significantly among those with higher NSR values. The
percentages of miRNA biomarkers in the last three groups
(Group II-IV) were significantly higher than that in the first
group (p-value = 1.38E-11, Pearson’s Chi-square test). Among
the three groups with NSR > 0, the percentage of biomarker
miRNAs in Group IV was significantly higher than that in
Groups II and III with p-values of 4.17E-8 and 2.44E-4,
respectively (Pearson’s Chi-square test).

Evidence 2: Biomarker miRNAs tended to have high TFP
values.

We compared the differences in the TFP values for the
biomarker miRNAs and others. As illustrated in Figure 2(d),
the biomarker miRNAs tended to have significantly higher
TFP values (p-value = 1.38E-4, Wilcoxon signed-rank test).
Together with the single-line regulatory power discussed
above, we then checked the miRNAs with high NSR values
(NSR ≥ 4, Groups III and IV in Figure 2(c)) in the network
and found that 47.1% (106/225) of them had been previously
reported as biomarkers (see Table S1). As shown in Figure 2

Figure 1. Four regulatory types of miRNAs in the human miRNA-mRNA network, i.e., TF/non-TF genes regulated by single/multiple miRNAs.
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(e), the biomarker miRNAs were likely to regulate more TF
genes (p-value = 3.08E-5, Wilcoxon signed-rank test).
According to Figure 2(f), the percentage of biomarker
miRNAs was higher than that of other miRNAs when
TFP > 0.1.

Functional and evolutionary analysis on targets of
biomarker miRNAs

We mapped the genes independently regulated by biomarker
miRNAs onto human PPIN and characterized their structural
and functional traits in the network. As shown in Figure 3(a)
and 3(b), the human PPIN had an approximately scale-free
topological feature with a slope of −1.50 and the biomarker
miRNAs tended to independently regulated genes with high
degrees, but not the highest degree hubs (HDHs) in the net-
work. After checking the annotations of HDH genes in both
the NCBI Gene database [27] and Database of Essential Genes
(DEG, version 11.0) [28], as shown in Table 1, we found that
most of the HDH genes played crucial roles in biological
processes such as cell cycle, proliferation, apoptosis, and sig-
nal transduction, and 75% (15/20) were known essential
genes. In addition, HDHs in the PPIN were often highly
enriched with lethal genes that are functionally important in
cellular processes, whereas disease genes preferred the sites
secondary to network hubs [29]. Thus, it is reasonable to
suggest that the biomarker miRNAs refrain from regulating
HDH genes independently because the dysregulation of these
genes could be lethal for organisms.

According to previous studies, old genes with essential
functions are often located in the centre of gene interaction
networks, and new genes undergo long evolutionary processes
before gradually integrating into the network from the per-
ipheral sites to the hubs [20,30]. From the perspective of
miRNA regulation, as illustrated in Figure 3(c), the statistical
p-value of 0.48 (Wilcoxon signed-rank test) indicated that
both the biomarkers and other miRNAs tended to regulate
old genes (Branch 0 in the vertebrate phylogenetic tree; see
the Materials and Methods). We checked the ages of the
miRNA-targeted TFs and found that more than 64% (1,174/
1,834) of these TF genes belonged to Branch 0 (i.e., the oldest
genes), thereby indicating that the TF genes were usually the
oldest in gene family. We further partitioned the old genes
into TF or non-TF groups, and found that the biomarker
miRNAs could regulate more TF genes (p-value = 7.60E-5,
Wilcoxon signed-rank test, see Figure 3(d)) than others. It is
suggested that the miRNAs identified as biomarkers tended to
selectively target old genes with special functions during
evolution.

