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Purpose: The purpose of this study was to investigate the potential of computed tomography (CT)
based radiomic features of primary tumors to predict pathological nodal involvement in clinically
node-negative (N0) peripheral lung adenocarcinomas.
Methods: A total of 187 patients with clinical N0 peripheral lung adenocarcinomas who underwent
preoperative CT scan and subsequently received systematic lymph node dissection were retrospectively
reviewed. 219 quantitative 3D radiomic features of primary lung tumor were extracted; meanwhile, nine
radiological semantic features were evaluated. Univariate and multivariate logistic regression analysis
were used to explore the role of these features in predicting pathological nodal involvement. The areas
under the ROC curves (AUCs) were compared between multivariate logistic regression models.
Results: A total of 153 patients had pathological N0 status and 34 had pathological lymph node
metastasis. On univariate analysis, fissure attachment and 17 radiomic features were significantly
associated with pathological nodal involvement. Multivariate analysis revealed that semantic features
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of pleural retraction (P = 0.048) and fissure attachment (P = 0.023) were significant predictors of
pathological nodal involvement (AUC = 0.659); and the radiomic feature F185 (Histogram SD Layer
1) (P = 0.0001) was an independent prognostic factor of pathological nodal involvement
(AUC = 0.73). A logistic regression model produced from combining radiomic feature and semantic
feature showed the highest AUC of 0.758 (95% CI: 0.685–0.831), and the AUC value computed by
fivefold cross-validation method was 0.737 (95% CI: 0.73–0.744).
Conclusions: Features derived on primary lung tumor described by semantic and radiomic could
provide information of pathological nodal involvement in clinical N0 peripheral lung adenocarcino-
mas. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12901]
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Abbreviations
NSCLC non-small cell lung cancer
CT computed tomography
PET positron emission tomography
18F-FDG PET/CT
18F-fluorodeoxyglucose positron emission
tomography/computed tomography
SUV standard uptake value
EBUS-TBNA
endobronchial ultrasound transbronchial nodal aspiration
cytology
GGO ground glass opacity
FDR false discovery rate
OR odds ratios
CI confidence intervals
PCA principle component analysis
ROC receiver operating characteristic
AUC area under the curve

1. INTRODUCTION

Despite recent improvements in diagnostic and therapeutic
strategies, lung cancer remains the leading cause of can-
cer-related death throughout the world. Non-small cell lung
cancer (NSCLC) patients account for about 80%–85% of
all lung cancer patients, for whom treatment is mainly
determined according to TNM staging system.1 The status
of mediastinal or hilar lymph node is the most significant
factor to determine TNM stage, and accurate identification
of positive lymph node is critical for selection of optimal
therapy and determination of patient prognosis.2 It has
been shown3 that 5-year survival rate of patients without
lymph node metastasis (N0) is about 56%, compared with
only 38% for patients with pulmonary lymph node metas-
tasis (N1). Complete lymph node excision with micro-
scopic evaluation is thought to be the most accurate
method for determining lymph node metastasis. However,
the extent of lymph node removal and the efficacy benefit
of lymph node dissection are controversial;4–7 the more
lymph nodes are dissected, the better local control due to
removal of micro-metastases and decreased risk of residual
lesions, but it also causes greater trauma for the patients,
such as prolonged air leaks and excessive chest tube drai-
nage. Therefore, a method to predict the presence of

undetected lymph node metastasis would be helpful to
eliminate pseudo negative cases, and systematic lymph
node dissection should be considered in these patients
even with a small tumor.

