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Abstract: Accelerometry-derived exercise dose (intensity × duration) was assessed throughout a
competitive basketball season. Nine elite basketballers wore accelerometers during a Yo-Yo intermittent
recovery test (Yo-Yo-IR1) and during three two-week blocks of training that represented phases of the
season defined as easy, medium, and hard based on difficulty of match schedule. Exercise dose was
determined using accumulated impulse (accelerometry-derived average net force × duration). Relative
exercise intensity was quantified using linear relationships between average net force and oxygen
consumption during the Yo-Yo-IR1. Time spent in different intensity zones was computed. Influences
of match schedule difficulty and playing position were evaluated. Exercise dose reduced for recovery
and pre-match tapering sessions during the medium match schedule. Exercise dose did not vary during
the hard match schedule. Exercise dose was not different between playing positions. The majority
of activity during training was spent performing sedentary behaviour or very light intensity activity
(64.3 ± 6.1%). Front-court players performed a greater proportion of very light intensity activity (mean
difference: 6.8 ± 2.8%), whereas back-court players performed more supramaximal intensity activity
(mean difference: 4.5 ± 1.0%). No positional differences existed in the proportion of time in all other
intensity zones. Objective evaluation of exercise dose might allow coaches to better prescribe and
monitor the demands of basketball training.
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1. Introduction

Training sessions contribute substantially to the total volume of exercise that basketball players
receive (exercise dose; product of exercise intensity and duration) during the competitive season [1].
Although the exercise dose during basketball match-play has been extensively examined [2–7],
the exercise dose associated with training sessions remains largely unreported [8]. Only one study to
date has investigated the exercise dose received by players during the in-season phase of a basketball
training program [1]. The results from this study showed that match schedule (i.e., no match, one match,
or two matches per week) influences the exercise dose received by players [1]. However, these data
were collected from only one two-week block during the in-season phase of competition. Previous
research has identified fluctuations in exercise intensity during different phases of basketball pre-season
training [8]. Therefore, it is plausible that the exercise dose received by players fluctuates throughout
different phases of a competitive basketball season. However, no research to date has investigated the
exercise dose received by players throughout multiple phases of a competitive basketball season.
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The exercise dose and intensity of activity during basketball match-play and training are most
commonly quantified using time-motion analyses and physiological data [2,3,6,9–12]. For example,
movement speeds (derived from time-motion analyses) and heart rate responses are often used to
measure exercise intensity. While time-motion analyses can be used to assess movement patterns
undertaken and physiological responses provide a measure of average exercise intensity, the highly
intermittent pattern of exercise and frequent vertical efforts make these methods inappropriate to
quantify exercise dose during basketball match-play and training. In support of this statement,
time-motion analyses underestimate the external demands of basketball-specific movements (e.g.,
jumping, shuffling, changes of direction) [13] and physiological analyses are associated with delays in
responsiveness due to cardiorespiratory lag [14]. Thus, these techniques are incapable of accurately
quantifying brief bouts of supramaximal intensity exercise and rapid changes in movements that occur
frequently in basketball [2,3,6].

With the aim to circumvent the aforementioned limitations that are associated with other measurement
systems, wearable accelerometers have emerged as an alternative method to quantify exercise dose during
basketball. Accelerometers have high data acquisition rates and can measure activity in three planes of
motion, making this measurement technique well-suited to quantifying the exercise dose and intensity in
intermittent sports, such as basketball.

Average net force (AvFNet) is an accelerometry-derived measure of exercise intensity, with confirmed
construct validity in basketball [13]. Strong relationships between accelerometry-derived metrics and
oxygen consumption (

.
VO2) have been previously identified [7,15,16], exemplifying that accelerometers

can be used to estimate relative exercise intensity. Additionally, supramaximal intensity exercise can
be estimated from extrapolation of individual linear relationships between running speed and oxygen
consumption [17–19]. Therefore, AvFNet offers a measurement technique that is well-suited to calculate
relative exercise intensity during intermittent sports, including the measurement of supramaximal intensity
efforts. In addition to quantifying exercise intensity, the product of AvFNet and exercise duration (Impulse)
can be used to quantify exercise dose. Consequently, accelerometery-derived AvFNet can provide a suitable
method to quantify the relative exercise intensity completed by players during basketball training sessions,
which could help coaches to prescribe more match-specific training and execute periodised training plans.

