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Abstract: All tissues of organisms will become old as time goes on. In recent years,
epigenetic investigations have found that there is a close correlation between DNA methylation and
aging. With the development of DNA methylation research, a quantitative statistical relationship
between DNA methylation and different ages was established based on the change rule of methylation
with age, it is then possible to predict the age of individuals. All the data in this work were retrieved
from the Illumina HumanMethylation BeadChip platform (27K or 450K). We analyzed 16 sets of
healthy samples and 9 sets of diseased samples. The healthy samples included a total of 1899 publicly
available blood samples (0–103 years old) and the diseased samples included 2395 blood samples.
Six age-related CpG sites were selected through calculating Pearson correlation coefficients between
age and DNA methylation values. We built a gradient boosting regressor model for these age-related
CpG sites. 70% of the data was randomly selected as training data and the other 30% as independent
data in each dataset for 25 runs in total. In the training dataset, the healthy samples showed that the
correlation between predicted age and DNA methylation was 0.97, and the mean absolute deviation
(MAD) was 2.72 years. In the independent dataset, the MAD was 4.06 years. The proposed model
was further tested using the diseased samples. The MAD was 5.44 years for the training dataset and
7.08 years for the independent dataset. Furthermore, our model worked well when it was applied
to saliva samples. These results illustrated that the age prediction based on six DNA methylation
markers is very effective using the gradient boosting regressor.
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1. Introduction

Aging is an irreversible natural process in human life which is influenced by many factors, such
as genetic factors, living environment and diseases [1,2]. Aging can be modified and regulated by
various mechanisms at a molecular level, such as oxidative damage of DNA, chemical modification
on DNA, and shortened and dysfunctional telomeres [3]. Although many methods have been used to
estimate individual age, the problems of low sensitivity and prediction accuracy still to be improved [4–7].
Recent studies have shown that human aging is related to the alteration of DNA methylation in genome
specific locations, and these epigenetic modifications can be used to estimate the individual age [8,9].

DNA methylation (DNAm) refers to the chemical modification process which transfers the
active methyl to the specific base on the DNA chain under the catalysis of DNA methyltransferase
(DNMT) [10]. DNA methylation can occur at the N-6 position of adenine, N-7 position of guanine,
C-5 position of cytosine and so on. However, in the mammalian genome, DNA methylation often occurs
on C (cytosine) of 5’-CpG-3’ to generate 5-methyldeoxycytidine (5mC). Due to the close relationship
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between DNA methylation and human development, tumor diseases, especially the transcriptional
inactivation of tumor suppressor genes induced by CpG island methylation, DNA methylation has
become an important research topic in epigenetics and epigenomics. DNA methylation is actually
an epigenetic modification that plays an important modulation role in individual growth, development,
gene expression patterns and the stability of the genome without changing DNA sequences [11].
In addition, this modification can be steadily transmitted in the process of development and cell
proliferation [12]. Some studies have shown that the level of DNA methylation is closely related to age.
With age, the DNA methylation level of the global genome is decreasing [13–15]. It has been reported
that 5mC is increased with age in some specific CpG sites, whereas at other CpG sites, the level of 5mC
decreases with age [16,17]. For some CpG sites, the degree of DNA methylation is closely related to
aging, therefore it can be used for age prediction [8,18–22].