Model implementation

Based on the evidences described above, we developed a novel
bioinformatics model and a software tool called MiRNA-BD
for miRNA biomarker discovery. To ensure the specificity of
the miRNAs for certain disease conditions, as shown in
Figure 4, the model first identifies a condition-specific
miRNA-mRNA network from the reference, i.e., human
miRNA-mRNA regulatory network (see the Materials and

Figure 2. Characterization of miRNA biomarkers. (a) NSR distribution of miRNAs in the reconstructed human miRNA-mRNA network. (b) NSR distribution of
biomarkers and other miRNAs. (c) Percentage of miRNA biomarkers according to their NSR values, i.e., 24/208 indicates that there are 208 miRNAs in the network
with NSR = 0 and 24 of them are reported as biomarkers. (d) TFP distribution of biomarkers and other miRNAs. (e) TFP distribution of biomarkers and other miRNAs
with high NSR values (NSR ≥ 4). (f) Percentage difference between biomarkers and other miRNAs with high NSR values (NSR ≥ 4).

RNA BIOLOGY 1095



Methods), according to the input data and it then calculates
the two features, i.e., NSR and TFP values of miRNAs, based
on the condition-specific network. Finally, miRNAs with sig-
nificantly high NSR and TFP values (default threshold:
p-value <0.05, Wilcoxon signed-rank test) are selected as
candidate biomarkers for the disease considered.

The bioinformatics model was implemented as a Java pro-
gram (MiRNA-BD, see Figure S1). The inputs comprised lists
of disease-associated DE-miRNAs/mRNAs, or paired/
unpaired miRNAs-mRNAs, although paired data are pre-
ferred. Here DE-miRNAs/mRNAs could be extracted from
high-throughput expression profiles or low-throughput
experiments by statistical analysis. Alternatively, the reference
network and TF gene data set could be provided by the user,
and the thresholds of the NSR and TFP values may also be
adjusted based on the given p-value cutoffs. To better inves-
tigate miRNA biomarkers, the program integrated human
miRNA sequence data from miRBase (release 21) [31], includ-
ing 2,588 mature miRNAs and 1,881 precursors, and we
added the secondary structure annotations for miRNA pre-
cursors predicted by RNAfold [32]. The Java executable file,

user guide, and example data can be downloaded from the
webpage at: http://sysbio.suda.edu.cn/MiRNA-BD/.

Application and performance evaluation

The NSR measure was previously applied to detect miRNA
biomarkers for diagnosing and sub-typing prostate cancer
[21,22]. In particular, Zhang et al. [21] identified 39
miRNAs as key players for prostate cancer diagnosis based
on paired miRNA-mRNA expression profiles, where miR-648
was considered to be a novel molecular biomarker validated
by in vitro experiments. Zhu et al. [22] inferred 11 miRNAs as
potential biomarkers of castration-resistant prostate cancer
based solely on mRNA expression data, where both experi-
mental verification and functional analyses confirmed the
predictive accuracy of the model. Peng et al. [23] screened
nine miRNAs as putative biomarkers for predicting the
response of CRC to preoperative chemoradiotherapy, and
seven were confirmed by real-time q-PCR and western blot
analysis. To improve the model, we integrated the TFP mea-
sure and applied it to the discovery of diagnostic miRNA

Figure 3. Results of functional and evolutionary analyses. (a) Degree distribution of genes in the human PPIN, where K represents the degree of genes and P(K) is the
fraction of genes in the network with degree K to others. Both K and P(K) were 2-based log transformed. (b) Percentage of genes independently regulated by
biomarker miRNAs, where K represents the degree of genes. (c) Percentages of old genes regulated by biomarker and other miRNAs. (D) Percentages of old TF genes
regulated by biomarkers and other miRNAs.
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biomarkers for pediatric AML [24]. In vitro q-PCR experi-
ments showed that the predicted miR-155 (i.e., miR-155-5p)
and miR-196b (i.e., miR-196b-5p) were significantly overex-
pressed in children with AML and in subgroups M4-M5,
respectively. In addition to cancer studies, the model is sui-
table for miRNA biomarker discovery in other complex dis-
eases such as sepsis [25] and acute coronary syndrome [26].
The details are summarized in Table 2.