The aim of this study was to use accelerometry-derived AvFNet and accumulated impulse to
assess relative exercise intensity and exercise dose during training sessions completed at different
phases of a competitive basketball season.

2. Materials and Methods

2.1. Participants

Nine professional players (27 ± 5 years, 182 ± 8 cm, 81 ± 12 kg) from a basketball team competing
in the Australian Women’s National Basketball League (WNBL) participated in this study. All players
provided informed written consent and completed the requirements of this study. Ethical approval
was granted by the La Trobe University Human Research Ethics Committee (ref: UHEC 15-088).

2.2. Study Design

All players completed preliminary testing and were monitored over the course of a 17-round
competitive basketball season. Six separate weeks of training data were collected during the competitive
basketball season from three separate phases. Two weeks of training were monitored from each phase,
where each week consisted of three team training sessions. The phases of monitored training were
selected to represent periods of different match schedule difficulty, defined as easy, medium, and hard.
The easy match schedule occurred between rounds 10 to 12, where the team played home matches
against the two lowest ranked teams in the competition. The medium match schedule occurred between
rounds 7 to 8, where the team played one double-header (i.e., two matches within a single round of
competition) and one away match against moderately positioned teams. The hard match schedule
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occurred between rounds 4 to 6, where the team had an extensive travel schedule (away double-header)
and a home match against the competition grand finalist (Figure 1).
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Preliminary testing included the measurement of body mass and standing stature according to
the International Society for the Advancement of Kinanthropometry guidelines and procedures [20].
Additionally, a modified Yo-Yo intermittent recovery test (level 1; Yo-Yo-IR1), which included seven
additional low speed stages prior to the commencement of the Yo-Yo-IR1, was completed. Movement
speeds started at 3 km·h−1 and progressed by 1 km·h−1 for each stage until 9 km·h−1; after this,
the original Yo-Yo-IR1 test was completed until exhaustion. Slower movement speeds occur frequently
throughout basketball match-play [2,6], and inclusion of the slower movement speeds allowed for the
calibration of relative exercise intensity across a broad range of movement speeds.

During all physical testing and training sessions the players wore a commercially available tri-axial
accelerometer (Link; ActiGraph, Pensacola, FL, USA) on the upper-back as previously described [7,13],
which recorded accelerations at 100 Hz. Previous research has established high levels of reliability
for ActiGraph accelerometers [21–23]. In addition, breath-by-breath oxygen consumption (Oxycon
Mobile, Jaeger, Germany) was recorded during the modified Yo-Yo-IR1 in order to establish individual
relationships between accelerometry and

.
VO2.

2.3. Data Analyses

Accelerometer data were downloaded using the manufacturer’s software (ActiLife v12; ActiGraph,
USA). Exercise intensity was quantified using AvFNet as previously described [7,13]. To calculate AvFNet,
the three planes of tri-axial accelerations were filtered using a dual-pass, fourth order Butterworth filter
(high pass: 0.1 Hz, low pass: 15 Hz). These cut-off frequencies were chosen to remove gravity [24,25] and
noise [26,27] components, respectively. After filtering, the product of the instantaneous acceleration vector
and player’s body mass was used to determine instantaneous net force (FNet). The average FNet (AvFNet)
for user-selected periods was calculated in 1-s epochs using customised software (LabVIEW 2016; National
Instruments, Austin, Texas, USA). In addition, interpolated

.
VO2 was included in the output from the

modified Yo-Yo-IR1. To quantify the exercise dose for the entire training session, the numerical integral of
AvFNet and exercise duration was used to calculate accumulated impulse (Impulse), measured in Newton
seconds (N·s).

Resting
.

VO2 was determined during 5-min seated rest prior to the beginning of the modified
Yo-Yo-IR1. Accelerometer and

.
VO2 data were synchronised during the modified Yo-Yo-IR1 during the

initial shuttle, where the acceleration signal was reconciled with the commencement of
.

VO2 recording.
For all stages of the modified Yo-Yo-IR1 the acceleration signal was selected from the commencement of
movement, which was identified as the moment when the resultant acceleration began to rise from rest,
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until the completion of the 40-m stage using the custom software to determine AvFNet and
.

VO2. Peak
.

VO2 was determined as the greatest 5-s average
.

VO2 achieved during the final completed Yo-Yo-IR1
stage.