Several noninvasive procedures including computed
tomography (CT) and positron emission tomography (PET)
are used for diagnosing nodal involvement in lung cancer.
Conventional CT interpretation relies on primarily size crite-
ria to characterize lymph nodes. A short-axis diameter bigger
than 10 mm was considered as the standard threshold for
abnormal nodes.8–10 However, lymph node size alone is not a
reliable parameter for the evaluation of metastatic involve-
ment in patients with NSCLC; metastases have been found in
up to 20% of small nodes in patients with clinical stage
cT1N0 and cT2N0.11 This results in low accuracy of CT in
the diagnosis of lymph node malignancy.12–14 A prospective
study has confirmed that 18F-fluorodeoxyglucose positron
emission tomography/computed tomography (18F-FDG PET/
CT) had a higher diagnostic accuracy in lymph node charac-
terization than anatomical imaging.15 According to a histo-
logically verified meta-analysis of PET/CT for the nodal
staging of NSCLC,16 the pooled sensitivity was 0.62 (95%
CI: 0.54–0.70), widely ranging from 0.13 to 0.98, and the
specificity ranged between 0.72 and 0.98 with an overall esti-
mated specificity of 0.92 (0.88–0.95) for node-based data;
which means specificity is satisfactory, while sensitivity
remains disappointing.

Several studies9,17–21 have been undertaken to investigate
the relationship between standard uptake value (SUV) of pri-
mary lung cancer lesions and node involvement, and the
results showed that SUVmax of the primary tumor might be
an independent predictor of regional lymph node metastasis
in patients with NSCLC. CT is widely used as the standard of
care procedure used routinely for assessing NSCLC, and the
vast majority of lung cancer patients undergo only chest CT
as their diagnostic procedure. The predictive image markers
generated in CT would improve clinical diagnosis; they are
less expensive and consume less time. Radiomics has the
capacity to extract additional features from medical images,
providing improvements of image analysis.22 Thus, we con-
ducted this study to evaluate if CT-based radiomic features of
the primary tumor could provide useful information in pre-
dicting lymph node metastases in clinical N0 peripheral lung
adenocarcinomas.

Medical Physics, 45 (6), June 2018

2519 Liu et al.: Radiomics analysis on nodal involvement prediction 2519

https://doi.org/10.1002/mp.12901


2. MATERIALS AND METHODS

2.A. Patient selection

Our local institutional review board waived the require-
ment for individual patient consent for the use of data for
this retrospective study. We retrospectively reviewed the
medical records of patients with NSCLC treated with sur-
gery between December 2012 and March 2014. 221
patients were identified according to the following inclu-
sion criteria: (a) patients with primary lung adenocarci-
noma underwent lobectomy or pneumonectomy with
systematic lymph node dissection of both hilar and medi-
astinal lymph nodes; (b) acquisition of preoperative thin-
section CT scan and the location of the lung tumor was
peripheral (tumor involving subsegmental bronchus or
smaller airway); (c) clinical N stage was N0. Clinical N0
stage was defined preoperatively by three radiologists
according to thin-section chest CT images in a mediastinal
window setting (width, 350 HU; level, 40 HU) if the hilar
and mediastinal lymph nodes were no larger than 10 mm
in short-axis diameter. Majority class was used as the final
decision in case of disagreement. We excluded all patients
receiving preoperative induction therapy (n = 9), those
underwent any type of preoperative invasive mediastinal
staging such as endobronchial ultrasound transbronchial
nodal aspiration cytology (EBUS-TBNA) or medi-
astinoscopy (n = 11), those with multiple primary lesions
(n = 4), and those the duration between CT examination
and subsequence surgery exceeded 1 month (n = 7). Addi-
tional patients (n = 3) were excluded for uncertainty in
tumor extent during segmentation. Finally, the remaining
187 patients constituted the study population.

The following parameters were collected for all the
patients: gender, age, smoking status, primary tumor histo-
logic subtype and pathologic stage. For the smoking status,
patients were categorized as never smokers or smokers which
included former or current smokers. All resected tumor speci-
mens were examined and classified based on the 2011
IASLC/ATS/ERS classification system.23 The dissected
lymph nodes were stained by hematoxylin and eosin and then
histologically examined. These pathological examinations
were all performed by experienced pulmonary pathologists at
the same hospital. TNM classification and tumor staging
were performed according to the 8th edition of the staging
system published by the Union for International Cancer Con-
trol and the American Joint Committee on Cancer.24

2.B. CT protocol and tumor segmentation

CT studies were obtained on multi-detector CT systems
(Siemens Somatom 64, Siemens Medical Solutions; GE
Light speed 16 or GE Discovery 750 HD, GE Medical Sys-
tems) with a breath-held acquisition of the entire thorax,
120 kVp, 150–200 mA or with automatic tube current modu-
lation, pitch 0.969:1. The reconstruction thickness and inter-
val was 1.5 mm for the 64-detector scanner, and 1.25 mm for
the 16-detector scanner and Discovery CT750 HD scanner.

