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Abstract

Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of 

computational systems biology research. However, the algorithm requires explicit enumeration of 

all reactions and all chemical species that may arise in the system. In many cases, this is not 

feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-

based modeling frameworks provide a way to exactly represent networks containing such 

combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as 

simulation engines for rule-based modeling languages. Here, we provide both a high-level 

description of the algorithms underlying the simulation engines, termed network-free simulation 

algorithms, and how they have been applied in systems biology research. We also define a generic 

rule-based modeling framework and describe a number of technical details required for adapting 

Gillespie’s direct method for network-free simulation. Finally, we briefly discuss potential avenues 

for advancing network-free simulation and the role they continue to play in modeling dynamical 

systems in biology.

HHS Public Access
Author manuscript
Bull Math Biol. Author manuscript; available in PMC 2020 August 01.

Published in final edited form as:
Bull Math Biol. 2019 August ; 81(8): 2822–2848. doi:10.1007/s11538-018-0418-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

stochastic simulation; rule-based modeling; combinatorial complexity; kinetic Monte Carlo

1 Introduction

In a living cell, numerous biochemical species interact with each other, forming complex 

reaction networks. How the cell functions is largely determined by the dynamics of these 

networks. One of the goals of systems biology is to understand the emergence of phenotypes 

from the complex interactions present in these reaction networks.

Mathematical modeling and simulation are powerful tools for studying biochemical reaction 

networks. The interactions between chemical species can be rigorously defined and 

simulated using diverse techniques for representing nonlinear dynamical systems. 

Exploratory analyses and hypothesis testing can be performed efficiently in a computational 

setting. As a result, computational systems biology has been thriving over the past decade 

and has become a recognized field within quantitative biology.

1.1 Modeling chemical reaction networks

Traditionally, reaction networks have been modeled with systems of ordinary differential 

equations (ODEs) that are solved with numerical integration algorithms. These models are 

typically constructed on the basis of mass action kinetics. In many cases, this approach is 

appropriate and successful (Le Novere et al, 2006; Deuflhard and Röblitz, 2015). However, 

the ODEs describe the well-mixed concentrations of chemical species and may be 

inappropriate in the context of a cell because chemical species may be present in low copy 

numbers. A typical eukaryotic cell has a small volume, on the order of picoliters, and the 

enclosed chemical species have finite populations. Consequently, intrinsic noise (Elowitz et 

al, 2002; Kepler and Elston, 2001; Ozbudak et al, 2002; Blake et al, 2003; Thattai and Van 

Oudenaarden, 2004; Kærn et al, 2005; Acar et al, 2008; Munsky et al, 2009; Lin and 

Doering, 2016; Lin and Galla, 2016; Hufton et al, 2016; Lin and Buchler, 2017; Lin et al, 

2017) due to the finite and discrete nature of the reactants could be an important factor to 

consider when studying the dynamics of intracellular reaction networks.

Stochastic and discrete-state models provide a sensible solution to describe the 

fundamentally stochastic biochemical reactions between finite and discrete reactants. 

Among them, continuous-time Markov chains (CTMC) have become a standard way to 

represent and simulate biochemical reaction networks. Formally, the joint probability 

distribution of a CTMC is described by a Chemical Master Equation (CME). Except for 

special cases, it is impossible to derive the full analytical solution and efficient numerical 

techniques must be employed to solve the CMEs. There are two ways to numerically solve 

the CME: the first way is to directly integrate or approximate the CMEs (Munsky and 

Khammash, 2006; Cao et al, 2016), and the second way is to use various continuous-time 

Monte Carlo techniques to generate sample paths of the random processes and use the 

sample paths to compute statistical quantities of interests (Bortz et al, 1975; Gillespie, 1976; 

Gillespie et al, 1977). In this review, we focus on the second approach.
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Using Monte Carlo approaches to sample trajectories from dynamical systems can be traced 

back to the late 1940’s in Los Alamos where Enrico Fermi and Robert D. Richtmyer (Fermi 

and Richtmyer, 1948) and Nicolas Metropolis and Stanislaw M. Ulam (Metropolis and 

Ulam, 1949) proposed the independent random sampling idea to solve problems in kinetic 

theory (Boltzmann and Fokker–Planck equations). While a dynamical interpretation was 

clearly given in (Metropolis and Ulam, 1949), the proposal soon evolved to the famous 

Metropolis algorithm (Metropolis et al, 1953), which did not capture time dependence and 

focused instead on the equilibrium distribution of a thermal system. In the 1960’s, several 

seminal papers generalized the idea of Monte Carlo sampling to dynamical processes in 

continuous time (Cox and Miller, 1965; Young and Elcock, 1966). Soon, the technique was 

applied to various problems from material science to statistical physics (a review of topics 

can be found in (Voter, 2007)). The first rejection-free algorithm, the n-fold BKL algorithm, 

was proposed by Bortz, Kalos, and Lebowitz in 1975 (Bortz et al, 1975). With this 

algorithm, the advanced time is a function of all the possible transition events which may not 

take place in a specific sample path. Soon, Gillespie introduced such rejection-free kinetic 

Monte Carlo methods to the study of chemical reaction networks (Gillespie, 1976). The 

method became a standard way to simulate such networks and is often termed Gillespie’s 

algorithm or the stochastic simulation algorithm (SSA). Ever since Gillespie’s paper, there 

have been many proposals to improve the performance of the SSA by introducing novel data 

structures, such as indexed priority queues (Gibson and Bruck, 2000) or constructing an 

implementation that takes advantage of some general structure of the reaction network, such 

as a sparse transition matrix (Ramaswamy and Sbalzarini, 2010); however, the core of the 

algorithm remains intact.

An intrinsic, often unstated, assumption of the SSA is that the chemical reaction network 

must be fully specified. However, in biology we commonly only have data about pairwise 

interactions. Further complicating the situation is the fact that biochemical reaction networks 

often involve macromolecules (e.g., proteins) that have multiple domains for interacting with 

other molecules and that may each occupy a number of chemical states. For example, a 

protein may have multiple residues that are subject to phosphorylation or dephosphorylation. 

The platelet-derived growth factor receptor (PDGFR) has an intracellular domain containing 

10 amino acid residues that may be phosphorylated. If each residue is independently subject 

to phosphorylation and dephosphorylation, a single PDGFR molecule can occupy 210 = 

1024 possible biochemical states (Mayer et al, 2009). However, the PDGFR dimerizes upon 

binding a ligand, increasing biochemical state space to over 500,000 possible states (Mayer 

et al, 2009). Representing the PDGFR as a system of differential equations would thus 

require over 500,000 equations. Similarly, biochemical species can form large complexes 

through pairwise binding, and in some cases the total number of possible biochemical 

species exponentially increases with the number of distinct proteins in the model (Suderman 

and Deeds, 2013; Faeder et al, 2005a; Bray, 2003; Endy and Brent, 2001). This vastness in 

state space is termed combinatorial complexity.