In order to validate the robustness and efficiency of the
reconstructed reference network, DE-miRNAs and DE-
mRNAs identified in our previous study [24] were used to
update the AML-specific miRNA-mRNA network. As illu-
strated in Table 3 and Figure 5, three miRNAs with signifi-
cantly high NSR and TFP values were screened as pediatric
AML biomarkers according to the MiRNA-BD model. In
particular, two (miR-155-5p, miR-196b-5p) were consistent
with our previous results and they were confirmed by biolo-
gical experiments [24]. Interestingly, the novel miR-221-3p,
which was not predicted in our previous study, was also
associated with AML [33] and its primary miRNA pri-221
was reported as a molecular marker and putative oncogene in
the progression of AML [34]. Furthermore, we utilized the
(Database for Annotation, Visualization and Integrated

Discovery (DAVID) [35] and Ingenuity Pathway Analysis
(IPA) [36] to map the targets of the identified pediatric
AML miRNA biomarkers from the AML-specific miRNA-
mRNA network (see Figure S2) onto Kyoto Encyclopedia of
Genes and Genomes (KEGG) [37] and IPA pathways, respec-
tively. As shown in Figure 6, four of the top 10 significantly
enriched pathways were common in both KEGG and IPA,
including MAPK (Mitogen-Activated Protein Kinase)
Signaling Pathway (ERK/MAPK Signaling), Pathways in
Cancer (Molecular Mechanisms of Cancer), Colorectal
Cancer (Colorectal Cancer Metastasis Signaling), and T Cell
Receptor Signaling Pathway (T Cell Receptor Signaling). After
searching for citations in PubMed, we found that the enriched
signaling pathways directly or indirectly participated in the
genesis and development of AML. For instance, the ERK/
MSK MAPK signaling pathway is involved in the activation
of Sp1/c-Myc and the regulation the expression of survivin to
modulate drug resistance in leukemia stem cells [38]. The
combination of drugs comprising azacitidine and cetuximab
has good therapeutic effects in patients with AML following
oxaliplatin for metastatic CRC, thereby indicating the inter-
relationship between the pathogenesis and treatment of AML
and CRC metastasis [39]. Majeti et al. [40] first showed that

Table 1. Top 20 ranked genes with high degrees in the human PPIN.

Gene
symbol

Degree in
PPIN Location Description

Essential
gene

UBC 7839 Chromosome 12,
NC_000012.12

Ubiquitin C. The gene is associated with DNA repair, cell cycle, kinase modification, protein degradation. Yes

ELAVL1 1415 Chromosome 19,
NC_000019.10

ELAV like RNA binding protein 1. The gene plays roles in stabilizing ARE-containing mRNAs as well as in
many diseases, including cancers.

Yes

SUMO2 1112 Chromosome 17,
NC_000017.11

Small ubiquitin-like modifier 2. The gene is related to transcriptional regulation, nuclear transport and
protein stability.

Unknown

CUL3 1009 Chromosome 2,
NC_000002.12

Cullin 3. The gene is related to subsequent degradation of specific protein substrates. Yes

KIAA0101 763 Chromosome 15,
NC_000015.10

The gene is a predictive marker for hepatica cancer and is associated with poor survival of patients with
esophageal cancer.

Unknown

COPS5 678 Chromosome 8,
NC_000008.11

COP9 signalosome subunit 5. The gene is an important regulator in multiple signaling pathways. Yes

SIRT7 621 Chromosome 17,
NC_000017.11

Sirtuin 7. The gene may regulate epigenetic gene silencing as well as suppress recombination of rDNA. Unknown

SUMO1 604 Chromosome 2,
NC_000002.12

Small ubiquitin-like modifier 1. The gene is related to transcriptional regulation, nuclear transport and
protein stability.

Yes

YWHAZ 594 Chromosome 8,
NC_000008.11

The gene is able to mediate signal transduction. Unknown

CAND1 572 Chromosome 12,
NC_000012.12

Cullin-associated and neddylation-dissociated 1. The gene is related to prostate cell growth and is often
disrupted in prostate cancer.

Unknown

GRB2 566 Chromosome 17,
NC_000017.11

Growth factor receptor bound protein 2. The gene is involved in the signal transduction pathway. Yes

TP53 564 Chromosome 17,
NC_000017.11

Tumor protein p53. It is a tumor suppressor gene and mutations in this gene are related to multiple
human cancers.

