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Abstract

Acetylcholine, the first neurotransmitter identified more than a century ago, plays critical roles in 

human activities and health; however, its synaptic concentration dynamics have remained 

unknown. Here, we demonstrate the in situ simultaneous measurements of synaptic cholinergic 

transmitter concentration and release dynamics. We used nanoscale electroanalytical methods: 

nanoITIES electrode of 15 nm in radius and nano-resolved scanning electrochemical microscopy 

(SECM). Time-resolved in situ measurements unveiled information on synaptic acetylcholine 

concentration and release dynamics of living Aplysia neurons. The measuring technique enabled 

the quantitative sensing of acetylcholine with negligible interference of other ionic and redox-

active species. We measured cholinergic transmitter concentrations very close to the synapse, with 

values as high as 2.4 mM. We observed diverse synaptic transmitter concentration dynamics 

consisting of singlet, doublet and multiplet events with a signal to noise ratio of 6 to 130. The 

unprecedented details about synaptic neurotransmission unveiled are instrumental for 

understanding brain communication and diseases in a way distinctive from extra-synaptic studies.

Chemical sensing with electrodes offers chemical identity, quantification, and 

spatiotemporal information about biological processes in vivo. These advantages make 

electroanalytical chemistry one of the most widely used tools in the detection of signaling 

molecules and redox neurotransmitters1–, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. 

Acetylcholine, the first neurotransmitter identified in 1914 20, 21 plays a key role in learning, 

memory and human health; defects in its release have been associated with aging and 

neurodegeneration. Elucidating its release concentration dynamics at the source of its 

release, the synaptic cleft, is instrumental in understanding neurodegenerative diseases. 
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However, this has been challenging due to the nanometer size of the cleft, with a typical 

width of 300 nm and a gap of < 100 nm (Fig. 1)22–, 23, 24, 25, 26, 27 and technical limitation in 

available nanoprobes for the simultaneous detection of its concentration and release 

dynamics since acetylcholine is a redox inactive molecule; although carbon nanofiber 

electrodes have been reported, their detection mainly targets dopamine and norepinephrine, 

where significant progress has been made13, 28, 29.

Here we measured in situ simultaneously synaptic acetylcholine concentration and release 

dynamics with a nanoelectrode of ~15 nm in radius (Fig. 1G). The neuronal model used in 

the present study is Aplysia californica, previously used by Kandel et al. to understand the 

synapse-specific long-term facilitation30, 31; studied pedal ganglion neurons are 

cholinergic32, 33, 34 and they were cultured following the well-established protocols 35, 36, 

with details shown in the Supporting Information. We employed nanoresolved scanning 

electrochemical microscopy (SECM)37, 38, 39, 40, 41, 42 (Fig. 1E) to position the 

nanoelectrode near the synaptic cleft, formed between the axon of one neuron (pink) and the 

neurite of another neuron (blue) (Figs. 1B, 1F). We detected acetylcholine, based on the 

charge transfer across a nano interface between two immiscible electrolyte solutions 

(ITIES), at the nanoITIES pipet electrode 6, 10, 35, 43, 44. Fig. 1D shows the cyclic 

voltammogram of acetylcholine detection on the nanoITIES pipet electrode, with calibration 

curve shown in Fig. S1. We measured the current-time trace at the steady state detection 

potential, selective for cholinergic transmitter detection (EACh) against other substances that 

have been identified or suggested to be released from the Aplysia neurons and their vesicles, 

including serotonin, gamma-aminobutyric acid, dopamine, glutamate etc., as well as the pH 

change accompanying exocytosis and high concentration K+ in the stimulating solution, 

(Control experiments on selectivity shown in Figs. S2-S5, discussion detailed in the 

supplementary text of the supporting information), to learn about its synaptic release 

dynamics and concentration profiles.

The results of synaptic cholinergic neurotransmission are shown in Fig. 2 (More results are 

shown in Figs. S6 and S7). We measured the synaptic release from Aplysia neurons in 

response to high concentration K+ stimulation and recorded intense release peaks, which are 

raw data without data processing. Control experiments (Fig. S6) confirm that the measured 

release appear to be from a single synapse near where the nanoelectrode was located, using a 

lab-built side view optical microscope and nano-resolution SECM with procedures described 

under methods section. The detection has high sensitivity as evidenced by a signal to noise 

ratio from 6 to 130. Direct measurements around the cleft avoid the dilution of transmitter 

due to its diffusion into the extracellular medium45, 46, 47, easing the required performance 

specifications of the small-volume electrochemical measurement. We measured the 

acetylcholine concentration around the synapse to be as high as 2.4 mM (Figs. 2–3). This 

measured mM regime of near-synaptic acetylcholine concentration is the same order of 

magnitude as the number estimated from multiple neuromuscular junctions using stimulated 

Raman scattering in a recent study48, and is consistent with the number estimated based on 

hypothesis and theoretical simulation49, 50.