Tumors were volumetrically segmented by two radiolo-
gists with different experience in thoracic oncological
imaging using Definiens Developer XD© (Munich,
Germany) (Figure S1). Tumor segmentation results were
confirmed by each other. The workflow for this semi-auto-
matic approach which contained the following four steps
named pre-processing, semi-automated correction of the
pulmonary boundary, click and grow, and manual refine-
ment and generation of lesion statistics, was described in
detail in our previous studies25–28 and 219 features were
extracted (Table S1).

2.C. CT image evaluation/semantic features

Three consultant radiologists (one radiologist with 6 yr
of experience in CT imaging of thoracic malignancies and
the other two radiologists with 3 yr of experience) who
were blinded to the clinical information and pathologic
results reviewed the CT images to score semantic features
for all patients independently. In case of disagreement,
consensus was achieved by group discussion. CT images
were analyzed in lung window setting (width, 1500 HU;
level, �600 HU). CT findings for each lesion included:
(a) attenuation, (b) spiculation, (c) pleural retraction, (d)
concavity, (e) air bronchogram, (f) bubble-like lucency, (g)
fissure attachment, (h) pleural attachment, and (i) lobe
location (Figure S2).

According to the findings on thin-section CT, tumor
attenuation was allocated to one of three groups: pure
ground glass opacity (GGO), mixed GGO, and pure solid
tumors. GGO was defined as an area of a slight homoge-
neous increase in density that did not obscure the under-
lying vascular markings.29 A mixed GGO tumor was
defined as one with both GGO and solid components,
and a pure solid tumor was defined as having only solid
components without any ground glass appearance. Spicu-
lation was recorded as no, fine, or coarse. Fine spicula-
tion was defined as very fine linear strands extending
radially 1–2 mm beyond a lesion, and coarse spiculation
was defined by the presence of 2 mm or thicker strands
extending from the nodule margin into the lung parench-
yma without reaching the pleural surface.30 Concavity,
also known as notch, was defined as V-shaped indentation
of the border deeper than 3 mm,31 and it was reported as
no, slight, or deep. For all the other five CT features,
including air bronchogram, bubble-like lucency, pleural
retraction, pleural attachment, and fissure attachment, pres-
ence or absence was used to describe the tumor. Air
bronchogram was defined as the tube like or branched air
structure within the tumor. Bubble-like lucency was
defined as the presence of air in the tumor at the time of
diagnosis, prior to biopsy or treatment. Pleural retraction
was defined as a linear structure originating from the
tumor and extending to the pleural surface, with the
pleura retracted toward the tumor. Pleural/fissure attach-
ment was defined as the tumor margin obscured by the
pleura or fissure.
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2.D. Statistical analysis

All statistical analyses were performed using SAS soft-
ware (version 9.4, Cary, NC, USA). Continuous variables
were reported as medians and ranges, while categorical vari-
ables were reported as counts and percentages. Pearson’s cor-
relation analysis was performed to identify redundant
features, thus 122 radiomic features (absolute value of Pear-
son correlation coefficients >0.95) were eliminated. Then we
apply the same procedure to eliminate the redundant features
among those 97 remaining features. Finally, 86 radiomic fea-
tures were selected as potential predictors of nodal involve-
ment (Table S2). False discovery rate (FDR)32 was used to
account for multiple testing, we set a q-value of 0.1 to screen
out radiomic features in order to control false discovery,
remaining features were used for building multivariable
model. We used a relaxed significance limits in the univariate
analysis (P <0.1, FDR q-value <0.1) both for radiomic and
semantic features that were incorporated in building multi-
variable model. Features with P-value or q-value of <0.1 were
incorporated into building multivariable model. Backward
elimination method was used to select the final predictive
model; at each step, feature with P >0.1 was eliminated. Odds
ratios (OR) as estimates of relative risk along with 95% con-
fidence intervals (CI) were obtained for each risk factor. Fur-
thermore, principle component analysis (PCA) was
performed based on top five radiomic features. Receiver oper-
ating characteristic (ROC) curves for each model were con-
structed and the area under the curve (AUC) and 95% CI was
calculated. Goodness of fit for logistic regression models was
estimated by Hosmer-Lemeshow test to examine the calibra-
tion of the model.33 Comparisons between two AUCs were
made by the nonparametric approach of the DeLong
method.34 Fivefold cross-validation with 100 replications was
performed to evaluate the performance of the final model. A
two-sided P <0.05 was regarded as statistically significant.
Decision curve analysis was conducted to evaluate prediction
models in terms of their clinical usefulness.