1.2 Representing complex systems simply

Rule-based modeling was introduced in systems biology to address the problem of 

combinatorial complexity, particularly for models of intracellular cell signaling networks 
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(Chylek et al, 2014b; Danos et al, 2007a). Its core insight is the use of rules to represent a 

class of reactions that operate on identical reaction centers. Specifically, rules use molecular 

patterns common among multiple reactant molecules, allowing for more succinct 

representation of reactions, which precludes the need to enumerate all possible reactions 

between all possible biochemical species (Chylek et al, 2014b). Rule-based modeling 

enables a precise and comprehensive, yet tractable, representation of complex systems (de 

Oliveira, Luís P. et al, 2016). With a rule-based approach, a modeler can represent the 

previously described >500,000-state PDGFR system with a mere 22 rules, assuming mutual 

independence of the rules involved (Code 1): 2 ligand-receptor interaction rules (binding and 

unbinding), 2 receptor dimerization rules (binding and unbinding), 10 phosphorylation rules 

and 10 dephosphorylation rules (one of each per residue). The complete formulation of this 

model, written in the BioNetGen language (Faeder et al, 2009), is given in Appendix A.

Rule-based modeling in systems biology was initially developed to automate construction of 

biochemical reaction networks, as describing biological phenomena with rules significantly 

reduces the work of model construction (Blinov et al, 2006). However, the resulting network 

can be of intractable size from a computational perspective, or it may even be unbounded 

except by the number of molecules present in the system (Yang et al, 2008). A natural 

generalization to mitigate this issue is to generate the network on-the-fly (Lok and Brent, 

2005; Faeder et al, 2005b; Faulon and Sault, 2001). Even if the number of chemical species 

can be (possibly infinitely) large, on-the-fly network generation assumes that only a finite 

(and sometimes small) number of species are typically populated. Therefore, instead of 

insisting on calculating reaction rates for all possible reactions, which may be impossible, 

one generates the local network (and thus determines reaction rates) for the reactions whose 

reactants are present in the system. As the system evolves, this local network is updated 

when new species are introduced or existing species are removed completely. While 

sometimes useful, the size of the boundary (the part of the network requiring generation of 

new reactions) may increase exponentially, and so simulation becomes very inefficient in 

such a case.

This motivates an approach that avoids generating the chemical reaction network altogether: 

instead, each molecule is treated as an object and the simulation is performed directly on the 

objects. This network-free approach, is a form of agent-based simulation grounded in 

physical and chemical principles. Various network-free software packages have been 

deployed throughout the years, most of which correspond to a particular rule-based 

modeling framework (Yang et al, 2008; Colvin et al, 2010; Le Novere and Shimizu, 2001; 

Colvin et al, 2009; Danos et al, 2007b; Sneddon et al, 2011; Zhang et al, 2005; Sweeney et 

al, 2008). The algorithm implemented in these simulators is a modified form of Gillespie’s 

direct method (Gillespie, 1976; Gillespie et al, 1977). The modified algorithm differs from 

Gillespie’s method in that careful bookkeeping of the state of the system is required.

Throughout the rest of this work, we provide a brief review of research applications of 

existing implementations of network-free simulation algorithms (Section 2) followed by a 

high-level description of how Gillespie’s direct method can be generalized for a rule-based 

modeling framework (Section 3). We then define a generic rule-based modeling framework 

and proceed to describe a basic implementation of a network-free simulation algorithm 
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(Sections 4 and 5). Finally, we investigate a number of technical details that need 

consideration when implementing such an algorithm (Sections 6 and 7).

2 Applications of network-free simulation

A number of software packages exist to facilitate network-free simulation for specific rule-

based modeling languages. Two of the most prominent rule-based modeling languages for 

biomolecular simulation are the Kappa language (Danos and Laneve, 2004) and the 

BioNetGen language (BNGL) (Faeder et al, 2009). These languages each have associated 

network-free simulation tools: KaSim for the Kappa language (Boutillier et al, 2017b) and 

NFsim (Sneddon et al, 2011) (among others) for BNGL. Both the KaSim and NFsim 

engines have been used in situations where model complexity necessitates network-free 

simulation.

A straightforward application of network-free simulation seeks to understand how 

combinatorial complexity influences the protein complexes that assemble during signal 

transduction. Explicitly investigating combinatorial complexity precludes any notion of 

species or reaction network enumeration, and so network-free simulation is the only path 

forward. Deeds et al. (Deeds et al, 2012) constructed a rule-based model in the Kappa 

language that characterized the protein-protein interaction network in yeast. They found that 

existing knowledge of the yeast interaction network led to extreme combinatorial 

complexity. Ultimately, they found that simulations beginning from the same initial state 

diverged rapidly in the sets of complexes that were formed, where any two independent 

simulations exhibited only 20% overlap among unique complexes formed (Deeds et al, 

2012). The same methodology was applied to the pheromone signaling network in yeast, this 

time revealing that reliable signal transduction can occur in networks even when the 

assembled molecular complexes responsible for signaling are highly variable (Suderman and 

Deeds, 2013). These bodies of work highlight two key facts about complexity in interaction 

networks: first, that clonal cells are likely never in the same state at the same time, and 

second, that cells can still reliably process extracellular information despite a seemingly 

chaotic environment.

Intracellular signaling in mammalian cells often involves oligomerization or polymerization 

of cell surface receptors (Su et al, 2016). These receptors also recruit a wide array of 

downstream effector proteins that govern the dynamics of signal transduction. Examples of 

these systems include growth factor signaling (Creamer et al, 2012; Stites et al, 2015) and 

the antigen recognition receptor signaling (Chylek et al, 2014a; Nag et al, 2010, 2009). 

Because of the formation of complex multimeric structures, the state space of these 

intracellular signaling models is bounded only by the number of molecules in the simulation. 

Using network-free simulation algorithms is often the only approach available to 

characterize system dynamics without undue simplification of a model. Most of the work on 

mammalian signaling referenced here used models written in BNGL and were simulated 

with a BNGL-compatible network-free simulator, NFsim.

Another domain of research involving biopolymers considers nucleic acids, and one example 

of nucleic acid research facilitated by rule-based modeling examined the phosphorylation 
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states of RNA Polymerase II as it binds to an arbitrary number of positions on a DNA 

sequence (Aitken et al, 2013). In this case, the number of possible biochemical states is 

susceptible to the problem of combinatorial complexity as the size of the DNA molecule 

increases. A second example focused on base excision repair in DNA (Köhler et al, 2014). 

In this work, the model includes a single DNA molecule composed of 100,000 base pairs, 

something that would be utterly intractable in any other modeling framework. The model 

incorporates a number of protein-protein interactions in addition to a mechanistic 

representation of base repair catalysis involving endonucleases, polymerases, and ligases to 

investigate how certain molecules (such as scaffold proteins) contribute to the speed and 

efficacy of DNA repair.