.
VO2 reserve (

.
VO2R) was calculated for each individual in order to represent relative maximum

.
VO2 above rest, by subtracting resting

.
VO2 from peak

.
VO2. Subsequently, AvFNet and average

.
VO2R

for each completed stage were correlated and best-fit linear relationships were generated for all players
(r2 = 0.93–0.97).

Accelerometry data from all recorded training sessions included all activity, stoppages,
and time-outs beginning from the commencement of the warm-up to the completion of the final
drill or cool-down. Training schedules included three separate training sessions per week (Sessions
1–3) with each training session consisting of warm-up drills, skill drills, offensive and defensive
technical/tactical drills, and match-simulation drills.

Predicted
.

VO2R during training sessions were determined from AvFNet (1-s epochs) using the
player’s linear relationship developed from the Yo-Yo-IR1. Relative exercise intensity was categorised
into seven intensity zones similar to those identified by the American College of Sports Medicine [28]
being: sedentary behaviour (<20%

.
VO2R); very light (20–<30%

.
VO2R); light (30–<40%

.
VO2R);

moderate (40–<60%
.

VO2R); vigorous (60–<90%
.

VO2R); maximal (90–<100%
.

VO2R); and supramaximal
(≥100%

.
VO2R). Total time and proportion of time in all intensity zones were determined for all players

across all training sessions. Outcome measures were calculated for all players and data were separated
by playing position: front-court players (small forwards, power forwards, and centres; n = 5) and
back-court players (point guards and shooting guards; n = 4).

2.4. Statistical Analyses

Statistical analyses were completed using IBM SPSS Statistics (v24; IBM Corporation, Armonk,
NY, USA). Shapiro-Wilk tests confirmed that the assumption of normality was not violated, and group
data were expressed as mean ± standard deviation (SD). Repeated measures two-way mixed model
analyses of variance (ANOVA) (within factors: Match schedule and Session; between factor: Position)
was used to determine the effect of match schedule difficulty, session, and position on exercise dose
(Impulse) and intensity (AvFNet and the proportion of time in all intensity zones). Effect sizes are
presented as partial eta-squared statistic (η2

p). Mauchly’s test was consulted and Greenhouse–Geisser
correction was applied if the assumption of sphericity was violated. Significant interactions or main
effects were followed up with simple main effect analyses with pairwise comparisons using Bonferroni
correction. Significance was set at p < 0.05.

3. Results

Average exercise intensity (AvFNet) across all 18 training sessions was 293 ± 40 N and was
not different between match schedule, session, or playing position. The majority of activity during
training was spent performing sedentary behaviour or very light intensity activity (64.3 ± 6.1%).
Front-court position players performed a greater proportion of very light intensity activity during
training sessions when compared with back-court players (mean difference: 6.8 ± 2.8%; Position
effect: F(1,7) = 5.798; p = 0.047; η2

p = 0.453). Back-court position players performed more supramaximal
intensity activity when compared with front-court players during the medium match schedule (mean
difference: 4.5 ± 1.0%; Match schedule × Position interaction: F(2,14) = 9.323; p = 0.003; η2

p = 0.573).
There were no positional differences in the proportion of time in all other intensity zones across all
three match schedules (Table 1).
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Table 1. Proportion of total duration (%) spent in each intensity zone for front-court and back-court
players for each phase of the competitive season.

Sedentary Very Light Light Moderate Vigorous Maximal Supra-Maximal

Easy

front-court 38.5 ± 10.0 22.3 ± 5.6 12.1 ± 4.7 11.0 ± 3.3 11.5 ± 2.7 2.3 ± 1.0 2.2 ± 1.4

back-court 45.9 ± 7.6 16.4 ± 1.4 9.4 ± 2.9 10.2 ± 4.4 11.2 ± 1.2 3.3 ± 1.4 3.6 ± 1.7

Medium

front-court 40.7 ± 13.1 21.6 ± 5.8 11.9 ± 4.9 10.3 ± 3.7 11.6 ± 3.8 2.4 ± 0.6 1.4 ± 0.5 *

back-court 52.2 ± 4.1 14.4 ± 1.0 7.2 ± 1.6 6.7 ± 1.6 9.9 ± 4.1 3.6 ± 1.4 5.9 ± 2.2