Yes

CUL1 549 Chromosome 7,
NC_000007.14

Cullin 1. The gene promotes cell proliferation through cell cycle. Yes

MYC 478 Chromosome 8,
NC_000008.11

V-myc avian myelocytomatosis viral oncogene homolog. It is a transcription factor gene which plays
roles in cell cycle, apoptosis and cellular transformation.

Yes

TRAF6 459 Chromosome 11,
NC_000011.10

TNF receptor associated factor 6. The gene is able to mediate signal transduction. Yes

HDAC1 442 Chromosome 1,
NC_000001.11

Histone deacetylase 1. The gene is able to regulate eukaryotic gene expression. Yes

EP300 422 Chromosome 22,
NC_000022.11

E1A binding protein p300. The gene is important in cell proliferation and differentiation. Yes

SRC 390 Chromosome 20,
NC_000020.11

SRC proto-oncogene, non-receptor tyrosine kinase. The gene is able to regulate embryonic development
and cell growth.

Yes

VHL 387 Chromosome 3,
NC_000003.12

Von Hippel-Lindau tumor suppressor. The gene is associated with the development of cancers. Yes

EWSR1 386 Chromosome 22,
NC_000022.11

EWS RNA binding protein 1. The gene is important and functional in gene expression, cell signaling, RNA
processing and transport.

Yes

Note: The symbol ‘SIRT7’ in bold means the gene is independently regulated by a biomarker miRNA.
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the T cell receptor signaling pathway is potentially related to
the functional regulation of AML stem cells. In addition,
pathways such as Cell Cycle [41], Wnt Signaling Pathway
[42], Chronic Myeloid Leukemia [43], and Glucocorticoid

Receptor Signaling [44] also have critical roles during AML
initiation and evolution.

We also compared the performance of our model with
those of three state-of-the-art models, as described in the

Figure 4. Schematic pipeline of the MiRNA-BD model. Here disease-associated data sets can be lists of DE-miRNAs/mRNAs, or paired/unpaired miRNAs-mRNAs, and
miRNAs with significantly high NSR and TFP values are screened as candidate biomarkers (default threshold: p-value <0.05, Wilcoxon signed-rank test).
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Material and Methods section. As shown in Figure 7, our
model achieved comparable and the overall best performance
for biomarker discovery relative to the others. However, the
miR_Path model was based on the guidance from dysfunc-
tional pathway clustering, and thus it was highly dependent
on the pathway knowledge related closely to certain disease
types [18]. The cancer miRNA prioritization (CMP) model
prioritizes human cancer miRNAs by calculating the func-
tional consistency between the miRNA targets and cancer-
related genes, so specific cancer gene sets are needed as prior
knowledge [45]. Jiang’s model employs both the disease phe-
notype similarities and miRNA-disease relationship as knowl-
edge for disease-associated miRNA prioritization [46]. None
of the other three models integrate the sub-structural infor-
mation from the miRNA-mRNA network and the regulatory
mechanism of miRNAs. Thus, to the best of our knowledge,
our model is the first to treat miRNA regulatory mechanisms
as important features for biomarker discovery. In conclusion,
our model detects key miRNAs based on two statistical evi-
dences (i.e., NSR and TFP), neither specific prior knowledge
nor a training procedure is required during biomarker screen-
ing. Therefore, the model had good generality in translational
applications. Finally, different types of RNA samples, i.e.,
miRNA or mRNA only, paired/unpaired miRNAs-mRNAs,
can be selected as the model input according to specific
research needs.

Discussion

It is widely recognized that the aberrant expression of
miRNAs is associated with numerous human malignancies
[47–49]. Many studies have focused on detecting miRNA
biomarkers in order to provide precision clinical diagnosis
and treatment [50–52]. Most of these studies identified
miRNA biomarkers based on biological experiments, and
bioinformatics approaches focusing on miRNA synergism
are also well performed. The miRNA-mRNA networks were
constructed sequentially, but few studies explored the hidden
structures in the network and no general rules were extracted
and applied to miRNA biomarker discovery.