In the past, an individual’s age could be predicted by measuring and analyzing skeletal markers
such as bones and teeth [23,24]. This method is limited to the existence of the skeleton. In molecular
biology, DNA damage, mitochondrial mutations, and the length of leukocyte telomere are related to
aging, and can also be used to predict age [25,26]. However, these methods are less accurate or are
technically difficult. Furthermore, in most crime scenes, the perpetrators have fled after the crime,
with only piecemeal remains such as blood, saliva or semen to be found. Therefore, it is imperative to
find other feasible methods for the prediction of individual age. It has long been known that the aging
process can cause changes in the molecular level of tissues and organs. It has not been found until
recently that changes in DNA methylation can be used to predict age. Some reports have translated
age-related DNA methylation into an age prediction model to reveal individual age [8,18,20,27–29].
For example, Yi et al. reported a multiple linear regression to predict age in blood samples in 2014 [30].
The model showed that the average difference between predicted age and actual age was around
4 years. Zbiec-Piekarska et al. analyzed the CpG sites in blood and built a multiple linear regression
model in 2015 [31]. Based on a combination of five DNA methylation markers, the mean absolute
deviation (MAD) of prediction age was 3.9 years. Huang et al. selected five age-related CpG sites from
38 candidate markers by pyrosequencing and established a linear regression model to predict age in
2015 [32]. The accuracy of their model was slightly lower, and the MAD was 7.986 years. Park et al.
selected three CpG sites and used DNA methylation markers in blood from the Asian population to
predict age in 2016 [33]. They identified a root mean square error (RMSE) of 6.320 years and an MAD
of 3.156 years. In addition, Hannum et al. established a quantitative model with 71 highly age-related
markers in 2013 [19]. The correlation coefficient between the true age and the predicted age was
0.96, and the average error was 3.9 years. However, most of these studies were based on biological
experiments to identify sites. They are time-consuming and complicated to operate. Therefore, it is
necessary to develop a computational method to select the candidate CpG sites. Existing models
primarily use linear regression models to interpret the complex relationship between DNA methylation
and age [8,30,32]. For a limited number of CpG sites, it is necessary to find a reliable age prediction
model to improve the accuracy. In this study, we adopted a gradient boosting regressor to predict age,
and its results were better than the existing methods.

2. Materials and Methods

2.1. Data Collection and Processing

In this study, we obtained dozens of blood datasets from the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi). All of these DNA methylation data were retrieved from
two platforms, HumanMethylation27 BeadChip and HumanMethylation450 BeadChip.
Some of the GEO datasets contained ethnicity information: GSE36064 (Caucasian, Chinese,
and African American), GSE40279 (Caucasian, European), GSE65638 (Chinese),
GSE51032 (Italycohort), GSE41169 (Dutch population), GSE27317 (African-American, Caucasian and
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other), GSE34257 (Gambian), GSE37008 (European, Caucasian or other ethnicity),
GSE41037 (Dutch population). The datasets that did not provide the age of individuals were
excluded. Finally, 25 complete datasets were obtained, of which 16 were healthy and 9 were disease
datasets. The diseases which affect the DNA methylation will lead to bias in age prediction. So we
divided the datasets into two categories. One was the healthy datasets (Table 1) and the other was the
disease datasets (Table 2). To illustrate the performance of our model, we randomly divided each
dataset into training and independent in a ratio of 7:3. The training dataset for each divided data
is combined into one piece, and so is the independent dataset. A total of 1899 healthy individuals
from different race backgrounds with ages between 0 and 103 years were divided into 1322 training
samples and 577 independent samples. The 9 disease datasets were divided into 1673 training samples
and 722 independent samples.

Table 1. Sixteen healthy DNA-methylation datasets.

DNA Origin Platform No. Age Range Author and
Publication Year Availability

Whole Blood 27K 93 (49, 74) Rakyan (2010) GSE20236
Blood CD4+CD14 27K 50 (16, 69) Rakyan (2010) GSE20242

Blood PBMC 1 27K 398 (3.6, 18) Alisch (2012) GSE27097
Blood Cord 27K 168 (0, 0) Adkins (2011) GSE27317

Blood PBMC 450K 40 (0, 103) Heyn (2012) GSE30870
Blood PBMC 450K 71 (3.5, 76) Harretal (2012) GSE32149
Blood Cord 27K 84 (0, 0) Khulan (2012) GSE34257
Blood Cord 27K 24 (0, 0) Mallon (2012) GSE34869

Blood PBMC 450K 78 (1, 16) Alisch (2012) GSE36064
Blood Cord 27K 123 (0, 0) Gordon (2012) GSE36642
Blood Cord 27K 48 (0, 0) Turan (2012) GSE36812

Blood PBMC 27K 91 (24, 45) Lam (2012) GSE37008
Whole Blood 450K 500 (26, 101) Hannum (2012) GSE40279
Whole Blood 450K 95 (18, 65) Horvath (2012) GSE41169
Whole blood 450K 43 (47, 59) Bell (2013) GSE53128

Blood 450K 16 (21, 32) Xu (2015) GSE65638
1 Peripheral blood mononuclear cell.