Hard

front-court 43.8 ± 10.7 20.8 ± 5.2 10.9 ± 5.6 8.6 ± 2.4 12.0 ± 3.4 2.5 ± 0.9 1.3 ± 0.5

back-court 51.8 ± 6.4 14.4 ± 1.0 6.7 ± 2.0 6.8 ± 1.6 10.2 ± 4.7 3.5 ± 1.5 7.0 ± 5.8

Total

front-court 40.8 ± 10.9 21.6 ± 5.4
* 11.7 ± 4.8 10.1 ± 2.8 11.7 ± 3.0 2.4 ± 0.6 1.7 ± 0.7

back-court 50.2 ± 4.4 14.8 ± 6.7 7.8 ± 1.8 7.8 ± 2.0 10.3 ± 3.2 3.5 ± 0.9 5.6 ± 2.7

Mean ± standard deviation. * Different to back-court (p < 0.05).
.

VO2R: Volume of oxygen uptake reserve. Sedentary:
<20%

.
VO2R; Very Light: 20–<30%

.
VO2R; Light: 30–<40%

.
VO2R; Moderate: 40–<60%

.
VO2R; Vigorous: 60–<90%

.
VO2R; Maximal: 90–<100%

.
VO2R; Supramaximal: ≥100%

.
VO2R.

The proportion of time performing very light intensity activity was different according to difficulty
of match schedule (Match schedule effect: F(2,14) = 4.761; p = 0.026; η2

p = 0.405), where more very
light intensity activity tended to be performed during the easy match schedule compared with the
hard match schedule (mean difference: 2.0 ± 2.0%; p = 0.062). Match schedule difficultly had no
influence on the proportion of time in all other intensity zones. The proportion of vigorous intensity
activity was different between sessions (Session effect: F(2,14) = 5.271; p = 0.020; η2

p = 0.430). There was
a greater proportion of vigorous intensity activity during Session 3 when compared with Session 1
(mean difference: 1.5 ± 1.2%; p = 0.026) through each match schedule.

Mean exercise dose (Impulse) across all 18 training sessions was 1939 ± 258 kN·s. Playing position
had no influence on the exercise dose received across match schedules (Position × Match schedule
interaction: F(2,14) = 0.133; p = 0.877; η2

p = 0.019) or training sessions (Position × Session interaction:
F(2,14) = 0.374; p = 0.695; η2

p = 0.051). The pattern of exercise dose during the three team training
sessions per week changed according to the difficulty of match schedule (Figure 2; Match schedule x
Session interaction: F(4,28) = 4.224; p = 0.008; η2

p = 0.376). Exercise dose during Session 2 was greater
when compared with Session 1 (mean difference: 537 ± 156 kN·s; p = 0.010) and Session 3 (mean
difference: 476 ± 186 kN·s; p = 0.001) during the medium match schedule and greater compared with
Session 1 (mean difference: 509 ± 107 kN·s; p = 0.01) during the easy match schedule. Exercise dose
was similar between sessions during the hard match schedule (p ≥ 0.941).
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4. Discussion

This is the first study to assess the relative exercise intensity of basketball training using a method
that is suitable for sports involving rapid changes in movement patterns and intensities. The main
findings of this study demonstrate that exercise dose varied between training sessions (i.e., Session 1,
Session 2, Session 3) during easy and moderate difficulty match schedules but not during hard match
schedules. Match schedule had no influence on the average exercise intensity and limited influence
on the proportion of time spent in each intensity zone. Furthermore, few position-specific differences
existed in the exercise dose, average exercise intensity, or the proportion of time spent in each intensity
zone during training sessions completed by an elite women’s basketball team.

The present study identified that the majority of exercise during basketball training sessions (64%) was
spent performing either sedentary behaviour or very light intensity exercise. Results from a previous study,
which used similar methods to the current study, show that a slightly lower proportion (approximately
59%) of match-play was spent performing either sedentary behaviour or very light intensity exercise [7].
Additionally, previous time-motion analyses have identified lower proportions (30–42%) of live match-play
performing low-intensity and recovery activities (e.g., standing, walking) [6,9]. Taken together, these
findings suggest that basketball training sessions are associated with greater periods of sedentary behaviour,
likely due to inclusion of technical/tactical drills that involve large portions of time standing and walking
while receiving coaching instruction [29]. Coaches should be aware that providing large amounts of
instruction might compromise the match-specificity of training sessions. Therefore, technical/tactical drills
can be combined with conditioning goals in order to more closely replicate match demands [30].