Finally, rule-based modeling also has applications outside biology. One example explores 

the usefulness of applying rule-based modeling and network-free simulation in simulating 

labor markets (Kühn and Hillmann, 2016). In particular, it highlights the differences 

between general agent-based modeling frameworks and rule-based modeling, which is a 

type of agent-based modeling that is based on formal chemical kinetics (Danos et al, 2007b; 

Faeder et al, 2009). A notable difference between existing agent-based modeling 

frameworks for modeling labor markets and rule-based modeling coupled to network-free 

simulation is the absence of spatial information in network-free simulation (i.e., the well-

mixed assumption). Although these examples serve as a reminder for the general 

applicability of rule-based modeling approaches and network-free simulation algorithms, we 

focus primarily on biological applications for a detailed description of the network-free 

simulation approach.

3 A minimalist description of network-free simulations

The algorithm to generate exact sample paths for a rule-based model using a network-free 

approach is largely similar to Gillespie’s direct method as seen in Fig. 1 (Gillespie, 1976; 

Gillespie et al, 1977). In this section, we focus on a high-level general description of the 

algorithm, leaving the technical (but important) details specific to network-free simulations 

to the next sections. This description includes some jargon that we define more rigorously in 

Section 4:

• a molecule is an explicit object that is tracked by the simulation engine

• a rule is composed of patterns that identify molecular moieties in reactant 

molecules

• a pattern is used to match reactant molecules during simulation

• a rule defines a chemical transformation that is to be applied to a reactant 

molecule

• a species defines a class of some molecular complex (i.e. a particular 

biomolecular configuration)

• a mixture explicitly defines all interacting molecules in the simulation
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We decompose the algorithm into four essential blocks: initialization of the system, 

computation of the rules’ rates, advancing time and sampling a rule, and updating the 

system.

Step 1. Initialization—At the beginning of the simulation, the system configuration is 

defined by the user. Individual instances of all the chemical species’ component molecules 

are populated.

Step 2. Computation of rule rates—In this step, matches are constructed between the 

patterns defined in the rules and the explicit molecule instances in the simulation mixture. 

One of the major differences between rule-based models and traditional models is that 

chemical transformations are defined in terms of patterns instead of in terms of chemical 

species (Gillespie, 1976; Gillespie et al, 1977). This means that many distinct chemical 

species may participate as a reactant in a rule, provided each of these species matches the 

same reactant pattern of the rule. The rate of the rule is then proportional to the number of 

matches of its reactant patterns.

Step 3. Advancing time and sampling a rule with specific reactants—Once all 

the rules’ rates are computed, the time to the next rule application is a random number 

sampled from an exponential distribution whose rate parameter is the sum of all the rules’ 

rates: rT. A random waiting time Δt is sampled from this exponential distribution

Δt =
− log u0

rT

where u0 is a uniform random number on the interval [0,1). The system’s simulation time is 

then advanced by Δt. The rule to be applied to the system is sampled with probability 

proportional to its rate. This is done via the conditioning procedure:

• Sample a uniform random number u1 on the interval [0,1).

• Iterate over all rules to find the minimum rule index, i, such that

∑
j = 1

i ≤ N
r j > rT · u1

where N is the number of rules.

These steps are identical to Gillespie’s direct method (Gillespie, 1976; Gillespie et al, 1977). 

However, since the rules are defined by patterns, the sampled rule does not specify which 

molecule instances should be modified by the transformation defined by the rule. The 

simulator therefore samples molecules with uniform probability from a list of matches for 

each of the selected rule’s reactant patterns.
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Step 4. Updating the system’s configuration—After the rule is applied (modifying 

the matched molecules sampled in Step 3) the matches between rule patterns and the 

molecules in the simulation mixture are updated. To increase simulation efficiency, the rules’ 

rates can be updated incrementally to avoid recalculating all the matches. After the rules’ 

rates are updated, the simulation continues from Step 3 until a stopping condition is met. We 

provide a detailed discussion of how this step can be implemented in Section 5.

Although the above description is very similar to Gillespie’s original direct method 

(Gillespie, 1976; Gillespie et al, 1977), interfacing the algorithm with a particular rule-based 

modeling framework requires careful consideration of how pattern-matching affects a rule’s 

rate. We discuss a number of relevant issues that may arise in building a network-free 

algorithm in Sections 6 and 7.

4 Nomenclature

In this and the following sections, we consider a number of technical details required for 

implementing a network-free simulation algorithm. To do so, we first must define the objects 

involved in the simulation. Different rule-based modeling frameworks use distinct 

nomenclature for similar, sometimes identical, constructs. Additionally, many descriptions 

of rule-based modeling approaches contain jargon that can easily confuse readers without 

the relevant domain-specific knowledge1. Here, we try to provide intuitive and sufficiently 

precise definitions of the objects required to construct a network-free simulation algorithm 

independent of any specific rule-based modeling framework. Note that our terminology 

reflects the usage of rule-based modeling in molecular and cellular biology (Chylek et al, 

2014b; Danos et al, 2008).

The atomic unit of rule-based modeling applied to biochemical reactions is what we term the 

molecule. A molecule is typically a representation of a biological macromolecule, such as a 

protein, but a molecule could also represent a metabolite, drug, other small molecule, or any 

object of interest in the model. Rule-based modeling frameworks often require molecules to 

be first defined with a particular signature, and specific instances of these molecules (such as 

the molecules tracked during simulation) must conform to this definition. Such signatures 

are composed of a name that acts as a label for the molecule’s type, as well as a predefined 

list of sites that typically represent physical or chemical attributes of the molecule (Fig. 2a). 

Sites are defined with names2, and a predefined list (which can be empty) of internal states 

that represent any other property of the site (e.g., whether an amino acid residue in a protein 

is phosphorylated) (Fig. 2a). Sites also engage in binding to other sites, allowing association 

between molecules and thus representation of higher order molecular structures. 

Modification of sites’ states (both internal and binding) typically comprise the majority of 

rule applications (reaction events) during simulation (e.g., binding, unbinding, or chemical 

modification).3

1Most objects in rule-based modeling can be represented visually (and formally) as graphs. Rules then become transformations (i.e., 
rewriting operations) on these graphs, and much of the jargon relating to rule-based modeling has its origin in graph theory. We will 
occasionally mention these terms, but will not rely on them.
2To our best knowledge, BioNetGen is the only framework that allows molecules with multiple identically-named sites. These sites 
are treated as equivalent. Molecule types must have unique names.
3Rules may also define synthesis and degradation of molecules.
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Molecules that are used for representing specific molecular moieties and not specific 

instances of physical objects are termed pattern molecules. Sites in pattern molecules may 

be completely absent (unspecified) or a site’s states may be partially specified to capture the 

necessary and sufficient features required for representing a molecular moiety. Of course, 

partial specification of a site’s states (binding or internal) relies on syntax to convey 

incomplete knowledge about the site’s states. For example, the modeling language used to 

write a rule may be able to express whether a site is bound, but its binding partner is 

unknown, or whether the site’s internal state is in some subset of its predefined set of 

internal states. Furthermore, this partial specification has an ordering, where a site’s absence 

or partial specification of its states in a pattern molecule is less specific than a site with a 

more specific or complete specification of its state (Fig. 2b). The notion of such an ordering 

is useful in pattern-matching; a less-specific object may match a more-specific or 

completely-specified object provided that the information in the less-specific object is 

preserved in the more-specific object. This concept of preservation of information is 

implicitly assumed in later discussions of partial specification of molecules in pattern 

matching. Similarly, if the internal state of one site is identical to another site and the 

binding states for the sites are both explicitly bound or explicitly free, then we say that the 

sites are equivalent. Sets of sites (and thus molecules) can similarly be ordered according to 

specificity or equivalency.