3. RESULTS

Characteristics of study population are summarized in
Table S3. The cohort comprised 77 men and 110 women,
with a median age of 59 yr. Acinar predominant adenocarci-
noma accounted for most of the tumors (n = 79, 42.2%), fol-
lowed by lepidic predominant (n = 50, 26.7%), solid
predominant (n = 28, 15.0%), and the other histological sub-
types of adenocarcinoma (n = 30, 16.0%). Regarding tumor
stage, most were stage I (n = 145, 77.5%). Lobectomy was
performed in 183 patients, and pneumonectomy in 4 patients.
Among all of the clinical N0 peripheral lung adenocarcinoma
patients, 153 (81.8%) had pathological N0 status and 34
(18.2%) had pathological nodal involvement. The patients
were divided into two groups based on the results of patho-
logical nodal involvement: pathologic lymph node (LN) posi-
tive vs pathologic LN negative. Pathologic stage was
significant different between these two groups (P < 0.0001),

as early stage was more common in pathologic LN negative
group (98.0%) than pathologic LN positive group (26.5%).
No other clinicopathological characteristics were statistically
significant different between these two groups (Table I).

Table II summarized differences in pathologic LN nega-
tive and positive groups using semantic features. No signifi-
cant differences were seen between semantic features and
pathologic nodal involvement except for fissure attachment
(P = 0.025). There were significantly more patients (47.1%)
with fissure attachment in LN positive group compared to
LN negative group (26.8%). Multivariable analysis demon-
strated that pleural retraction (P = 0.048, OR = 0.44, 95%
CI: 0.20–0.99) and fissure attachment (P = 0.023,
OR = 2.45, 95% CI: 1.13–5.31) were significant parameters
for predicting nodal involvement. The AUC of this model
was 0.659, and the model was well fitted (P = 0.60 by Hos-
mer and Lemeshow test). Then pure GGO and mix GGO
were grouped together (Pure and mix GGO vs Pure solid),
and there was significant different in the univariable model
(P = 0.034) but not in multivariable model (P = 0.103) and
was eliminated from the final model.

The association between radiomic features and pathologic
nodal involvement was investigated. In the univariate analy-
sis, 17 radiomic features were found to be significantly corre-
lated with nodal malignancy (Table III, Table S4, and
Figure S3). However, in multivariable analysis, F185 (His-
togram SD Layer 1) was the only independent predictor of
pathologic nodal involvement (P = 0.0001, OR = 0.35, 95%
CI: 0.21–0.59) with an AUC of 0.726. The Hosmer and
Lemeshow test showed no significant difference between

TABLE I. Clinical Characteristics of patients by their nodal involvement.

