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Evaluation of nonadditive effects in yearling weight of tropical beef cattle1
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ABSTRACT: Nonadditive effects may contrib-
ute to genetic variation of complex traits. Their 
inclusion in genetic evaluation models may there-
fore improve breeding value estimates and lead to 
more accurate selection decisions. In this study, we 
evaluated a systematic series of models accounting 
for additive, dominance and first-order epistatic 
interaction (additive by additive, GxG; additive by 
dominance, GxD; and dominance by dominance, 
DxD) on body yearling weight (YWT) of 2,550 
Tropical Composite (TC) and 2,111 Brahman (BB) 
cattle in Australia. For both breeds, similar esti-
mates of additive and phenotypic variances and 
narrow and broad-sense heritability values were 
obtained across the evaluated models except when 
GxG effect was considered. In this case, additive 
variance was slightly lower than that obtained in 
the models which do not consider this effect. The 
estimated dominance and epistatic variances from 
additive and dominance effects (AD) and additive, 
dominance and epistatic effects models (ADE) 
were greater than that ADH and ADEH models 
(as described above plus heterozygosity as a covar-
iate). However, all genetic parameter estimates 

were associated with a large standard deviation. 
Averaged across ADH and ADHE models, the 
magnitude of dominance variance compared to 
the phenotypic variance of YWT was 14% (BB) 
and 10% (TC). The magnitude of epistasis com-
pared to the phenotypic variance for BB and TC 
was 17% and 29%, respectively for GxG; 0.7% and 
0% for GxD; and 0% and 0% for DxD. The inclu-
sion of nonadditive effects slightly improves the 
predictive accuracy of breeding values from 0.28 
for A to 0.33 for ADHEGxG and from 0.18 for A to 
0.23 ADEGxD in BB and TC cattle. Models that 
included heterozygosity (ADH and ADHE) must 
be used to estimate nonadditive genetic variance 
components. A  1  Mb sliding window analysis 
identified a region on BTA 14 explaining 10.08% 
and 1.21% of total genetic variance (additive + 
dominance) of YWT in BB and TC, respectively. 
Our results suggest that dominance, epistasis, and 
heterozygosity should be included in models for 
genetic parameters estimation. To identify the 
animals with the highest additive genetic value in 
selection decisions, only the additive effect should 
be used in evaluation models.
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INTRODUCTION

The total genetic value of an individual is the 
sum of additive (i.e., breeding value) and nonaddi-
tive effects. Nonadditive genetic effects result from 
allelic interactions, being the intralocus interac-
tion known as dominance, and interlocus interac-
tions known as epistasis (Lynch and Walsh, 1998). 
When nonadditive genetic effects are an important 
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source of variation, an optimal genomic selection 
strategy might improve the expected response (Toro 
and Varona, 2010). The contribution of nonaddi-
tive effects on mating selection has been confirmed 
in dairy cattle (Ertl et al., 2014; Aliloo et al., 2017). 
Thus, how much genetic variation is explained by 
nonadditive effects in traits of interest for beef cat-
tle remains largely unknown. Genomic additive 
relationship matrix, in contrast to pedigrees, dir-
ectly measure Mendelian sampling (Heffner et al., 
2009). Further, it can measure relationships even 
in diverse, nominally unrelated samples, expanding 
the potential for studying inheritance in breeding 
populations (Lorenz et al., 2011). Matrices of dom-
inant and epistatic genomic relationships across 
individuals have also been proposed (Vitezica et al., 
2013, 2017). Through these genomic matrices, 
genomic evaluation models implicitly fit breeding 
values, dominance and epistatic deviations. In link-
age and Hardy-Weinberg equilibrium, the genetic 
value decomposition in these terms is orthogonal. 
This means, for instance, that going from an addi-
tive to an additive plus dominant model should 
not change much neither the estimates of variance 
components, nor the estimates of breeding values 
and dominant deviations. In the present study, we 
use high-density single nucleotide polymorphism 
(SNP) genotypes to estimate additive and non-
additive (dominance and epistasis) variance com-
ponents for body yearling weight (YWT) in 2,111 
Brahman (BB) and 2,550 Tropical Composite (TC) 
cattle.