In this study, we discovered two evidences where biomar-
ker miRNAs have high single-line regulatory power and they
tend to regulate more TF genes. The former was identified
based on sub-structural analysis of the human miRNA-mRNA
regulatory network. Compared with multiple-line regulation,
it is reasonable to assume that unique or single-line regulatory
interactions are more vulnerable, and they may be important
for systematic state changes. The second evidence was identi-
fied by investigating both the biological functions and gene
evolutionary patterns. It is important to consider TF genes
because TFs are among the key factors that influence the
functions of gene networks, where they regulate downstream
genes during various biological processes, and the abnormal
expression of TF genes is closely related to human carcino-
genesis. Clearly, if more TFs are altered, gene expression and
the biological system will be greatly affected, and thus
miRNAs with high TFP values are more likely to contribute
to pathogenesis and the change in state from health to disease,
which is an essential feature of a biomarker.

Based on the characterization of biomarker miRNAs in
the miRNA-mRNA network and the functional analyses of
their targets, we developed a novel computational model

Table 2. Translational applications of NSR and TFP measurements for miRNA biomarker discovery.

Cancer type Sample Identified biomarker number

Validation

PMIDLiterature report In vitro q-PCR Western blot In silico analysis

Prostate cancer miRNA 39 Yes Yes No Yes 24,618,011
mRNA

Castration-resistant prostate cancer mRNA 11 Yes Yes Yes Yes 26,540,468
Colorectal cancer miRNA 9 Yes Yes Yes Yes 27,903,980
Pediatric acute myeloid leukemia miRNA 3 Yes Yes No Yes 26,317,787

mRNA
Sepsis miRNA 10 Yes No No Yes 24,809,055
Acute Coronary Syndrome miRNA AMI: 27 Yes No No Yes 28,044,128

UA: 26

Note: Sample in bold denotes paired miRNA-mRNA expression data. Values in the Identified biomarker number column represent the number of miRNA biomarkers
identified by our model. Abbreviations: AMI: acute myocardial infarction, UA: unstable angina, PMID: PubMed ID.

Table 3. Diagnostic miRNA biomarkers identified for pediatric acute myeloid
leukemia based on the model with the reconstructed miRNA-mRNA reference
network.

No. miRNA symbol NSR (p-value) TFP (p-value)

1 miR-155-5p 37(9.69E-8) 0.1852(0.008)
2 miR-196b-5p 28(2.65E-5) 0.1733(0.027)
3 miR-221-3p 17(0.016) 0.1951(0.004)

Note: The miRNAs are listed in descending order of their NSR values.

Figure 5. Comparison of results obtained from different reference networks. The miRNA symbols in dotted and solid ellipses are screened biomarkers based on
previous and reconstructed human miRNA-mRNA regulatory networks, respectively.
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and software tool for miRNA biomarker discovery. Since
the single-line regulation and the regulation of TF genes are
important for the stability of network systems, we
employed these two criteria as the principle and general
rule for miRNA biomarker measurement. Compared with
routine methods that rely greatly on training data or spe-
cific prior knowledge, experimental validations conducted
in our previous studies showed that the proposed model
can detect miRNA biomarkers with good generality and
accuracy. However, some limitations still exist and we will
improve the model as follows. First, only two features were
discovered and considered in the present study. Although

the feasibility and effectiveness of the model was validated
in our application-based studies, the NSR and TFP are not
the only attributes suitable for miRNA characterization.
True biomarkers ought to be accurate, reproducible, and
highly specific to a disease, and thus it is possible that a
miRNA that does not target TF genes or that only binds
influential mRNAs could also serve as a biomarker. Due to
the complexity of disease development, more disease-speci-
fic signals should be rigorously weighted, e.g., the percen-
tage of disease-associated genes, and the sensitivity and
specificity of identified molecules, etc. At present, we have
only investigated the number of independently regulated

Figure 6. Pathway enrichment analysis for targets of identified pediatric AML miRNA biomarkers. The statistical significance levels (p-value) were negative 10-based
log transformed and the top 10 significantly enriched pathways are listed. (a) Results of KEGG pathway enrichment analyses. (b) Results of IPA pathway enrichment
analyses.