Clinicopathological
features

Pathologic LN
negative (n = 153)

Pathologic LN
positive (n = 34) P-value

Gender

Male 66 (43.1%) 11 (32.4%) 0.34

Female 87 (56.9%) 23 (67.6%)

Age

Median (range) 59 (37-80) 60.5 (30-76) 0.36

Smoking history

Smokers 63 (41.2%) 14 (41.2%) 1

Non-smokers 90 (58.8%) 20 (58.8%)

Histological subtypea

Lepidic
predominant
adenocarcinomas

47 (30.7%) 6 (17.6%) 0.15

Others 106 (69.3%) 28 (82.4%)

Pathological stage

Early stage (I or II) 150 (98%) 9 (26.5%) <0.0001

Advanced stage
(III or IV)

3 (2%) 25 (73.5%)

aHistologic subtype was categorized as lepidic predominant adenocarcinomas
(adenocarcinoma in situ, minimally invasive adenocarcinoma, and lepidic pre-
dominant invasive adenocarcinoma) and other subtypes of dominant histologic
findings (acinar, papillary, micropapillary, and solid predominant as well as vari-
ants of invasive adenocarcinoma).
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observed and expected pathologic nodal involvement with
malignancy (P = 0.25).

The association between two semantic features (pleural
retraction and fissure attachment) and top five radiomic fea-
tures is investigated, and fissure attachment is highly associ-
ated with all top five features (Table S5).

Then another prognostic model was built by combining
semantic and radiomic features (Table S6). Absence of pleu-
ral retraction and lower feature value of F185 were correlated
with high odds of nodal involvement of malignancy. The
highest AUC of 0.758 was achieved by combination of
semantic and radiomic features (Fig. 1), and the AUC value
computed by fivefold cross-validation with 100 replications
was 0.737 (95% CI: 0.73–0.744). This model was also well
fitted (P = 0.35 by Hosmer and Lemeshow test). There was
significant improvement of AUC compared to the model gen-
erated with only semantic features (P = 0.016); however, the

difference did not reach statistical significance compared to
the model produced from radiomic feature alone (P = 0.14)
(Table IV). The decision curve analysis for these three mod-
els is presented in Fig. 2. The decision curve showed that if
the threshold probability of predicting nodal involvement is
between 20% and 30%, using the model that combined

TABLE II. Comparison of semantic features across LN negative and positive
groups.

Parameter
Pathologic LN

negative (n = 153)
Pathologic LN
positive (n = 34) P-value

Attenuation

Pure GGO 8 (5.2%) 0 (0%) 0.10

Mixed GGO 49 (32%) 6 (17.6%)

Pure solid 96 (62.7%) 28 (82.4%)

Spiculation

No spiculation 35 (22.9%) 9 (26.5%) 0.83

Fine spiculation 57 (37.3%) 11 (32.4%)

Coarse spiculation 61 (39.9%) 14 (41.2%)

Pleural retraction

Absence 79 (51.6%) 24 (70.6%) 0.056

Presence 74 (48.4%) 10 (29.4%)

Concavity

No concavity 7 (4.6%) 2 (5.9%) 0.54

Slight concavity 94 (61.4%) 24 (70.6%)

Deep concavity 52 (34%) 8 (23.5%)

Air bronchogram

Absence 66 (43.1%) 13 (38.2%) 0.70

Presence 87 (56.9%) 21 (61.8%)

Bubble-like lucency

Absence 58 (37.9%) 16 (47.1%) 0.34

Presence 95 (62.1%) 18 (52.9%)

Fissure attachment

Absence 112 (73.2%) 18 (52.9%) 0.025

Presence 41 (26.8%) 16 (47.1%)

Pleural attachment

Absence 119 (77.8%) 26 (76.5%) 0.82

Presence 26 (17%) 8 (23.5%)

Lobe location

Right upper 51 (33.3%) 10 (29.4%) 0.99

Right middle 14 (9.2%) 4 (11.8%)

Right lower 27 (17.6%) 6 (17.6%)

Left upper 40 (26.1%) 9 (26.5%)

Left lower 21 (13.7%) 5 (14.7%)

TABLE III. Univariate analysis of the relationship between radiomic features
and pathologic nodal involvement.