MATERIAL AND METHODS

Animal Care and Use Committee approval was 
not obtained for this study because historical data 
was used and no animals were handled as part of 
the study. Analysis was performed on phenotypic 
data and DNA samples that had been collected 
previously as part of the Australian Cooperative 
Research Centre for Beef Genetic Technologies 
(Beef CRC; http://www.beefcrc.com/).

Animals, Phenotypes, and Genotypes

Animals, phenotypes, and genotypes used in 
this study were a subset of those recently described 
in Raidan et al. (2018). In brief, we used the data of 
2,111 BB and 2,550 TC cows and bulls genotyped 
using either the BovineSNP50 (Matukumalli et al., 
2009) or the BovineHD (Illumina Inc., San Diego, 
CA). Animals that were genotyped with the lower 
density array had their genotypes imputed to higher 

density as described previously by Bolormaa et al. 
(2014). The average, minimum and maximum of 
YWT (kg) were 227.7, 115, and 353 kg for BB, and 
247.07, 120.5, and 394.5 kg for TC. Moreover, the 
average, minimum and maximum of age at YWT 
was 360, 302, and 416 d for BB, and 361, 319, and 
403 d for TC.

Additive, Dominance, and Epistatic Genomic 
Relationship Matrices

A marker-based additive genomic relationship 
matrix (GRM), G was constructed following the 
method described by VanRaden (2008):
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where matrix Za  has dimensions of the number 
of individuals (n) by the number of loci (m), with 
elements that are equal to 2 2− pk  and −2pk  for 
opposite homozygous (A1A1 and A2A2 respectively) 
and 1 2− pk  for heterozygous genotypes, pk  is the 
frequency of allele A1 of locus k, and q pk k= −1 .

A marker-based dominance GRM (D) was 
constructed following the method described by 
Vitezica et al. (2013):
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where matrix Zd  has dimensions of the number of 
individuals (n) by the number of loci (m), with ele-
ments that are equal to −2 2qk  for genotype A1A1, 
2p qk k for genotype A1A2 and −2 2pk  for genotype 
A2A2.

A marker-based epistatic GRM due to first 
degree epistatic terms (E) were computed using 
Hadamard products (i.e., cell-by-cell product 
denoted as #) with a standardization based on the 
trace of the GRM (Vitezica et al., 2017):

(i) additive-by-additive relationships: 

E
G G

G GGxG tr n
= #

( # ) / ;

(ii) dominance-by-dominance relationships: 

E
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(iii) additive-by-dominance relationships: 
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Statistical Analyses

All analyses were carried out with the software 
AIRemlf90 (Misztal et al., 2002). Estimates of var-
iance components were obtained by using 6 mod-
els ranging from a simple additive model to a full 
model including additive, dominance and first-or-
der epistatic effects. The first model included addi-
tive effects only (A). The second (AH) and third 
(AD) models include heterozygosity as a covari-
ate and dominance deviation as a random effect, 
respectively. The fourth (ADH) model included 
additive, dominance and heterozygosity effects. 
The fifth (ADEx) models included additive, dom-
inance deviation and epistatic deviation as random 
effects (x = additive by additive, GxG or additive 
by dominance, GxD or dominance by dominance 
epistatic effect, DxD). Finally, the sixth (ADEHx) 
model included additive, dominance deviation and 
epistatic deviation as random effects and heterozy-
gosity as a covariate. This full model (ADEHx) is 
described below:

 
y Wu Wv Wt es= + −( ) + + + +1µ b xHet Het ;

where y is the vector of phenotypes for each trait; 
µ  is the population mean; b is the linear regression 
coefficient of phenotype on average heterozygosity 
(Het) computed for each individual based on SNPs; 
W is the incidence matrix relating observations to 
genetic effects; u is the vector of breeding values; 
v is the vector of dominance deviations; t is the 
vector of epistatic deviations and e is the vector of 
random residual terms. The subscript x in t corre-
sponds to additive by additive (GxG), or additive 
by dominance (GxD) or dominance by dominance 
epistatic effect (DxD).