We define complete molecules or simply molecules, as molecules whose sites are all fully 

specified. Full specification requires that sites are either bound to another site with a labeled 

bond4 or unbound, and that sites express an explicit internal state assuming that they have 

predefined internal states to occupy. Complete molecules are those that are involved in the 

simulation, being modified by rule applications.

We can now define larger objects composed of complete molecules and pattern molecues. 

An object composed of a list of one or more complete molecules that only connect to other 

molecules in their list (a connected component in graph terminology) is called a species, 

reflecting standard chemical nomenclature5. Note that a molecule with no bound sites is 

both a molecule and a species. Similarly, we define a pattern as a list of pattern molecules 

that are explicitly connected only amongst themselves (Fig. 2c, blue region elements)6. 

Finally we use the term mixture or simulation mixture to refer to the pool of complete 

molecules that are interacting during the simulation of a rule-based model (Fig. 2c, entire 

yellow region). Network-free simulation engines track individual objects in a mixture, as 

opposed to Gillespie’s direct method, which tracks the populations of predefined chemical 

species. Note that populations of chemical species can be reconstructed from the list of 

complete molecules that defines a mixture, and so ours is an equivalent representation of the 

state of the system compared to the traditional SSA for the purpose of tracking population 

dynamics.

4A labeled bond links two sites, meaning that both partners in a bond can be determined by the bond label.
5In chemistry and ecology, the term species refers to a class of things (molecular configurations or organisms). We retain this 
convention and refer to specific instances of a species when discussing an individual object that conforms to the features that define a 
particular species.
6In some cases, patterns may be defined as involving unconnected molecules, but we do not adopt this convention
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To avoid the need to a priori generate the reaction network, rates are calculated via pattern 

matching. We define a match as a mapping from a pattern to a list of molecules in a 

simulation mixture (Fig. 2c). This association depends on two criteria:

1. Each pattern molecule in the pattern must have a corresponding molecule of the 

same name in the mixture

2. For a pattern molecule X in the pattern and its corresponding molecule Y in the 

mixture:

a. if X’s sites are less specific than Y’s sites, then the information present 

in X’s sites must be preserved in Y’s sites (consistency)

b. sites with fully specified states present in X must have equivalent 

corresponding sites in Y

A rule defines a set of reactions and involves all of the previously defined concepts (Fig. 2d). 

A rule is composed of a list of reactant patterns and a list of product patterns that together 

define a transformation (Fig. 2d, blue regions), as well as a rate law. The reactant and 

product patterns are commonly known as the left-hand side and right-hand side of a rule, 

respectively. The rate law is used to calculate a rule’s rate, which is the sum of all of the 

rates of all of the reactions implied by the rule. Each reaction implied by a rule inherits the 

rate law associated with the rule.

Finally, we use the term system to generally describe everything needed to fully represent 

and simulate the model.

5 Distinctions from traditional SSA

The generalization presented in Section 3 differs from a conventional SSA in a few ways. 

Two early examples of the general approach described here can be seen in (Yang et al, 2008) 

and (Danos et al, 2007b). Rates are dependent on numbers of matches instead of population 

sizes of species. Another related distinction is the need to sample molecules that will be 

altered by a rule once the rule has been selected for application. Perhaps the most notable 

and complicating difference is the methodology used to store and update the state of the 

system. This section provides a high-level view of the data structures necessary to 

accommodate these differences in a reasonable manner. We make no claims regarding the 

efficiency of this approach, but present it as a means to understand the essential steps of 

constructing a network-free simulation algorithm.

5.1 Computing the rule rates

To calculate the initial rates of the rules in a model, we first count the number of matches 

associated with each reactant pattern in a rule. A simple way to store this information is to 

have, for each reactant pattern in each rule, a match list containing all of the matches from a 

pattern to the molecules in the simulation mixture (Fig. 3a). To initialize the match list for 

each pattern, we select an arbitrary pattern molecule in the pattern, which we will refer to as 

the anchoring pattern molecule. We then find all molecules in the initial mixture that match 

the anchoring pattern molecule: the anchoring molecule. We recursively traverse the species 
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instance that contains the anchoring molecule (which is possible because the molecules 

contain pointers referencing the other molecules to which they are bound) to determine all 

the unique matches arising from the choice of anchoring molecule7. The set of matches 

forms the initial match list of the pattern. For rules with elementary rate laws (i.e., rate laws 

consistent with mass-action kinetics), the rate will typically be the rule’s rate constant 

multiplied by the product of the numbers of matches for all reactant patterns. A simple 

example of this can demonstrated for rule R1 (Fig. 2) from the information present in Fig. 

3a:

1. Determine the number of matches for each reactant pattern

• There are 2 matches for rule R1, pattern P1

• There are 2 matches for rule R1, pattern P2

2. Calculate the product of the numbers of matches: 2 · 2 = 4

3. Calculate the rate by multiplying the product of matches by the rule’s rate 

constant: kf · 4

However, there are a few issues to consider that may affect the calculation, and these issues 

are discussed in Section 6.

5.2 Sampling the reactants

Provided that a match list is correctly maintained for each reactant pattern in each rule, the 

sampling step of the simulation is straightforward (Fig. 3b). A rule is sampled according to 

the method described in Step 3 of Section 3. After selection of a rule, it is necessary to 

sample which molecules will be modified by the transformation defined by the rule. To 

make this choice, a match for each pattern in the rule is sampled with uniform probability 

from the corresponding match lists, and the rule is applied to the reactant molecules in the 

mixture that correspond to the selected match.

5.3 Updating the system

When a reaction event8 occurs, the state of the system must be updated appropriately (Fig. 