Table 2. Nine disease DNA-methylation datasets.

DNA Origin Platform No. Age Range Author and
Publication Year Availability

Whole Blood 27K 203 (50, 85) Song (2010) GSE19711
Whole Blood 27K 194 (1, 32) Teschendorff (2010) GSE20067

Peripheral Blood 450K 46 (3.5, 76) Harris (2011) GSE32148
Blood 450K 24 (52, 88) Athanasios (2012) GSE40005

Whole Blood 27K 498 (16, 86) Horvath (2012) GSE41037
Whole Blood 450K 500 (18, 70) Liu (2013) GSE42861

Blood 27K 71 (23, 85) Day (2013) GSE49904
Blood 450K 499 (34, 72) Polidoro (2013) GSE51032

Peripheral Blood 450K 383 (34, 93) Lwe (2013) GSE53740

2.2. Methylation Quality Control

To explain the common experimental biases and perform quality control analysis on DNA
methylation datasets, we used principal component analysis (PCA) to identify and remove abnormal
samples. To do this we used MATLAB R2014b software (v8.4.0.150421 win64) for processing. First of
all, we standardized each dataset, then performed principal component analysis and extracted the
first two principal components, and finally made a cluster diagram. Samples outside the circle with
a radius of five were defined at outliers and removed, this filtering procedure was iteratively executed
until no samples were determined to be outliers. A total of 22 healthy samples were removed and
23 disease samples were removed.
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2.3. Selection of Age-Related CpG Sites

For each CpG site, the β value indicates the percentage of methylation. The β value of the
site is equal to one if it is fully methylated, and zero if it is completely unmethylated. There are
batch effects between different data platforms. This batch effect can be partially overcome by Z-score
conversion, so we used Z-score to normalize the methylation levels between different datasets to
avoid obvious batch effects and used the normalized methylation values for age prediction analysis
(This used the IBM SPSS v.22 software processing.) Therefore, all the DNA methylation values used
the normalized β values. To identify age-related DNA methylation markers, we calculated Pearson
correlations between age and DNA methylation value of each CpG site for every dataset from 1 to
103 years old (because Pearson correlation cannot be calculated for the datasets where objects have the
same age). According to the Pearson correlation analysis, we chose the highly age-related r values
(including positive and negative correlations) in each dataset and calculated the overlapping sites
selected in each dataset. Finally, seven sites with high repetition frequency were selected. These sites
were cg22736354, cg06493994, cg02228185, cg09809672, cg19761273, cg01820374 and cg19283806.
Some datasets did not contain cg19283806, so it was rejected. To select the appropriate number
of these sites for age prediction, we used stepwise forward to select variables and got the sequential
results about the importance of markers (cg09809672, cg02228185, cg01820374, cg22736354, cg06493994,
cg19761273). For this type of analysis, the markers were added to the age prediction model one
by one [3]. It has been shown that the combination of these six markers had the highest accuracy.
Finally, six age-related hypomethylated or hypermethylated CpG sites were determined (Table 3).
Among them, cg22736354 and cg06493994 were positively correlated with age. However, cg02228185,
cg09809672, cg19761273 and cg01820374 were negatively correlated with age. This is consistent with
the results of Horvath’s research report [20]. To analyze the robustness of the six CpG sites, we split the
data for 450K and 27K, and obtained the same sites in the 27K data. Similar results were not obtained
at 450K, which may be due to 450K have relatively less data (only 5 datasets), but the selected six CpG
sites had good prediction ability in subsequent prediction.

Table 3. Information of 6 selected age-related CpG sites.

CpG ID Gene ID Chromosome
Location 1

Gene
Region 2

Relation to GpG
Island 3

Correlation
Status Reference

cg09809672 EDARADD 1:236557682 TSS1500 N_Shore Negative [1,17,33]
cg22736354 NHLRC1 6:18122719 1stExon Island Positive [2,7,18,19]
cg02228185 ASPA 17:3379567 1stExon – Negative [7,26,33]
cg01820374 LAG3 12:6882083 Body N_Shore Negative [1]
cg06493994 SCGN 6:25652602 1stExon Island Positive [2,7,18,19]
cg19761273 CSNK1D 17:80232096 TSS1500 S_Shore Negative [2]
1 Chromosome location is referred to the Human genome reference GRCh37 version. 2 TSS: transcription start
site. TSS1500: 1500 bp flanking region from the TSS. 3 CpGs island table were downloaded from University
of California Santa Cruz (UCSC) browser. Distance of 2kb to CpG islands were defined as CpG island shores
(N_Shore: downstream of CpG island and S_Shore: up-stream of the CpG island).