Feature P-value

Odds Ratio

AUC q-valuePoint

95% CI

Lower Upper

F185 (Histogram-
SD- Layer 1)

0.0001 0.35 0.21 0.59 0.73 0.005

F187 (Histogram-
Entropy- Layer 1)

0.0001 0.44 0.29 0.67 0.73 0.005

F5 (StdDev [HU]) 0.0003 0.37 0.22 0.64 0.70 0.010

F4 (Mean [HU]) 0.003 7.61 1.97 29.31 0.70 0.069

F18 (9 g-3D-Max-
Dist-COG-to-Border)

0.005 1.70 1.18 2.45 0.64 0.079

F188 0.008 1.55 1.12 2.15 0.71 0.12

F48 0.011 1.59 1.11 2.28 0.67 0.14

F15 0.013 1.57 1.10 2.24 0.63 0.13

F199 0.014 0.43 0.22 0.84 0.69 0.13

F16 0.021 1.50 1.06 2.12 0.62 0.18

F14 0.026 1.44 1.05 1.99 0.63 0.19

F191 0.026 0.52 0.29 0.93 0.66 0.19

F1 0.031 1.48 1.04 2.12 0.62 0.19

F30 0.032 0.62 0.40 0.96 0.62 0.19

F139 0.034 0.61 0.38 0.96 0.60 0.19

F135 0.038 0.60 0.37 0.97 0.59 0.20

F37 0.043 1.44 1.01 2.04 0.62 0.22

FIG. 1. Receiver operating characteristic (ROC) curves from multivariate
analysis of sementic model (Pleural retraction + Fissure attachment), radio-
mic model (F185 (Histogram SD Layer 1) alone), and combined model
(F185 (Histogram SD Layer 1) alone + Pleural retraction). [Color figure can
be viewed at wileyonlinelibrary.com]
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semantic and radiomic features to predict nodal involvement
adds more benefit than either the semantic model or the
radiomic model.

According to PCA analysis, PC1 and PC2 explained
69.2% and 18.8% of variation, respectively.

PC1 = 0.522187 9 F185 + 0.502444 9 F187
+ 0.454285 9 F5 � 0.451671 9 F4
� 0.253947 9 F18.

PC2 = 0.041721 9 F185 � 0.109188 9 F187
+ 0.410455 9 F5 � 0.160764 9 F4
+ 0.889955 9 F18.

When PC1 and PC2 were incorporated into the model,
PC2 was not significant (P = 0.81), and PC1 was considered
as the predictor of nodal involvement (P < 0.0001,
OR = 0.53, 95% CI: 0.40–0.72) with an AUC of 0.735 (95%
CI: 0.659–0.81). Model was well fitted by Hosmer and Leme-
show test (P = 0.17). The multivariate prognostic model was

built by combining semantic features with radiomic features
(semantics and PC1). Unfortunately, semantic features of fis-
sure attachment (P = 0.87) and pleural retraction (P = 0.102)
were eliminated from the model. No statistical difference in
AUC was seen between PC1 alone and the model produced
from combination of semantics with radiomics (F185 + Pleu-
ral retraction) (P = 0.35).

4. DISCUSSION

Lymph node metastasis is an important prognostic factor
in patients with NSCLC. Although thoracic thin-section CT
is widely used in preoperative evaluation of nodal status, it is
still challenging to distinguish metastatic lymph nodes from
benign lymph nodes in clinical practice, especially for those
lymph nodes with a short-axis diameter of less than 10 mm,
which are always classified as negative for metastasis before
surgery. Even for PET/CT, which was considered to be supe-
rior to that of CT alone for the preoperative staging of
NSCLC, potential lymph node involvement may not be
detected, and it was reported that 51 (19.2%) of 265 patients
with clinical N0 NSCLC had pathological lymph node
involvement in a recent study.9 In our study, all patients were
considered as cN0 stage and no lymphadenopathy could be
found on CT images. Of note, enlargement is not necessarily
a salient feature of malignant, and with our data, 34 of them
had pathologic lymph node metastasis, leading to 18.2%
false-negative rates, indicating that prediction of metastasis
lymph node based on size criteria alone is not accurate.