The goodness of fit of models was compared on 
the basis of a likelihood ratio test (i.e., each model 
was compared with the null model; e.g., model AD 
vs. model A). Predictive ability as given by accuracy 
(ACC) was measured by the correlation between 
genomic estimated breeding value (GEBV) and 
adjusted phenotypes in a 5-way cross-validation 
scheme each subset with 20% of randomly assigned 
missing data (as a validation set) and the remaining 
80% (calibration set) used to train the model. The 
ACC values and all genetic parameter estimates were 
then averaged across the 5 cross-validation subsets.

We estimated SNP additive (substitution effect) 
and dominance effects after back-solving from 
GEBV and predictions of dominance deviation. 
The procedure followed the S1 scenario described 
in Wang et al. (2012), with GEBV computed once 

and weights of SNP effects refined through 3 itera-
tions, as follows:
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in which, α  is the substitution effect and d  is the 
dominant effect of a SNP.

Finally, we investigated chromosomal regions 
where SNP effects were blocked into adjacent win-
dows of 1  Mb. Genetic variances contributed by 
the SNP were explained per window and estimated 
through PostGSf90 (http://nce.ads.uga.edu/) soft-
ware by calculating the variance explained by the 
n-th Mb window of adjacent SNPs (segments) with 
their respective effects as input. This was used to 
identify potential candidate genes that may affect 
YWT as additive and dominance effects. The indi-
vidual variance of SNP effect was estimated fol-
lowing the approximation proposed by Zhang et al. 
(2010) as

 
ˆ ˆ ( ) ˆ ˆ ( )σ α σαi i i

p p d p pi i d i i i
2 2 2 22 1 2 1= − = −

in which, pi  is the observed allele frequency for 
the second allele of the ith marker in the current 
population.

RESULTS

Of the total of 689,818 SNP (TC) and 651,253 
SNP (BB), respectively, only 646 SNP (0.10%) and 
193 SNP (0.03%) were not in Hardy-Weinberg 
equilibrium (HWE; P > 0.05). Distribution of 
density and correlations of off-diagonal elements 
of each GRM showed that the mean of off-di-
agonals elements of each matrix was equal to 0 
(Supplementary Figure S1), which further confirms 
that these populations were in HWE.

For both breeds, estimated additive genetic 
and phenotypic variances and broad (H2) and nar-
row-sense heritability (h2) values were similar across 
all of the evaluated models, regardless of whether 
nonadditive effects were included in the model, 
except when additive by additive epistatic effect was 
considered. In this case, smallest values of additive 
genetic variance and narrow-sense h2 and higher 
values for H2 were obtained in the models ADEGxG 
and ADHEGxG (Fig.  1), however those means are 
related to large standard deviations.

http://nce.ads.uga.edu/
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky275#supplementary-data
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In all the models, epistatic variance estimates 
had large standard deviations. These results point 
out the difficulties in obtaining a good estimate 
of epistatic variances also from genomic informa-
tion even when these are only first-order interac-
tions and the additive by additive epistatic variance 
explain up to 25% and 39% of total genetic variance 
of YWT in BB and TC, respectively. Therefore, fur-
ther research is needed.

The magnitude of dominance variance relative 
to phenotypic variance was up to 13% and 10% in 
BB and TC, respectively. Estimates of the domin-
ance variance as a proportion of additive genetic 
variance averaged across the models were 26% and 
19%, respectively for BB and TC. Thus, dominance 
variance represents a significant proportion of the 
total phenotypic and additive genetic variances for 
YWT in both breeds.

The inclusion of heterozygosity reduced the 
estimates of dominance and epistatic variances for 
YWT in both breeds (Fig. 1), however, those means 
were associated with a large standard deviation 
(Supplementary Table 1) and no significant differ-
ences were observed among them. In BB, the dom-
inance variance with AD and ADH models were 
111.72 ± 66.05 kg2 and 95.58 ± 66.49 kg2, respec-
tively; and the dominance variance with ADE and 
ADHE were respectively 99.65  ±  66.13  kg2 and 
86.81 ± 66.52 kg2 for GxG, 110.3 ± 35.04 kg2 and 
95.2 ± 31.71 kg2 for GxD and 111.72 ± 65.89 kg2 and 
95.56 ± 66.35 kg2 for DxD. In TC cattle, the same 
values for AD and ADH were 108.8  ±  55.48  kg2 
and 77.78 ± 56.01 kg2, and the values for ADE and 
ADHE were 90.19 ± 55.72 kg2 and 66.47 ± 55.92 kg2 

for GxG, 108.86 ± 55.36 kg2 and 77.78 ± 55.80 kg2 for 
GxD and 108.86 ± 55.37 kg2 and 77.78 ± 55.80 kg2 
for DxD.