Despite large proportions of sedentary behaviour and very light intensity exercise during basketball,
previous investigations consistently report high average physiological responses over the course of
basketball training sessions. For example, mean

.
VO2 values during basketball training have been reported

in the range of 60–80%
.

VO2max [4,31]. Additionally, heart rate responses are typically in the range of
85–90% of maximum [31–34]. High physiological intensities during basketball have been reported because
brief rest periods and active recovery (i.e., walking and jogging) during basketball are insufficient to
permit full physiological recovery [12]. Thus, accelerated

.
VO2 kinetics at the onset of a work interval,
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in addition to cardiorespiratory lag, means that the physiological response at a particular point in time does
not directly reflect the actual intensity of activity being undertaken. Therefore, physiological responses
such as heart rate and

.
VO2 cannot truly reflect the exercise intensity during intermittent exercise, such as

basketball. This highlights the importance of using accelerometry-derived AvFNet to accurately quantify
short duration bouts of intermittent exercise. This method could be important for athlete monitoring in
order for coaches to replicate the most demanding aspects of match-play in training sessions, which can
maximise training benefits and improve performance [35]. Additionally, findings from previous research
suggest that periods of higher exercise dose throughout a basketball season are associated with greater risk
of injury [36]. Therefore, monitoring accelerometry-derived AvFNet throughout a basketball season might
be useful to identify periods of heightened injury risk as a consequence of elevated exercise dose.

The present study identified that basketball training sessions elicit a similar accelerometry-derived
exercise dose and proportion of time in each relative exercise intensity zone between front-court
and back-court playing positions. This finding corroborates previous research, which found that
movement demands during basketball training, assessed via time-motion analyses, were largely
similar between playing positions [29]. Conversely, these findings are in direct contrast to the
positional differences observed via time-motion analyses and physiological responses during basketball
match-play [2,6,9,12]. Furthermore, recent evidence identified that these positional differences extend
to accelerometry-derived relative exercise intensities during basketball match-play [7], suggesting that
exercise dose and proportion of time in each exercise intensity zone during training is not always
reflective of match-play. Similar exercise dose and intensity between playing positions during training
sessions indicates that the individual positional demands of match-play are not replicated during
training sessions. This might be due to logistical factors, such as a lack of time, space, and resources,
which can make it difficult for coaches to individualise training for team sports. As such, during team
training sessions, all players are often prescribed the same training drills. For this study, no feedback
regarding players’ exercise dose or proportion of time in each intensity zone was provided to the
coach, thus the exercise dose received is based solely upon the coach’s exercise prescription and the
exercise completed by players. Therefore, it is possible that providing objective feedback of the exercise
dose received by players and proportion of time in each intensity zone could assist coaching staff to
calibrate exercise prescriptions and better replicate the exercise dose from match-play.

Both the exercise dose received by athletes and proportion of time in each intensity zone remained
largely similar across the course of the season, despite variability in the difficulty of match schedule.
Nevertheless, exercise dose varied between training sessions (i.e., Session 1, Session 2, Session 3) during
the easy and medium match schedules. Increased exercise dose during Session 2 during the easy
and moderate match schedules might be the coach’s attempt to compensate for the reduced exercise
dose during the recovery session (Session 1) and pre-match tapering (Session 3). On the other hand,
exercise dose did not vary between training sessions during the hard match schedule. These findings
corroborate previous research from professional men’s basketball, which identified that exercise dose
is related to the competition schedule [1]. Specifically, subjectively measured exercise dose (rating of
perceived exertion × duration) from training sessions was also lower both pre- and post-match [1].
It is well-established that tapering can assist in improving competition performance [37]; however,
future research should assess the most effective tapering strategy for the unique demands of basketball
competition that often involve one or two competitive matches every week.

5. Conclusions

The exercise dose and intensity received by athletes remained largely similar throughout the
competitive season despite variability in the difficulty of match schedule. Although coaches might be
reducing exercise dose for recovery and pre-match tapering during easy and moderate difficulty match
schedules, there was no evidence of training periodisation during hard match schedule. Furthermore,
there were few position-specific differences in exercise dose and proportion of time in each intensity
zone over the course of an elite women’s basketball season. Objective monitoring of the exercise dose
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in training and match-play via accelerometry-derived AvFNet might enable coaches to better prescribe
match-specific exercise during training.
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12. Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity
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