3c). If a transformation changes a site’s internal state, that state must be updated on the 

molecule, and if the transformation includes the addition or removal of bonds, the molecules 

involved must have the pointers to their binding partners updated accordingly. Finally, the 

most computationally expensive step is to update the match lists. A brute force approach is 

to check all of the reactant patterns of all rules to determine if their match lists have been 

affected by the transformation that has just been applied.9

After a reaction event, the first phase of the update process, termed the negative update 

phase (in accordance with the terminology of (Danos et al, 2007b)), is to consider the 

molecules that were altered or removed by the reaction event. In this phase, we traverse the 

7The anchoring molecule simply serves as an arbitrary starting point for traversing the species instance (i.e. multiple starting points 
may be possible).
8Nonproductive (null) events are described in Section 6.6.
9Depending on how patterns are specified, a brute force approach may be the only way to correctly update the system. See Section 
6.5.
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species instances containing the molecules that were involved in the reaction before the rule 

application10, and remove the matches involving those species instances from all match lists.

The second phase, termed the positive update phase (in accordance with the terminology of 

(Danos et al, 2007b)), is to consider the newly created species instances formed by the 

reaction event. Similar to the negative update phase, the new species instances must be fully 

traversed to determine which rules’ patterns need to be updated. Any new matches are then 

added to the appropriate match lists.

After the negative and positive update phases, the match lists have been fully updated, and 

the changes to the match lists can be used to efficiently update rule rates. Rate updates are 

most efficient if current rates are modified up or down in accordance with match list 

changes, as opposed to de novo rate calculation (i.e., calculating the rate by constructing the 

match lists from scratch).

6 Considerations for rate calculation

A number of issues arise as a result of using rules and a pattern matching algorithm instead 

of the traditional SSA’s use of species’ populations and reactions. Here, we discuss some of 

the more prominent issues relevant for accurate and consistent calculation of rule rates.

6.1 Symmetry among patterns

In cases where there is symmetry among a rule’s reactant patterns (i.e., when a rule’s 

reactant patterns contain two or more identical patterns), one must take care to correctly 

count the number of reactions that may occur. In Gillespie’s original notation (Gillespie, 

1976), hμ is the number of ways a reaction may occur, and it is computed from the 

populations of the chemical species involved as reactants in the reaction. The product of hμ 

and the reaction’s rate constant is the reaction’s rate. With our proposed method for tracking 

matches, we must similarly count the number of distinct match combinations in the presence 

of symmetry:

hsym, T =
∣ T ∣
NT

where NT is the number of times pattern T is present in the list of reactant patterns, and |*| 

denotes the size of T’s match list. A simple example is a homodimerization rule with a rate 

constant k for some molecule A. If we consider a mixture with 1000 monomeric A 
molecules, then we can calculate the rule’s rate:

1000
2 · k = 1000 · 999

2 · k

10This traversal, and that in the positive update phase, allows the algorithm to accommodate rules with nonlocal constraints. See 
Section 6.5.
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6.2 Symmetry within a pattern

Patterns may be defined in such a way that multiple matches may arise from a simple 

permutation of the molecules involved in the match. For example, a pattern may involve two 

identical pattern molecules that are bound to each other on identically named sites. In such a 

case, the pattern may match the same set of molecules more than once. In Fig. 4a, an 

example is shown for a simple dimer dissociation reaction. A single dimer exists in the 

simulation mixture, and the reactant pattern matches the dimer such that the first pattern 

molecule matches molecule A1 and the second pattern molecule matches molecule A2 

(blue). By permuting the molecules in the mixture (substituting A1 for A2 and vice versa), 

we find a second match between the reactant pattern and the dimer (red). Correctly 

calculating the rule’s rate requires dividing the rate by the number of molecule permutations 

in the pattern that preserve bond connectivity.11 The divisor similarly corresponds to the 

number of ways an occurrence of the pattern in a species instance is matched by the pattern 

because of symmetry in the pattern. This rate calculation assumes a specific convention 

about the semantics of our framework: a rule’s rate should be proportional to the number of 

distinct reactions that can occur, and not simply the number of matches.12 As a result of this 

choice of convention, pathological cases requiring explicit accommodation in either the 

simulation engine or rule interpreter may arise in dissociation reactions when asymmetric 

patterns match symmetric molecules (see Section 7.1).

6.3 Reaction path degeneracy

A pattern may have identical sites to which a transformation defined by a rule (e.g., 

modification of a site’s internal state or formation/dissolution of a bond) may apply equally. 

This is termed reaction path degeneracy (IUPAC, 1997), referring to multiple equivalent 

ways for a reaction to occur with respect to some particular biochemical species. To 

calculate rule rates such that the rate constant refers to the reaction applied to an individual 

site (or pair of sites in the case of bond formation), the number of matches in the pattern’s 

match list is multiplied by the number of equivalent sites in the pattern that are competent to 

be modified by the transformation defined by a rule (Fig. 4b). The multiplicative factor used 

to adjust the rate in cases of reaction path degeneracy may also be termed a statistical factor. 

During the rule application process, a random site is selected to undergo the transformation 

defined by a rule with uniform probability. In the case of Fig. 4b, the rate is 4 · kf:

21 · 22 · 24
23

· k f = 4 · k f

where the subscripts denote:

1. the number of matches of the A pattern

2. the number of matches of the B dimer pattern

11When representing patterns as graphs, this number is the order of the automorphism group of the graph, roughly the number of 
ways a graph can be mapped to itself.
12The BioNetGen language follows the number-of-reactions convention for rate calculation, whereas the Kappa language follows the 
number-of-matches convention.
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3. the correction for symmetry in the B dimer pattern

4. the number of equivalent reaction paths13

Note that reaction path degeneracy often coincides with the presence of pattern-preserving 

site permutations or symmetry, and in these cases, the rate must be further adjusted as 

described in Section 6.2.

Regardless of the framework’s chosen convention, the user must be aware of how the 

matching procedure may influence a rule’s rate to correctly specify the rate constants in the 

rate laws associated with the rules (Section 8).

6.4 Molecularity

An additional consideration is the molecularity of rules. When species composed of more 

than one molecule exist in a simulation mixture, it is possible for multiple patterns in a 

single rule to match the same species instance. For example, suppose we have a bond 

formation rule stating that pattern molecule A with free site x may bind to pattern molecule 

B with free site y, and the mixture contains a trimeric complex, in which molecules A and B 
satisfy the patterns’ constraints, but A and B are also each bound to a molecule C via sites 

unspecified in the bond formation rule (Fig. 5a). When this rule is sampled, the algorithm 

might randomly choose matches corresponding to the molecules A and B that are members 

of the trimeric complex. The rule states that A should bind to B, forming a cyclic structure, 

although this is not obvious from the rule’s reactant pattern. Furthermore, the rate of 

cyclization (a unimolecular reaction) will not be equivalent to the rate of bimolecular 

association, and so a distinction should be made between intermolecular and intramolecular 

bond formation.

To distinguish between unimolecular and bimolecular reactions, the simulator must perform 

a check to confirm that matches for a bimolecular rule are members of distinct species 

instances and not members of the same species instance. This can be done by traversing the 

matched molecules’ species instances as is done when updating the system after a reaction 

event; the task can also be accomplished by tracking species instances with unique 

identifiers (see Section 6.6).