1100 Y. LIN ET AL.



genes and TF genes, but the roles of genes are often not the
same in different biological backgrounds, so more condi-
tional annotations need to be measured. In addition, we are
exploring the importance of other types of genes in biolo-
gical systems, e.g., essential genes, house-keeping genes,
tumor suppressor genes, and oncogenes, and the NSR
requirement for a biomarker should also include informa-
tion about the types of genes it is regulating. Second, the
current model does not consider the fact that most RNA-
based biomarkers are probably involved in an expression
signature that includes a number of miRNAs. This is
important because many miRNAs are pleiotropic and func-
tional in various biological processes or disease states, and
thus they would not be sufficiently specific to predict dis-
ease on their own. Considering the dynamic nature and
heterogeneity of complex diseases, our next step is identify-
ing network biomarkers that integrate dysfunctional
miRNAs/mRNAs with their regulatory patterns for preci-
sion medicine and healthcare. Third, the miRNAs involved
in disease pathogenesis do not always match with miRNAs
that serve as biomarkers or that indicates disease status,
and thus it might be more accurate to term the miRNAs

identified by our model as ‘key players’ or ‘candidate/puta-
tive biomarkers’. To address this issue, it is necessary to
perform wet-lab verification using cell lines, model animals,
or human samples in order to obtain better evaluations of
the identified miRNAs as biomarkers. Finally, the software
will be upgraded to a cross-platform version with a user-
friendly interface, which is more convenient to use. In
addition, only 618 miRNAs were included in our recon-
structed network but more than 2,000 human mature
miRNAs are recorded in miRBase (release 21) [31], so the
network can be expanded when more miRNA-mRNA pairs
are reported and validated, which will further increase our
knowledge of miRNA biomarkers.

Materials and methods

Human miRNA-mRNA regulatory network reconstruction

The human miRNA-mRNA regulatory network was used as
the reference for constructing the condition-specific miRNA-
mRNA network. In this study, we reconstructed the network
based on both experimentally validated and computationally

Figure 7. Comparison of the prediction precision. The prediction precision was defined as the percentage of reported cancer biomarker/associated miRNAs in the
whole predicted set. (a) Precision of cancer biomarker miRNA prediction. (b) Precision of cancer associated miRNA prediction.
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predicted miRNA–mRNA regulatory data. The experimental
data were extracted from miRTarBase (version 4.5) [53],
TarBase (version 6.0) [54], miRecords (version 4.0) [55], and
miR2Disease [56]. The computationally predicted data
included information from HOCTAR (version 2.0) [57],
ExprTargetDB [58], and starBase (version 2.0) [59].

To reduce the number of false positives, miRNA-mRNA
pairs validated based on low-throughput experiments (e.g.,
real-time PCR, etc.) and those present in at least two of the
three computationally predicted databases were mainly
selected for network reconstruction. We note that the nomen-
clature for miRNAs has changed since miRBase updated to
the 17th version and several databases (e.g., miRTarBase,
TarBase, and starBase) or studies refer to miRNAs based on
the new rule (e.g., hsa-miR-21-5p and hsa-miR-21-3p),
whereas some others (e.g., miRecords, miR2Disease,
HOCTAR, and ExprTargetDB) still use the previous symbols
(e.g., hsa-miR-21 and hsa-miR-21*). To reduce inconsisten-
cies, we cleaned the data and the final reconstructed network
comprised 48,868 regulatory pairs among 618 miRNAs and
9,526 target genes.