2.4. Algorithm

In recent years, age prediction models in blood based on a small number of CpG sites have
been studied [9,27,34]. Other tissues, such as saliva [18,35], semen [36] and teeth [37] have been
investigated, too. Most of these models are linear regression models. However, it is impossible to
clarify the complex relationship between DNA methylation and age using a simple linear model.
To minimize the prediction error and improve the accuracy of the model, the gradient boosting
regressor (GBR) model has been utilized [38]. GBR is an integrated model with higher performance
and better stability. Friedman proposed the GBR algorithm that extends the boosting algorithm in
order to solve the regression problem. The algorithm uses the negative gradients of the loss function
to solve the minimum value. GBR has been widely used in biological research, which can handle
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unclean and noisy data well, support different loss function, and has strong predictive ability for
nonlinear data [38]. The gradient boosting regressor algorithm was executed with the sklearn package
(October 2017. scikit-learn 0.19.1). It avoids the overfitting problem in decision tree learning by
stopping tree growth as early as possible. The parameters of GBR are loss = ‘lad’, learning_rate = 0.03,
n_estimators = 300, subsample = 0.6, λ = 0.6, min_samples_spli = 2, max_depth = 4, verbose = 1,
warm_start = True. The parameters of Support Vector Regression (SVR) are kernel = ‘rbf’, degree = 3,
coef = 0.0, tol = 0.001, C = 1.0, ε = 0.1. The parameters of BayesianRidge are n_iter = 300, tol = 0.001,
α1 = 10−6, α2 = 10−6, λ1 = 10−6, λ2 = 10−6.

2.5. Statistical Measurements

In the age prediction model, we used 1899 samples from different races and evaluated the age
prediction model by calculating the MAD. The MAD is the mean absolute deviation between the
predicted age and the actual age. The degree of correlation between predicted age and true age
is measured by calculating R2. All statistical analyses were done using Python 3.6 programming.
They are defined as below:

where m denotes the number of target values y =
(
y1, y2, . . . , ym)T , y is the prediction value, and f (xi)

represents the regression function for feature vector xi. The MAD denotes mean absolute deviation,
MSE (mean square error), and RMSE (root mean square error).

3. Results

3.1. Healthy Blood Data Results

To verify the accuracy of the GBR model, three other models—BayesianRidge, Multiple Linear
Regression (MLR) and SVR—were also executed. The results showed that the correlation between
age and DNA methylation was 0.97 for the gradient boosting regressor, with RMSE and MAD being
4.55 and 2.72 years, respectively (Figure 1a). The RMSE and MAD were 12.58 and 10.26 years for
BayesianRidge (Figure 1b), 7.75 and 5.13 years for Support Vector Regression (Figure 1c), 12.58 and
10.24 years for multiple linear regression (Figure 1d). For the independent datasets of 583 samples,
the MAD was 4.06 years for gradient boosting regressor (Figure 2a), 10.56 years for BayesianRidge
(Figure 2b), 5.93 years for Support Vector Regression (Figure 2c), and 10.55 years for multiple linear
regression (Figure 2d). The detailed results are shown in Table 4. All the values were identified on the
same CpG sites. The results showed that the prediction accuracy of the gradient boosting regressor
was better than those of other linear regression models.
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datasets. 

 R2 MAD MSE RMSE 
Training     

Gradient Boosting Regressor 0.9747 2.7171 20.7243 4.5524 
BayesianRidge 0.8055 10.2561 158.3044 12.5819 
Support Vector Regression 0.9267 5.1338 60.0420 7.7487 
Multiple Linear Regression 0.8055 10.2448 158.2800 12.5809 

Testing     
Gradient Boosting Regressor 0.9523 4.0593 39.8269 6.3109 
BayesianRidge 0.8101 10.5654 157.8721 12.5647 
Support Vector Regression 0.9151 5.9267 71.2060 8.4384 
Multiple Linear Regression 0.8104 10.5510 157.6726 12.5568 

MAD: mean absolute deviation; MSE: mean square error; RMSE: root mean square error.  