6.5 Locality

Rules may include negative application conditions (i.e., constraints on when they may be 

applied). Such conditions are especially relevant when considering the molecularity of rules 

in the previous section (i.e., the bimolecular vs. unimolecular bond formation). It is 

sometimes possible to ignore molecularity constraints in the determination of matches 

between patterns and molecules (e.g., when intramolecular binding is not possible). 

Consider the rule set from Fig 2c and specifically the binding rule. Regardless of the 

sequence or number of reaction events in a mixture initially composed of A and B 
monomers, we know that the patterns in the first rule will only match monomeric A and B 
molecules without any additional enforced constraint that the transformation defined by a 

13The reaction path degeneracy is 2 because binding to either y site on the B dimer pattern results in the same species instance.
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rule be bimolecular (i.e., the rule will never result in an intramolecular binding event). When 

molecularity does not need to be checked, a rule’s application is local, meaning that no 

information outside the molecules involved in the patterns’ matches is required to correctly 

sample matches, apply rules, and update the system (Harmer et al, 2010).

A strongly contrasting phenomenon exists when allowing patterns to include implicit bonds, 

meaning that a rule-based modeling framework can enforce connectivity between molecules 

without specifying how the molecules are connected. If a rule contains implicit bonds, 

prediction of which rule rates to update cannot be done until after application of the rule to a 

specific species instance. We accommodate the presence of implicit bonds in our description 

of the update scheme (Section 5) by requiring new species to be checked against all rule 

patterns for new matches.

However, if no rules in a model involve implicit bonds, then more efficient updating 

schemes can be realized. One example is a structure that can be computed directly from the 

set of rules, and relates how the application of one rule may increase or decrease the rate of 

another rule14 similar to a dependency graph for traditional SSA implementations (Danos et 

al, 2007b, 2009). For special case models where molecularity in rules does not need to be 

checked, the system can even be updated without the need to traverse the species instances 

involved in a particular reaction (Danos et al, 2007b).

6.6 Null events

In the previously described problem of constraining molecularity (Section 6.4), there may be 

occurrences in which the rates are overestimated, because some choices of matches lead to 

invalid reactions (Fig. 5a). To correct for these overestimates, some network-free simulation 

approaches allow null events.

If the sampled molecules fail to satisfy the molecularity constraints in the sampled rule (Fig. 

5a), then the potential reaction event is rejected, time is updated, and the algorithm proceeds 

to the next iteration with an identical system configuration (Yang et al, 2008). The time 

update without a corresponding system update corrects for the overestimated rate; the null 

event uses up the excess rate resulting from the invalid combination of sampled matches.

This type of null event can become a serious computational inefficiency in models that tend 

to form large aggregates. Consider a bimolecular association rule. If most of the molecules 

in a system are part of the same, large aggregate (Fig. 5b), it is possible that the majority of 

iterations of the algorithm will choose two matches from within the same species instance. 

However, the rule requires an intermolecular bond to form, yielding a correspondingly large 

number of null events. Alternative implementations can be realized that avoid such issues 

(see Section 8).

A related type of null event may arise when sampling matches from a match list. Consider a 

homodimerization rule whose two patterns are identical. Upon sampling this rule and a 

match for the first pattern, it is possible that the same match may be sampled for the second 

14This is termed the influence map in the Kappa language and associated simulation engines.
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pattern. If the matches overlap (i.e., they involve the same molecules’ sites) this results in a 

null event, termed a clash, where time is similarly updated and the system remains the same 

(Danos et al, 2007b). For example, Fig. 5b shows a dimerization rule. In this case both 

reactant patterns in the rule can match any molecule in the mixture. A clash could occur in 

this system when, during match sampling (Step 3 in Section 3), both matches involve the 

same molecule in the mixture (e.g., the selected matches for both reactant patterns point to 

A6).

7 Accommodating rule conventions

7.1 Dissociation pathologies

Briefly mentioned in Section 6.2 was the possibility of pathological cases for rate 

calculations of dissociation rules. This occurs when a pattern that has no pattern-preserving 

site permutations (i.e., symmetries, see Section 6.2) matches the same set of molecules 

multiple times (Fig. 6a). This stems from our convention that a rule’s rate should be 

proportional to the number of distinct reactions that can occur as opposed to the number of 

matches of the pattern in the mixture. Such pathologies do not occur when a rule’s rate is 

proportional to the number of matches (Fig. 6c); however, assuming a number-of-matches 

convention detracts from the physical meaning of the rule’s rate constant (generally 

considered to describe the rate of bond dissolution). The choice of which convention to 

follow is a matter of design; the important point is that the user understand which convention 

is in use to avoid writing rules that have unexpected consequences.

In our presented framework, these cases must be distinctly considered. One possible 

approach would be to match bonds instead of molecules for dissociation rules. This would 

involve an initial check of the rule set to determine whether this pathology may arise. The 

check would perform a bidirectional site specificity check15 for the two connected pattern 

molecules whose bond would be broken by the rule. Patterns that satisfy this check may 

produce multiple molecular matches to the same set of molecules in the mixture. Upon 

identification of these patterns, one may then use appropriate data structures to track bond 

matches instead of molecule matches.

7.2 Identical site pathologies

In some rule-based modeling frameworks, individual molecules are allowed to have identical 

sites. In cases involving molecules with identical sites, further care must be taken to 

correctly calculate rule rates, which we do not explicitly discuss in our specification of a 

simulation engine. Consider the rule and mixture visualized in Fig. 6b. If the algorithm 

generates all possible matches between the pattern sites and the single molecule in the 

mixture, A1, there would be 12 matches (the 2-permutations of the set of 4 sites). However if 

the prescribed rate constant refers to the rate at which a site x in molecule A is 

dephosphorylated, the rule’s rate would be incorrectly calculated as 12· 1· kcat instead of 4 · 

1 · kcat.

15For each site in one of the pattern molecules, the corresponding site in the other pattern molecule must either be equivalent or less 
specific and consistent.
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Additional machinery beyond what we describe here is needed to accommodate such a 

problem. If the language interprets the rule in Fig. 6b as having a rate of reaction equal to 4 · 

1 · kcat, then a possible solution would be to introduce an additional matching procedure that 

distinguishes between the sites in the pattern or pattern molecule based on how the sites 

participate in the transformation defined by a rule. Sites that are modified by the 

transformation defined by a rule would be the primary matching sites (e.g., the 

phosphorylated site x in Fig. 6b). The other sites that provide context, but are unmodified by 

reaction would not contribute to additional matches (e.g., the partially specified site x in Fig. 

6b). Of course if the modeler intends molecule A1 to be dephosphorylated proportional to 

the number of matches, then the original formulation would be desired, with rate 12 · 1 · kcat. 

Being able to specify both types of rules would require specific language features, or some 

sort of annotation so that the simulation engine correctly interprets how a rule’s rate should 

be calculated in the presence of identical sites.