Cancer miRNA biomarkers and transcription factor gene
data set

The literature-reported cancer miRNA biomarkers were
manually extracted from citations in PubMed using the search
term: ‘(cancer[tiab] OR carcinoma[tiab]) AND (microRNA*
[tiab] OR miRNA*[tiab]) AND (biomarker*[tiab] OR mar-
ker*[tiab] OR indicator*[tiab] OR predict*[tiab])’. The bio-
marker potential of miRNAs was rechecked till June 2017
based on three criteria: 1) the miRNAs were identified in
human samples, including tissues, blood, or cell lines, using
high-throughput (e.g., microarrays, next-generation sequen-
cing, etc.) or low-throughput methods (e.g., real-time PCR,
etc.); 2) the miRNAs were highlighted as biomarkers/markers/
indicators/predictors or candidate/potential/putative/latent
biomarkers throughout the research article; and 3) the identi-
fied biomarkers were validated by either wet-lab experiments
(e.g., real-time PCR, etc.) or bioinformatics analyses (e.g.,
receiver operating characteristic curve, clustering, functional
enrichment, etc.). To avoid duplication, only one item was
fully considered if a miRNA was reported as a biomarker in
multiple studies. In particular, we standardized all of the
miRNA symbols according to the records in miRBase (release
21) [31]. Finally, 180 miRNA biomarkers associated with
more than 20 types of cancers were collected for further
analysis and their details are shown in Table S1.

The TF gene data set was collected from the review by
Vaquerizas et al. [60], which included 1,834 human TF genes.
In addition, we manually added the aliases of each TF gene
based on the records in the National Center for Biotechnology
Information (NCBI) Gene database [27].

Human protein-protein interaction network

The human PPIN was obtained from Protein Interaction
Network Analysis (PINA) version 2.0 [61]. This platform unifies
PPIs from six publicly available databases comprising BioGRID

[62], DIP [63], HPRD [64], IntAct [65], MINT [66], and MIPS/
Mpact [67]. Duplicated items or those with ambiguous gene
symbols in PPIs were filtered out. The final PPIN contained
14,441 genes and 107,802 interactive pairs. Herein, proteins
were considered to be equivalent to their protein-coding genes.

Gene age or evolutionary information

To characterize gene evolution, human gene age information
was retrieved from a study by Zhang et al. [68]. In brief,
protein-coding genes were divided into 13 branches (labeled
in order from Branch 0 to 12) by inferring the presence and
absence of orthologs throughout the vertebrate phylogenetic
tree [20], where genes in branches with higher numbers were
considered relatively younger. Here old genes were strictly
defined as those belonging to Branch 0. All of the gene
symbols were unified using the ID conversion tool
bioDBnet [69].

Pathway enrichment analyses

The targets of the predicted miRNA biomarkers were
retrieved from the AML-specific miRNA-mRNA network
and mapped onto KEGG [37] and IPA pathways using the
DAVID [35] and IPA [36] programs, respectively. Here the
top 10 pathways enriched with statistically significant p-values
<0.01 were analyzed to determine their associations with AML
development by mining the NCBI PubMed citations.

Performance comparison

To evaluate the predictive power of our model, we com-
pared its performance with three state-of-the-art models: 1)
the miR_Path model infers cancer-related miRNAs based on
gene expression data and dysfunctional pathway clustering
[18]; 2) the CMP model prioritizes cancer miRNAs by
measuring the functional consistency of known cancer-
related genes and miRNA target genes [45]; and 3) Jiang’s
model identifies disease-related miRNAs by constructing a
human phenome-microRNAome network [46]. To ensure
an unbiased comparison, data sets for four types of human
cancers (i.e., lung cancer, colon cancer, gastric cancer, and
breast cancer; see Table S2) tested by miR_Path were down-
loaded directly from the Gene Expression Omnibus (GEO)
and used in the evaluation. The Student’s t-test was
employed to extract DE-genes from each data set (p-value
<0.05). The common miRNAs obtained from two data sets
for the same type of cancer were recognized as the final
result and they were compared with the HRmiRs from
miR_Path, which achieved the best performance [18]. The
other two methods do not use gene expression data, so the
same numbers of top ranked miRNAs from their predic-
tions as those found in our model were selected for the
comparison. Besides the records in the Human microRNA
Disease Database (HMDD, version 2.0) as the gold standard
[70], we searched for the identified miRNAs in PubMed
citations (the search criterion was similar to that described
above) to evaluate the prediction precision as the percentage
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of reported cancer biomarker/associated miRNAs in the
whole predicted set.
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