Figure 1. Comparison between the real age and the age predicted by the four models in the
training dataset of health data. GBR: gradient boosting regresion; MAD: mean absolute deviation;
RMSE: root mean square error; SVR: support vector regression.

Table 4. Comparison of gradient booster regressor (GBR) with the other three methods on healthy datasets.

R2 MAD MSE RMSE

Training
Gradient Boosting Regressor 0.9747 2.7171 20.7243 4.5524
BayesianRidge 0.8055 10.2561 158.3044 12.5819
Support Vector Regression 0.9267 5.1338 60.0420 7.7487
Multiple Linear Regression 0.8055 10.2448 158.2800 12.5809

Testing
Gradient Boosting Regressor 0.9523 4.0593 39.8269 6.3109
BayesianRidge 0.8101 10.5654 157.8721 12.5647
Support Vector Regression 0.9151 5.9267 71.2060 8.4384
Multiple Linear Regression 0.8104 10.5510 157.6726 12.5568

MAD: mean absolute deviation; MSE: mean square error; RMSE: root mean square error.
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Figure 2. Comparison between the real age and the age predicted by the four models in the validation
dataset of healthy data.

3.2. Disease Blood Data Results

There was no significant correlation between age-related methylation and sex or race [3]; however,
some genes were associated with age-related diseases, such as cancer, Alzheimer’s, and so on. DNA
methylation will be disordered in these diseases. Horvath et al. reported that the predicted age in
cancer was poorly correlated with patient ages [20]. Park et al. found the correlation between age
and methylation of three CpG sites in patients with acute myeloid leukemia (AML) disappeared [33].
Alzheimer’s disease is also known as senile dementia. The degree of methylation in the promotor
region of amyloid preprotein gene declined with age in the patients [39,40]. We analyzed nine
diseased samples in Table 2 to further validate the proposed GBR. The correlation between age and
DNA methylation was 0.83 in our GBR. The RMSE and MAD were 7.81 and 5.91 years, respectively
(Figure 3a). For the independent set, the MAD was 6.99 years (Figure 4a). The results of other models
are shown in Table 5. As shown in the Table 5, the diseases affect the age prediction based on DNA
methylation. However, GBR still performed well in these disease samples.

We predicted the age per disease group to see whether there would be a systematic difference
between predicted age and chronological age. For this purpose, we analyzed each diseased sample.
The obtained MAD for each disease was as follows: ovarian cancer was 5.91 years; type 1 diabetes
mellitus (DM) was 5.33 years; Crohn’s disease or ulcerative colitis was 5.15 years; head and neck
squamous cell carcinoma (HNSCC) was 7.04 years; schizophrenia was 4.54 years; rheumatoid
arthritis was 4.45 years; breast cancer, colorectal cancer and other primary cancers was 6.51 years;
and neurodegenerative tauopathy was 3.95 years. Neurodegenerative tauopathy and schizophrenia
showed the lowest age prediction error, while HNSCC demonstrated the lowest correlation with age.
All these suggest that age-related DNA methylation is accelerated in these diseases, so there would
not be a systematic difference between predicted age and true age.
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Table 5. Results comparison of GBR with the other three methods on disease datasets.

R2 MAD MSE RMSE

Training
Gradient Boosting Regressor 0.8186 5.4401 63.0648 7.9413
BayesianRidge 0.6844 7.8944 109.6227 10.4701
Support Vector Regression 0.5333 9.8583 162.6949 12.7552
Multiple Linear Regression 0.6844 7.8946 109.6222 10.4701

Testing
Gradient Boosting Regressor 0.7374 7.0832 91.7887 9.5806
BayesianRidge 0.6812 8.0786 111.2896 10.5494
Support Vector Regression 0.5303 9.9573 164.6747 12.8326
Multiple Linear Regression 0.6812 8.0795 111.3016 10.5500