In general, care must be taken when designing network-free simulation algorithms for 

specific modeling languages. Features or conventions present in the modeling language, 

such as those described in this section, can result in language-specific behaviors. This is 

especially evident when attempting to translate a model into a different rule-based modeling 

language (Suderman and Hlavacek, 2017). Documentation of pathological cases (both for 

the modeling language and the simulation engine) as well as the semantics of the rule-based 

modeling language are essential for accurate and consistent modeling and simulation.

8 Discussion

Network-free simulation has now been around for a decade, and its continued use in 

dynamical systems biology research is strong evidence in favor of the utility of the 

methodology. Our aim here was to provide a foundation for developing a network-free, 

kinetic Monte Carlo simulation engine for rule-based models. Beyond the more accessible 

high-level description of how Gillespie’s direct method is generalized for rule-based models, 

we proceeded to define a basic framework and document a number of nontrivial 

implementation details required for constructing a network-free simulation engine. While 

our approach covers a wide range of use cases, its explicit implementation is not general and 

requires extension to accommodate the edge cases described in Sections 7.1, 7.2 and perhaps 

others as well.

As the title states, the network-free methodology described here is a generalization of 

Gillespie’s direct method. However, its impact is broader than simply a new approach to 

capture stochastic fluctuations in biochemical systems with small population sizes. Rule-

based modeling, coupled with network-free simulation, enables modelers to define classes of 

reactions based on limited interaction information (i.e., omitting molecular context that is 

either irrelevant or not known to alter the rate of reaction for a particular molecular moiety), 

precluding the need to enumerate all species and reactions for a particular interaction 

network. Indeed, generating the entire reaction network is often impossible or not 

computationally feasible. Explicitly accommodating combinatorial complexity enables more 

detailed and more precise investigation of system dynamics without unjustified 

simplification of models (Suderman and Deeds, 2013; Deeds et al, 2012; Faeder et al, 
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2005a). Accommodating such complexity is especially relevant for characterizing systems 

involving biopolymers (Köhler et al, 2014; Aitken et al, 2013) or systems that can undergo a 

phase transition to a gel state (Goldstein and Perelson, 1984). Clearly, these studies and 

others that use network-free simulation engines are not at all concerned with stochastic 

effects, but with the ability to model and simulate these biochemical systems that contain a 

high degree of combinatorial complexity (Stites et al, 2015; Creamer et al, 2012). Network-

free simulation algorithms provide the only available, general framework for exactly 

simulating the dynamics of such systems.

Frequent use of existing software suites that have network-free simulation capabilities has 

led to the discovery of software bugs and inefficiencies as well as the desire for new 

features. Indeed, the field of network-free simulation algorithm development is not as 

mature as a that of the SSA field. Ongoing work seeks to improve the performance of 

network-free simulation (Boutillier et al, 2017a) and there is much work to do. Upon 

considering the developmental trajectory of the traditional SSA based on Gillespie’s direct 

method, we anticipate that increasing applications of rule-based modeling and network-free 

simulation will both drive innovation in network-free simulation algorithms and motivate 

hardening of the software.

As an example of such innovation, some of the complexities discussed in Section 6 can be 

eliminated at the cost of additional computational overhead with an alternative sampling 

implementation. Driven by the need to simulate systems that result in a high proportion of 

null events, species instances themselves could be explicitly tracked throughout the 

simulation and matches would be associations between patterns and unique sets of 

molecules as outlined in (Colvin et al, 2010). While this comes at significant computational 

cost, it is demonstrably useful in models that can produce gels or other large polymers, 

because it eliminates the need for null events (i.e., a rejection-free algorithm as opposed to 

the rejection algorithm we describe here) (Yang and Hlavacek, 2011). One useful extension 

of existing network-free simulation packages might be to implement adaptive algorithm 

selection that determines on-the-fly whether rejection or rejection-free methods are more 

appropriate for simulating a particular model’s dynamics (e.g., whether or not the mixture 

contains large polymers). Another straightforward extension of network-free simulation that 

is becoming increasingly relevant is to consider spatial as well as temporal dynamics (Klann 

and Koeppl, 2012). As available computing power increases, performing increasingly 

complex spatial simulations will become feasible. Integrating spatial simulation engines 

with network-free algorithms are already beginning to emerge (Kochańczyk et al, 2017; 

Sorokina et al, 2013; Tapia Valenzuela, 2016). Ultimately, we expect that network-free 

simulation will play an increasingly prominent role in the modeling of complex biological 

dynamics.
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A PDGFR Activation Model

begin model

begin molecule types

  PDGFR(lig,pdgfr,y1 ~0~ P,y2 ~0~ P,y3 ~0~ P,y4 ~0~ P,y5 ~0~P,\

     y6~0~ P,y7 ~0~ P,y8 ~0~ P,y9 ~0~ P,y10 ~0~P)

  Lig(pdgfr)

end molecule types

begin seed species

  PDGFR(lig,pdgfr,y1 ~0,y2~0,y3~0,y4~0,y5~0,y6~0,\

        y7~0 ,y8~0 ,y9 ~0 ,y10 ~0) 1000

  Lig(pdgfr) 10000

end seed species

begin observables

Species PDGFR_dimers PDGFR(pdgfr !1).PDGFR(pdgfr !1)

Molecules phospho_PDGFR  PDGFR(y1~0) PDGFR(y2~0) PDGFR(y3~0)\

                         PDGFR(y4~0) PDGFR(y5~0) PDGFR(y6~0)\

                         PDGFR(y7~0) PDGFR(y8~0) PDGFR(y9~0)\

                         PDGFR(y10 ~0)

end observables

begin reaction rules

  PDGFR(lig) + Lig(pdgfr) <-> PDGFR(lig !1).Lig(pdgfr !1) 1, 1

  PDGFR(lig!+,pdgfr) + PDGFR(pdgfr) <-> \

    PDGFR(lig!+,pdgfr !1).PDGFR(pdgfr !1) 1, 1

  PDGFR(pdgfr!+,y1 ~0) -> PDGFR(pdgfr!+,y1~P) 1

  PDGFR(pdgfr!+,y2 ~0) -> PDGFR(pdgfr!+,y2~P) 1

  PDGFR(pdgfr!+,y3 ~0) -> PDGFR(pdgfr!+,y3~P) 1

  PDGFR(pdgfr!+,y4 ~0) -> PDGFR(pdgfr!+,y4~P) 1

  PDGFR(pdgfr!+,y5 ~0) -> PDGFR(pdgfr!+,y5~P) 1

  PDGFR(pdgfr!+,y6 ~0) -> PDGFR(pdgfr!+,y6~P) 1

  PDGFR(pdgfr!+,y7 ~0) -> PDGFR(pdgfr!+,y7~P) 1

  PDGFR(pdgfr!+,y8 ~0) -> PDGFR(pdgfr!+,y8~P) 1

  PDGFR(pdgfr!+,y9 ~0) -> PDGFR(pdgfr!+,y9~P) 1

  PDGFR(pdgfr!+,y10 ~0) -> PDGFR(pdgfr!+,y10~P) 1

  PDGFR(y1~P) -> PDGFR(y1~0) 1

  PDGFR(y2~P) -> PDGFR(y2~0) 1

  PDGFR(y3~P) -> PDGFR(y3~0) 1
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  PDGFR(y4~P) -> PDGFR(y4~0) 1