The synaptic concentration of neurotransmitter dynamically changes, governed by the 

combination of multiple processes including its release from presynaptic vesicles, its 
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reuptake by membrane proteins, its breakdown by the enzymatic reactions, and its diffusion 

out of the cleft into the extracellular space. The neurotransmitter concentration profiles 

(Figs. 2A-C, figs. S7A-C) represent this dynamic process. We measured synaptic transmitter 

concentration dynamic profiles to be composed of singlet, doublet and multiplet (Fig. 2D), 

with 50% occurrence frequency for singlet and a lower occurrence frequency for doublet and 

multiplet (Fig. S7D). Our observed occurring frequency of the diverse dynamics for synaptic 

acetylcholine release is consistent with that of synaptic norepinephrine release measured 

with carbon nanofiber electrode29. More examples of singlet, doublet and multiplet are 

shown in Fig. S7. For singlet type peaks, the concentration corresponding to 

neurotransmitter release increases to reach the maxima and then decreases to the base value. 

In contrast, for doublet and multiplet events, the current did not decrease to the base value 

after the first peak, and instead it increased to generate the second or even more peaks.

We did quantitative analysis to understand the variation in synaptic transmitter release 

dynamics. Single vesicular dopamine release studied via carbon electrodes demonstrated 

half amperometric peak width of hundreds ms, increasing with vesicle sizes51. For 

acetylcholine, the singlet events have half amperometric peak widths of hundreds ms, with 

multiple values (Fig. S8). This suggests that the singlets be the synaptic single vesicular 

events, which was further supported by the analysis described in the next paragraph. The 

variation in half-peak widths are likely due to a distribution of vesicle sizes of Aplysia52. 

Half amperometric peak widths for the doublets totaled two half peak widths of singlets, and 

that for the multiplets totaled the peak width of multiple singlets (Fig. S8); this applies to all 

the doublets and multiplets that we observed.

The average number of acetylcholine molecules was 1.0 × 106 for singlet events, and 2.0 × 

106 for doublet events (Table. 3B). These quantities are consistent with the amount of 

acetylcholine needed to produce an end plate potential when acetylcholine was perfused to 

the neuron muscular junction electrophoretically53. Doublets have twice the molecules of 

the singlets on average (Table 3B). This observation, along with amperometric peak widths 

discussed above, suggests that doublet and multiplet peaks represent simultaneous release 

from two or more vesicles (Fig. 2D). Besides, the lower range of the total number of the 

molecules for doublets and multiplets are similar orders of magnitude to that of the singlets 

(Table 3B); this suggests the partial release occurrence (Fig. 2E), as proposed in recent 

studies54–, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 during the first peak or the first couple 

peaks for some of the doublets and multiplets, respectively.

In summary, we have successfully measured cholinergic transmitter release concentration 

dynamics at the single living Aplysia synapse. The work presented here is the first study of 

the intra-synaptic electrochemical detection of non-redox active transmitter. Our observed 

diverse release dynamics (singlet, doublet and multiplet) and its occurrence frequency for 

synaptic acetylcholine release concurred well with that of synaptic norepinephrine release 

reported in a recent study29. Quantitative analysis of half amperometric peak width and of 

the number of molecules released suggests doublet and multiplet be observation of multiple 

vesicular events; partial release was suggested as well. Measuring the intra-synaptic 

dynamics of neurotransmitter release is a critical step in our ability to understand 

transmission and its deficiencies that are explicated in aging and neurodegenerative diseases. 
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The new information on the diversity in cholinergic transmitter dynamics and synaptic 

concentration uncovered will be very valuable for fundamental and biomedical sciences, 

contributing to our understanding of brain communication and various diseases from a 

distinctive perspective. Future work includes studying the synaptic release heterogeneity 

from different kinds of synapses and neuronal types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study of cholinergic neurotransmission at single synaptic cleft with nanoelectrode and 

scanning electrochemical microscope. (A) Illustration of synaptic cleft 

dimensions22–, 23, 24, 25, 26, 27. (B) Cultured living Aplysia pedal ganglion neurons used for 

the experiment, where the axon from cell 1 (pink) formed a synaptic connection with the 

body of cell 2. Scale bar: 200 μm. (C) A nanoITIES pipet electrode was positioned around 

the synaptic cleft to measure the concentration and release dynamics of acetylcholine (ACh
+) simultaneously using amperometry; the positioning of the nanoelectrode was achieved 

using the scanning electrochemical microscope (Fig. E) with a spatial resolution of 5 nm. 