Quantitative radiomics research has been focused on char-
acterizing primary tumors, studying its reproducibility and
relating to clinical, pathological outcome.35–37 In these find-
ings, size, shape descriptors along with texture described by
HU histogram characteristics (standard deviation, entropy,
kurtosis), Runlength, Cooccurrence, some wavelets, Laws fea-
tures were shown to be prognostics and predictive.22,25,38–41 In
a prior study,42 tumor size on computed tomography
(P = 0.006) and tumor consistency (solid tumor vs GGO
tumor) (P < 0.001) were independent predictors for lymph
node metastasis. Given that GGO might be the only compo-
nent of some tumor, our study took a slightly different
approach, defining tumor attenuation as pure GGO, mixed
GGO, and pure solid instead of solid tumor or GGO tumor (a
tumor with at least 50% GGO component). We found out that
there was a trend toward higher rate of pure solid tumor in
the pathologic LN positive group compared to negative
group, although this was not statistically significant
(P = 0.10); meanwhile, none of the tumors of pure GGO had
lymph node metastasis. We then grouped pure GGO and mix
GGO together, and found that it was significant in the uni-
variable model (P = 0.034); however, not significant in mul-
tivariable model (P = 0.103).

Univariate analysis revealed that longest tumor diameter
(F1) was significant predictor (P = 0.031). Some of these
findings were consistent with the majority of published litera-
ture.42–45 However, tumor size was not associated with nodal
involvement with malignancy on multivariate analysis in our

TABLE IV. Comparison of predictive performance between different prognos-
tic models.

Feature

AUC

P-valueaPoint

95% CI

Lower Upper

F185 (Histogram SD Layer 1)
+ Pleural retraction

0.758 0.685 0.831

F185 (Histogram SD Layer 1) 0.726 0.650 0.802 0.14

Pleural retraction + Fissure attachment 0.659 0.567 0.751 0.016

aP-value was computed by the comparison with F185 + Pleural retraction using
the DeLong method.

FIG. 2. Decision curve for pathological nodal involvement prediction in clin-
ical N0 peripheral lung adenocarcinomas: Comparison of three models. The
y-axis measures the net benefit. The blue line represents the model with
semantic and radiomic features. The red dashed line represents the model
with radiomic features. The green dashed line represents the model with
semantic features. The black line represents the assumption that no patients
have nodal involvement. [Color figure can be viewed at wileyonlinelibrary.-
com]
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study. It is notable that textural (HU histogram) and shape
characeteristics are better descriptors of nodal malignancy.
Prior studies concur with our findings, that texture character-
istics are related to recurrence and possible nodal status in
NSCLC46,47 and in other cancers.48 In this study, more
semantic features of primary lung tumor were evaluated, and
we found that tumor with fissure attachment were more likely
to have metastatic LNs, and one more feature “pleural retrac-
tion” was significant at multivariate analysis. Usually, the
presence of pleural retraction is considered as a strong factor
for poor prognosis;49 thus, we hypothesized that tumor with
pleural retraction might have higher incidence of developing
lymph node metastasis. Somewhat unexpectedly, absence of
pleural retraction is an indicator of pathological nodal
involvement with malignancy. Although the exact reason for
this is not entirely clear, it may be due to that some cases with
pleural retraction may not accompanied by pleural invasion,
which is supported by the findings that pleural retraction was
found in 83 of the 105 cases, but pleural invasion was found
in only 25 pathological samples; in such cases, the pleura
may have been retracted proximal to the tumor but not yet
invaded, or peripheral atelectasis due to airway obstruction
by the tumor may have been observed.50 It could also be
related to the fact that we limited the patients to those clinical
N0 peripheral lung adenocarcinomas, which was rather dif-
ferent from previous studies.

Radiomics provides large amounts of advanced quantita-
tive imaging features which are extracted and analyzed from
medical images. Whole-lesion analysis was used in these
studies, which provides a more comprehensive picture of
lesion heterogeneity. Seven radiomic features that fall in three
broad groups (morphological features, histogram features,
and high order texture features) of primary lung tumor had
significant association with pathological nodal involvement;
and Pixel Intensity Histogram feature (F185) was an indepen-
dent predictor in multivariate analysis. This model showed
better performance (AUC = 0.726) than model generated
with semantic features (AUC = 0.659). It seems that radio-
mic analysis of the primary tumor could lead to a better per-
formance than routine measure done by radiologists which
mainly focusing on size criteria in predicting nodal involve-
ment. As the goal of this study is to build predictive model
for nodal involvement, the association between two semantic
features (fissure attachment and pleural retraction) and top
five radiomic features is investigated by simple logistic
regression. The fissure attachment is highly associated with
all top five features, and this explains the reason why it was
eliminated in the final multivariable model.