  PDGFR(y5~P) -> PDGFR(y5~0) 1

  PDGFR(y6~P) -> PDGFR(y6~0) 1

  PDGFR(y7~P) -> PDGFR(y7~0) 1

  PDGFR(y8~P) -> PDGFR(y8~0) 1

  PDGFR(y9~P) -> PDGFR(y9~0) 1

  PDGFR(y10~P) -> PDGFR(y10 ~0) 1

end reaction rules

end model

begin actions

simulate ({ method=>“nf”,t_start=>0,t_end=>100,n_steps=>100})

end actions

Code 1

A model for platelet-derived growth factor receptor (PDGFR) activation written in the 

BioNetGen language. PDGFR can dimerize if at least one PDGFR is bound to ligand. 

Dimerized PDGFR can then undergo autophosphorylation of 10 distinct tyrosine residues, 

and phosphorylation (and dephosphorylation) on each residue occurs independently. Here, 

all rate constants are set to 1, and the ‘\’ character denotes line continuation for clarity. 

Actual simulation of the model with NFsim (see the ‘actions’ block) requires consolidating 

the continued lines in the ‘molecule types’ and ‘seed species’ blocks.
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Fig. 1. 
A simple graphical depiction of a generalization of Gillespie’s direct method, where N is the 

total number of rules. Sections describing the relevant steps are labeled in the figure. After 

initially computing the rates for every rule, each iteration of the simulation loop requires 

generating two pseudorandom numbers u0 and u1 on the interval [0,1). The waiting time 

until the next event, Δt, is calculated from the first random number and it is inversely 

proportional to the total rate of the rules in the system: rT. Then rule i is sampled, where i is 

the smallest number such that the cumulative rate of rules 0 through i is greater than the 

product of the second random number and the total rate, rT. After both the next event time 

and rule (i.e., the type of reaction) are sampled, the rule is applied to a specific set of 

molecules from among all molecules that qualify as reactants, and the rates are updated 

based on the change of the system.
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Fig. 2. 
Nomenclature for rule-based modeling. a Molecule types are archetypes for individual 

objects (molecules) in a simulation. Each molecule type has a name and a list of sites. Sites 

contain information about binding state, and may occupy a state from a set of possible 

internal states. b Molecules can be ordered based on their degree of specification. Note that 

such an ordering assumes that information present in less specific molecules is preserved in 

more specific molecules. A molecule may have no specified sites. A partially specified 

molecule includes some information about binding site state (site z is phosphorylated). For 

full specification, the state of every site is explicit (site y is bound with edge η and site z is 

phosphorylated. c A match exists when a pattern’s sites are either equivalent to or less 

specific and consistent with the site states in corresponding molecules in a simulation 

mixture (the subscript on the molecules are unique integer identifiers for molecules of a 

particular type). d Four rules are defined (R1 to R4): association/dissociation of molecules A 

and B, phosphorylation of B when bound to A, and dephosphorylation of B. A rule consists 

of reactant patterns, a transformation defined by product patterns, a rate law, and (optionally) 

any other conditions that influence the rule. Typically reactants are written on the left-hand 

side of the rule and products are written on the right hand side. However, note that since the 

first rule is reversible (i.e., it has the double-arrow operator), the right-hand side serves as the 

reactant pattern for the dissociation reaction and the left-hand side contains the product 

patterns.
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Fig. 3. 
Schematic of a network-free simulation algorithm. a At any point during a simulation, the 

mixture is stored in memory, as is the match list for each pattern. Note that RN, PM refers to 

the Nth rule and Mth pattern in that rule. The rules considered here are those presented in 

Fig. 2. Rates for each rule can be calculated based on the rule’s rate law and its match lists. b 
At each simulation step, a rule is chosen with a probability given by its rate relative to the 

overall rate of all rules. A match is then chosen from the match list of each reactant pattern 

in the rule. c The simulation mixture is updated according to the transformation defined in 

the rule. The species highlighted in green is the result of the transformation in panel b. The 

match lists are then updated; for each modified molecule, matches that have become invalid 

are removed, and new matches are added to the appropriate match lists. Match lists with an 

asterisk have been modified from the initial system state in panel a.

Suderman et al. Page 26

Bull Math Biol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Symmetry and reaction path degeneracy influence rule rate calcuation. a Symmetry in a 

pattern results in multiple matches (red and blue arrows) from the pattern to a particular set 

of molecules. Correctly computing the rate of a rule (given certain assumptions outlined in 

Section 6.2) requires that the rate is divided by the number of symmetries present in the 

rule’s patterns. b Rules where a pattern has multiple sites or pattern molecules that can be 

the target of the transformation defined by a rule have reaction path degeneracy. This can be 

seen in the simulation mixture illustrated at the bottom of the panel, where there are four 

possible binding events (denoted by the broken lines) implied by the rule illustrated at the 

top of the panel. Correctly calculating the rate for the rule requires multiplying the match-

based rate by the number of possible reaction paths present among the rule’s patterns (2 y 
sites competent for binding site x on A) and also accommodating other symmetries effects if 

necessary (dividing by 2 due to the symmetric B–B dimer pattern).
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Fig. 5. 
Null events arising from molecularity constraints. a Selecting the match corresponding to 

the magenta arrows would fail to satisfy molecularity, resulting in a null event, whereas 

selecting the match corresponding to the blue arrows does satisfy the molecularity constraint 

of the rule. b Example rule and mixture in which over half of all potential reaction events 

would be null events, making for a very inefficient simulation.
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Fig. 6. 
Certain pathological behaviors may arise due to language conventions. a Dimer dissociation 

example, where the pattern matches one potential reactant twice and another potential 

reactant once. If dissociation rate constants refer to the rate of a single bond breaking, then 

inconsistencies in rate calculation may arise when asymmetric patterns match symmetric 

molecules. b Dephosphorylation in the presence of multiple sites. The rate of this rule 

depends on interpretation. If each site x should be dephosphorylated independently with rate 

kcat and the only other constraint is at least one unbound site x, then a hierarchical matching 

scheme needs to be implemented (Section 7.2). c Curves for dimer dissociation (as described 

in panel a) resulting from asymmetric patterns and symmetric patterns applied to the same 

system of symmetric species (A–A homodimers with all sites in the ‘P’ state). When the 

simulator automatically adjusts for pattern symmetry (Section 6.2), there is a discrepancy in 

the rate calculation that is observed in distinct dissociation curves (right), compared to a 

paradigm in which the rate constants are applied to the number of matches directly (left).
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