3.3. Application of the Technique to Saliva

Some studies have shown that the pattern of DNA methylation is tissue-specific [41]. Koch et al.
pointed out that it was difficult to define common markers that displayed general accuracy of prediction
in a variety of tissues [42]. However, methylation of certain CpG sites is not always associated with
tissue specificity [43]. To test the robustness of our selected age-related CpG sites when applied to
the body fluids other than the blood, we studied the methylation data of 278 saliva samples (see the
Supplementary S1). The methylation values of the selected 6 CpG sites were collected from a total
of 278 individuals with aged between 21 to 55 years, and 196 samples were used to train the GBR
model and 82 samples were used in the independent group. The results showed that the correlation
coefficient between predicted age and real age was 0.85, and the MAD was 2.1 years (training) and
5.3 years (independent). The other model results are shown in the Table 6.

Table 6. Results comparison of GBR with the other three methods on saliva datasets.

R2 MAD MSE RMSE

Training
Gradient Boosting Regressor 0.8539 2.1040 13.7795 3.7121
BayesianRidge 0.4310 5.7483 52.5169 7.2469
Support Vector Regression 0.0227 7.9369 99.5273 9.9763
Multiple Linear Regression 0.4333 5.6775 52.3045 7.2322

Testing
Gradient Boosting Regressor 0.4298 5.3478 56.1291 7.4919
BayesianRidge 0.5423 5.5389 43.8468 6.6217
Support Vector Regression 0.0308 8.4729 104.4403 10.2196
Multiple Linear Regression 0.5479 5.4662 43.3933 6.5874

To assess the performance of the GBR model, we also compared it to other studies. Bocklandt et al.
identified 88 CpG sites in 80 genes [18]. Using a multiple linear regression model, the correlation
coefficient between age and DNA methylation was 0.73, and the average error was 5.2 years. Using the
same data (GSE28746), which included 84 individuals, the selected six sites in this work were used.
The correlation coefficient between age and DNA methylation is 0.58, and the average error is 3.76 years,
which is more accurate than Bocklandt’s multiple linear regression (Table 7). These results highlight
the robustness of GBR model on non-blood tissue.
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Table 7. Results of GBR and Multiple Linear Regression on saliva samples.

No. of CpG Sites R2 MAD

Multiple Linear
Regression 88 0.73 5.2

Gradient Boosting
Regressor 6 0.58 3.76

3.4. Analysis of the Selected Six CpG Sites

In the existing studies, the ranking of age-related CpG sites is quite different. This is probably due
to the difference in age range, methods and statistical techniques (the age range is shown in Figure 5).
Furthermore, there is almost no overlap in calculating DNAm-based age prediction factors for different
tissues. The six CpG loci extracted from the blood data can be applied to predict saliva data without
any adjustment, and the prediction results are better than other predictive factors. Therefore, it is
a complex task to select the CpG sites to establish the prediction age model. In this work, we selected
six age-related CpG sites (AR-CpGs). These six sites are from six specific genes, including edaradd,
nhlrc1, aspa, lag3, scgn and csnk1d, respectively. These special genes play important roles in regulation
of developmental processes. We annotated these CpGs to their associated genes. The detailed locations
of these CpGs were also included in Table 3. Two CpGs were located at the promoter region of genes
(e.g., TSS1500), three were located at the first exon region and one in gene body. Meanwhile, two CpGs
were located within CpG island regions, three were located at the CpG island shores, and one was far
from the CpG island regulatory regions. For example, the CpG cg19761273 is located at the TSS1500
regions of the gene edaradd and overlapping with south shore of the CpG island, see Figure 6.
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4. Discussion

Many bioinformatical studies have established linear regression models to study the relationship
between DNA methylation and age. The reason for this is that the linear model is fast, interpretable and
easy to use. However, Alisch and her colleagues et al. used non-linear models to do that in children
(3–17 years old). In addition, they found that the DNA methylation did not change at a constant rate
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with age in life [44]. Bekaert et al. also noted that the relationship between DNA methylation and age
in elovl2 was not a straight line [37], illustrating that the linear model does not always predict age very
well, and that non-linear models can sometimes be a good fit. In this study, we selected six CpG sites
by calculating the Pearson correlation between age and DNA methylation values. Gradient boosting
regressor was adopted, which is an integrated model. It was found that the correlation between
predicted age and true age was strong (R2 = 0.97). In addition, the MAD was 2.72 years. In the
combined independent datasets, the MAD of age prediction was 4.06 years. The MAD value was
lower than those of the other three models. This indicates that the GBR is a more suitable model for
age prediction.