We further utilized the radiomic features and semantic fea-
tures jointly to predict pathological nodal involvement. The
multivariate model with semantic feature “pleural retraction”
and radiomic feature “Histogram SD” demonstrated the high-
est AUC (AUC = 0.758), which outperformed the model
with semantic features alone (P = 0.016). Meanwhile, we
applied decision curve analysis which requires only the data-
set on which the models are tested to evaluate and compare
three different prediction models. Since Radiomics analysis

allows high-throughput extraction of quantitative features
from biomedical images which can reflects underlying patho-
physiology, we hypothesized that Radiomic features of the
primary tumor could reflect the biologic malignant potential
of lung cancer; therefore, assessment of the noninvasive
radiomic features of the primary tumor could serve as a more
informative analysis method and the prediction model which
incorporates both semantic and radiomic features may pro-
vide a new way for preoperative evaluating the risk of lymph
node metastasis in patients with clinical N0 peripheral lung
adenocarcinomas.

Our study has several limitations. First, this study was ret-
rospective in design with a limited number of patients in a
single Institute. Second, in order to have a more accurate
assessment of lymph node metastasis, only patients received
lobectomy or pneumonectomy with systematic lymph node
dissection were included in this study, so there may have been
selection bias. Third, this study examined patients with
peripheral lung adenocarcinomas, since central bronchogenic
tumors often cause post-obstructive pneumonia and induce
atelectasis, which is difficult to be differentiated from tumor
as both of them appear as solid dense shadows on CT images.
Fourthly, there is relatively small number of patients with
malignant lymph node in our group, and this situation was
dictated by the demographic characteristics of our cohort;
that is, only patients with clinical N0 peripheral lung adeno-
carcinomas. Finally, not all of the patients in the cohort
received FDG-PET/CT scan preoperatively, we did not com-
pare the results to the current standard of PET CT. Further
validation with larger series is needed to confirm our prelimi-
nary results.

5. CONCLUSIONS

Our preliminary study revealed association between pri-
mary tumor CT features and pathological nodal involvement
in clinical N0 peripheral lung adenocarcinomas. Combined
evaluation of semantic and radiomic features could improves
prediction of the risk of a node’s involvement with malig-
nancy, and this modality could be easily added to clinical use
due to its non-invasive nature.
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Table S1. 219 radiomic features extracted from Definiens,
details of the features deferred to our prior publications.1,2

Table S2. Radiomic features included in final analysis.
Table S3. Characteristics of patients.
Table S4. Univariate analysis of the relationship between
radiomic features and pathologic nodal involvement.
Table S5. Association between two semantic features and top
five radiomic features.
Table S6. Multivariable logistic regression analysis of
semantic features combined with radiomic features predicting
nodal involvement.
Figure S1. Example of CT images showing segmentation
results. The tumor boundary of each slice was shown in green
outline.
Figure S2. Examples of CT images demonstrating typical
semantic features: (a) pure GGO; (b) mixed GGO; (c) pure
solid; (d) fine spiculation; (e) coarse spiculation; (f) pleural
retraction; (g) slight concavity; (h) deep concavity; (i) air
bronchogram; (j) bubble-like lucency; (k) fissure attachment;
and (l) pleural attachment.
Figure S3. Boxplots comparing the top 5 radiomic features
between pathologic LN negative and positive groups. (a) F4
(Mean [HU]); (b) F5 (StdDev [HU]); (c) F18 (9g-3D-Max-
Dist-COG-to-Border); (d) F185 (Histogram -SD- Layer 1);
(e) F187 (Histogram -Entropy- Layer 1). Lines in boxes repre-
sent medians and the boundaries of the boxes represent lower
and upper quartiles. “+” stands for outliers.
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