The ACC of GEBV were slightly higher with 
models that included nonadditive effects. The val-
ues ranged from 0.28 for A to 0.33 for ADHEGxG in 
BB cattle, and from 0.18 for A to 0.23 for ADEGxD 
in TC cattle (Fig. 1).

The goodness of fit varied modestly for the 
best models, with no clear advantage of one model 
relative to the others. The lowest values of −2logL 
(i.e., the highest likelihood) were 19,269.16 and 
23,505.41 for ADHEGxG models in BB and TC, 
respectively (Supplementary Table 1).

As expected, the sizes of additive SNP effects 
were consistent across all models, however the sizes 
of nonadditive SNP effects were slightly smaller 
for the models in which heterozygosity effects were 
included (ADH and ADHE) when compared to 
SNP effects from models AD and ADE. Despite 
differences in the magnitude of dominant SNP 
effects, the Pearson correlation among SNP domin-
ance effects from all evaluated models were higher 
than 0.99 (results not shown), indicating that all 
marker effects were shrunk to the same degree.

For the additive effect, SNP windows with a 
1 Mb length (Fig. 2) were built across the genome 
with an average SNP density of 122 and 120 SNPs 
per window in BB and TC, respectively. In BB (TC), 
a total of 5 (4) SNP windows explaining more than 
1% (0.5%) of the total genetic variance were identi-
fied (Fig. 2). Together, they explained 8.00% (2.79%) 
of the total genetic variance (Supplementary 
Tables S2 and S3). These windows of additive effect 

Figure 1. Brahman (BB, left) and Tropical Composite cattle (TC, right) estimated additive, dominance, epistatic, residual, and phenotypic var-
iances (bars, left y-axis), narrow-sense heritability (gray triangles, right y-axis) and broad-sense heritability estimates (gray dots, right y-axis) and 
accuracy (black squares, right y-axis) for yearling weight using 6 models.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky275#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky275#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky275#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky275#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky275#supplementary-data
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were used to locate candidate genes affecting YWT 
on BTA 14 for BB and on BTA 4, 5, and 14 for 
TC. The SNP window (n = 240 SNPs and n = 260 
SNPs) with the highest proportion of total genetic 
variance explaining approximately 2.25% and 
0.86%, was located on BTA 14 and 5 for BB and 
TC, respectively. For dominance, 1 and 2 windows 
explained more than 2.09% and 1.27% of the total 
genetic variance and the density per window was 
331 and 328 SNPs in BB and TC, respectively.

DISCUSSION

Partitioning genetic variance into its additive 
and nonadditive “statistical” components does not 
allow an understanding of the genetic architecture 
of a trait (Huang and Mackay, 2016); however, it 
is useful for maximizing genetic gain by design-
ing mating schemes (Aliloo et al., 2017). Pedigree 
information can be used to estimate dominance 
variance (Misztal et al., 1998), however, partition-
ing genetic variance components is notoriously dif-
ficult, requiring specialized breeding designs (e.g., 
diallel crosses) and pedigree information (Lynch 
and Walsh, 1998), often limiting the genetic diver-
sity that can be sampled in any one given study. In 
contrast, genome-wide molecular marker data now 
offer tools to quantify dominance and epistatic 
variances (Vitezica et al., 2013, 2017) more accur-
ately. The present study provided estimates of addi-
tive and nonadditive variance components in beef 
cattle.