Studies have shown that the level of DNA methylation is closely related to age, where most CpGs
from CpG islands were highly hypermethylated during aging [13,45]. Here we observed that two of
the CpG island sites were hyper-methylated, while the remaining ones showed hypo-methylation
with aging, with none of them being present at CpG islands. Previous studies have shown there was
no strong evidence showing DNA methylation was strongly associated with known aging-related
mechanisms, but the aging-associated CpGs may represent a set of biomarkers for predicting the
cellular chronological clock [3,8,46]. Specifically, we noted that majority of the genes were not presented
in the previously reported genes whose expression changes with aging [46,47], but all 6 of these genes
were involved in age-related processes. All CpG sites showing close correlation with age belong
to genes involved in age-related processes. Here are a few examples. edaradd was identified by
its association with ectodermal dysplasia, and specifically with hypohidrotic ectodermal dysplasia,
a genetic disorder characterized by defective development of hair, teeth, and eccrine sweat glands [48].
The nhlrc1 gene provides instructions for making a protein called malin. Although this protein
is active in cells throughout the body, it appears to play a critical role in the survival of nerve cells
(neurons) in the brain. The aspa gene provides instructions for making an enzyme called aspartoacylase.
In the brain, this enzyme breaks down a compound called N-acetyl-L-aspartic acid (NAA) into
aspartic acid (an amino acid which is a building block for many proteins) and another molecule
called acetic acid. LAG3’s main ligand is MHC class II, to which it binds with higher affinity than
CD4 [49]. The protein negatively regulates cellular proliferation, activation, and homeostasis of T cells,
in a similar fashion to CTLA-4 and PD-1 [50,51] and has been reported to play a role in Treg suppressive
function [52]. LAG3 also helps maintain CD8+ T cells in a tolerogenic state [53] and, working with PD-1,
helps maintain CD8 exhaustion during chronic viral infection [54]. LAG3 is known to be involved in
the maturation and activation of dendritic cells [55]. SCGN is a secreted calcium-binding protein which
is found in the cytoplasm. It is related to calbindin D-28K and calretinin. This protein is thought to be
involved in potassium chloride-stimulated calcium flux and cell proliferation [56]. The csnk1d gene
encodes the casein kinase I isoform delta enzyme in humans [57]. This gene is a member of the casein
kinase I (CKI) gene family whose members have been implicated in the control of cytoplasmic and
nuclear processes, including DNA replication and repair. Interestingly, gene expressions of the selected
hypo-methylated genes aspa and csnk1d were reported to be positively associated with aging [58,59],
which implied potentially inverse correlations between the methylation level and the expression
level to those usually occurring in promoter regions. Taken together, these genes have an important
influence on the development, and their methylation could play vital roles in the regulation of aging.

Of course, our research also has some limitations. Firstly, we did not consider the impact of
gender on age prediction. Some researchers have reported that age-related methylation may be
different in gender [1]. However, in Bram’s study, there was no significant difference in age-related
methylation level between males and females [37]. Secondly, because data on other tissues is
limited, we only studied blood tissue. Each tissue has a different methylation pattern, and there
is a specific methylation change during aging [60]. If more age-related methylation sites can be
found in different tissues, the available methylation indicators for age prediction will be enormous.
Undoubtedly, the combination of multiple age-related methylated markers will contribute to accurately
estimating age.
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5. Conclusions

Age prediction based on DNA methylation is a rapidly evolving field of epigenetics, and it has
great potential to provide accurate results. In this study, we selected six highly age-related CpG sites
through calculating person correlation between age and DNA methylation value of each CpG site.
By comparing the prediction effects of GBR with other linear methods, the results showed that GBR
has a better prediction accuracy for blood samples. In healthy datasets, the MAD was 2.72 years for
the training set and 4.06 years for the independent set. Furthermore, the age-related DNA methylation
was associated with the specifically age-related diseases. The MAD clearly increased on the disease
data, which was 5.44 years in the training set and 7.08 years in the independent set. GBR also achieved
good results in saliva.
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