The zoom shows the nanoITIES formed at the tip of the nanoITIES pipet electrode, and 

ionic transmitter (ACh+) transfers across the interface, generating a current and thus getting 

detected. (D) Cyclic voltammogram corresponding to ACh detection, where the detection 

potential follows Nernstian equation, and a steady state transfer potential, EACh= - 0.48 V vs 

E1/2, TBA, selective for cholinergic neurotransmitter detection was used in amperometry to 

study its synaptic concentration dynamics (results shown in Figs. 2 and 3). (E) A Scanning 

Electrochemical Microscope (SECM) and a lab-built side view optical microscope were 

used for the positioning of the nanoelectrode around synapses with nm spatial resolution. 

The lab-built side view optical microscope provided rough positioning before the fine 

positioning of 5 nm spatial resolution with SECM. After SECM positioning (Supporting 
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Information, figs. S9, S10), the optical microscopic view of the nanoelectrode and the 

synapse are shown in Fig. F, where it can be seen that it is very hard to locate the synapse by 

visual observation alone. The combined use of the side view optical microscope and nano-

positioning platform, SECM, is critical. (F) A stimulating pipet was used to provide high 

concentration K+ stimulation. Reflection was used for the rough positioning of the 

nanoelectrode and stimulating pipet in the x, y and z axes by optical microscope, which was 

followed by the nanometer positioning of the nanoelectrode around the synapse achieved 

using nano-resolution SECM with details described in the supporting information. Scale bar: 

150 μm. (G) High resolution scanning electron microscope (SEM) picture of the nanopipet 

tip with radius (a) to be around 15 nm.
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Figure 2. 
Single synaptic cholinergic neurotransmission measured in situ. (A-C) Current-time trace 

(amperometry) representing synaptic transmitter concentration and release dynamics 

simultaneously, where diverse cholinergic concentration dynamics were observed consisted 

of singlet (Fig. A), doublet (Fig. B), and multiplet (Fig. C). Single current (concentration) 

maxima occur during singlet release (50% occurrence frequency out of 16 events total); a 

second current maximum occurs before the first current peak decreases to the base value for 

the doublet events (~30% occurrence frequency); multiple concentration peaks (more than 

two) were observed for multiplet with lower occurrence frequency (~20%) (Fig. S7D). (D) 

Proposed mechanism on variation in synaptic transmitter release dynamics. Neurotransmitter 

is released into the synaptic cleft from a single vesicle (Left). Neurotransmitter is released 

into the synaptic cleft from two vesicles, V1 and V2, simultaneously (Middle) or multiple 

vesicles simultaneously, which are going through either different stages of exocytosis as 

shown here, or similar stages of exocytosis (Right). (E) An alternative mechanism is 
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possible for explaining doublets and multiplets based on the phenomenon of partial 

release54–67. A vesicle goes through partial release twice, generating a doublet (Middle); the 

two individual peaks (Peak 1 and Peak 2) correspond to each partial release event.
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Figure 3. 
Simultaneous determination of the synaptic cholinergic transmitter concentration dynamics 

and the number of transmitter molecules (N) during discrete synaptic release events (A). NA 

is Avogadro’s number, Q is the charge based on integration of amperometric current peak, z 

is the charge of the transmitter molecule (equals 1 for acetylcholine), and F is Faraday’s 

constant. Synaptic transmitter concentration profile was obtained from amperometric peak 

based on current expression at the nanoelectrode, c = i
4xzFDa  (Supporting Information). (B) 

Number of neurotransmitter molecules and number of moles released during singlet (N = 8), 

doublet (N = 4) and multiplet events (N = 4) measured from the single synapse shown in 

Fig. 1B in response to 6 repetitive chemical stimulations. Release events were constantly 

observed during each of six chemical stimulations. A variation in synaptic cholinergic 
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transmitter concentration was observed, which is likely due to variation in synaptic vesicles 

sizes as observed by TEM52.
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