Our results show that additive genetic vari-
ance was well estimated even when dominance 
variance was included in the model. However, 

when additive by additive epistatic effects were 
included, the variance explained by the additive 
component decreased. These results showed that 
there is dependency between variance component 
estimations and thus, the partition of additive and 
nonadditive effects is not empirically orthogonal. 
The linkage disequilibrium might explain the con-
founding nature of additive and nonadditive effects 
(Hill et al., 2008). Bayesian regression models allow 
the fitting of a priori dependencies between addi-
tive and nonadditive effects. However, the treat-
ment of dependencies between breeding values and 
dominance or epistatic deviation is rather com-
plex (Wellmann and Bennewitz, 2012). It is worth 
highlighting that linkage equilibrium and unlinked 
markers are required by Hadamard matrix multi-
plication (Schnell, 1963). However, SNP markers 
are linked, thus some bias could be included in epi-
static variance estimates.

Furthermore, the significant proportion of 
nonadditive effects on the total phenotypic and/
or genetic variance of YWT could be explained by 
factors such as large environmental variance and 
low relationships among recorded animals, factors 
which have shown to apply to the dataset studied 
here (Bolormaa et al., 2014). In addition, datasets 
with repeated measurements appear to allow better 
decomposition of phenotypic variance into addi-
tive and nonadditive, because the permanent envir-
onmental effects capture a large proportion of the 
nonadditive effects if  the model does not explicitly 
account for it (Aliloo et al., 2017).

By construction, models AD and ADE imply 
that the mean of nonadditive effects is equal to 
zero, which is not true when directional dominance 

Figure 2. Proportion of additive (top panels) and dominant (bottom panels) variance explained by single nucleotide polymorphism (SNP) win-
dows for yearling weight of Brahman (left) and Tropical Composite (right).



4033Unravelling additive from nonadditive effects

exists. Thus, the dominance variance could be over-
estimated if  the mean heterozygosity (or inbreed-
ing) is not included in the models (Xiang et  al., 
2016; Aliloo et al., 2017). Even if  these results were 
not confirmed in this study, ADH and ADHE mod-
els must be used to estimate nonadditive variance 
components.

Inclusion of nonadditive effects resulted in a 
slight increase in accuracy. These results were in 
agreement with other authors. With the exception 
of Aliloo et  al. (2016) (for fat yield in Holstein), 
in most of studies, the inclusion of dominance in 
GBLUP model did not improve predictive ability 
of the model (Su et al., 2012; Ertl et al., 2014; Xiang 
et al, 2016; Esfandyari et al., 2016; Moghaddar and 
van der Werf, 2017).

In accordance with our additive effects esti-
mates, previous results presented and discussed by 
Porto-Neto et al. (2014), identified a major quan-
titative trait locus (QTL) located at ~25 Mbp on 
bovine chromosome (BTA) 14 explaining a signif-
icant proportion of phenotypic variance of YWT. 
This QTL has been attributed to 2 potential func-
tional variants, PLAG1 and CHCHD7 affecting 
weight (Karim et al., 2011; Fink et al., 2017). Also, 
a relevant additive contribution of QTL located 
at ~47 Mbp on BTA 5 was identified in TC, with 
the closest annotated candidate gene being HELB 
(Fortes et al., 2013; Porto-Neto et al., 2014).

Similarly to Aliloo et al. (2017), in our results 
different sets of SNP were responsible for additive 
“statistical” effects suggesting that some markers 
could be potential candidates for studying the “bio-
logical” effects of the genes involved in YWT. For 
instance, a dominant QTL located at ~27 Mbp on 
BTA 14 was identified in BB and some genes in this 
region act on growth and development of tissues 
throughout the body. One of these genes is the 
aspartate beta-hydroxylase (ASPH) protein cod-
ing gene which plays an important role in calcium 
homeostasis and muscle metabolism (Porto-Neto 
et al., 2014). Moreover, the chromodomain helicase 
DNA binding protein 7 (CHD7) protein belongs to 
a family of proteins that are thought to play a role 
in the organization of chromatin and is active in a 
bundle of nerve cells that is critical for the percep-
tion of odors (Feng et al., 2017). In TC, dominant 
QTLs were located in different regions, for example 
at ~60 Mbp on BTA 5 and ~81 Mbp on BTA 6.

In conclusion, the better goodness of fit and 
ACC improvement of models ADH and ADHE 
suggest that, dominance, epistasis, and heterozygo-
sity should be included in models for estimation of 
genetic parameters and breeding values. However, 

for selection decisions, the additive genetic effect on 
its own (in evaluation models) is able to identify the 
most productive animals.
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