
Submitted 27 April 2018
Accepted 28 August 2018
Published 26 September 2018

Corresponding authors
Meiling Jin, auml_1986@hotmail.com
Changting Liu,
changtingliu1212@sohu.com

Academic editor
Vladimir Uversky

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.5667

Copyright
2018 Li et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Tumor-preventing activity of aspirin in
multiple cancers based on bioinformatic
analyses
Diangeng Li1,*, Peng Wang3,*, Yi Yu1, Bing Huang1, Xuelin Zhang1, Chou Xu1,
Xian Zhao1, Zhiwei Yin4, Zheng He5, Meiling Jin2 and Changting Liu1

1Chinese PLA General Hospital, Nanlou Respiratory Diseases Department, Beijing, China
2Beijing Chao-yang Hospital, Department of Nephrology, Beijing, China
3Chinese PLA General Hospital, Nanlou Medical Oncology Department, Beijing, China
4Hebei Medical University, School of Chinese Integrative Medicine, Shijiazhuang, China
5Chinese PLA General Hospital, Department of Clinical Laboratory, Beijing, China
*These authors contributed equally to this work.

ABSTRACT
Background. Acetylsalicylic acid was renamed aspirin in 1899, and it has been widely
used for its multiple biological actions. Because of the diversity of the cellular processes
and diseases that aspirin reportedly affects and benefits, uncertainty remains regarding
its mechanism in different biological systems.
Methods. The Drugbank and STITCH databases were used to find direct protein
targets (DPTs) of aspirin. The Mentha database was used to analyze protein–protein
interactions (PPIs) to find DPT-associated genes. DAVID was used for the GO and
KEGG enrichment analyses. The cBio Cancer Genomics Portal database was used to
mine genetic alterations and networks of aspirin-associated genes in cancer.
Results. Eighteen direct protein targets (DPT) and 961 DPT-associated genes were
identified for aspirin. This enrichment analysis resulted in eight identified KEGG
pathways that were associated with cancers. Analysis using the cBio portal indicated
that aspirin might have effects on multiple tumor suppressors, such as TP53, PTEN,
and RB1 and that TP53 might play a central role in aspirin-associated genes.
Discussion. The results not only suggest that aspirin might have anti-tumor actions
against multiple cancers but could also provide new directions for further research on
aspirin using a bioinformatics analysis approach.

Subjects Bioinformatics, Drugs and Devices, Oncology
Keywords Aspirin, Bioinformatic analysis, Cancer

INTRODUCTION
Nonsteroidal anti-inflammatory drugs (NSAIDs) are efficacious preventive agents against
several different types of malignancies, including colorectal cancer (Bilani, Bahmad &
Abou-Kheir, 2017). Reports regarding risk reduction have shown impressive results with
increasing NSAID intake showing a reduced relative risk of colon cancer by 63%, whereas
it has shown a 39% reduction for prostate and breast cancer and 36% for lung cancer
(Harris et al., 2005). A long-term observation of randomized, controlled trial cohorts with
cardiovascular disease also revealed lower risks of developing colon malignancy and a

How to cite this article Li et al. (2018), Tumor-preventing activity of aspirin in multiple cancers based on bioinformatic analyses. PeerJ
6:e5667; DOI 10.7717/peerj.5667

https://peerj.com
mailto:auml_1986@hotmail.com
mailto:changtingliu1212@sohu.com
mailto:changtingliu1212@sohu.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5667
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.5667


reduced incidence and development of metastatic disease, which are benefits that are
attributed to regular aspirin use (Gray et al., 2017).

The recent advancements in biomedical research, such as multicenter genomic studies
involving proteomics, microarrays and other high-throughput screening assays, has
resulted in a staggering amount of candidate gene ‘‘hits’’; more than enough to overwhelm
subsequent thematic or phenotypic-based data analyses. Nevertheless, the network-based
approach can be a simple and effective means of analyzing these gargantuan sets of data
and permit researchers to uncover previously difficult to characterize genetic relationships
between a drug, its targets and interacting proteins as well as its disease associations. It
has been reported that establishing a drug target network can be accomplished using
drug interaction databases (Mestres et al., 2008). There are several open-access databases
for the collection of pharmacogenomics data. Drugbank is the most commonly used
database. Drugbank’s primary focus is compiling and curating information concerning
drug targets (genetic and protein-specific data), drug metabolism, drug interactions, and
the relationships between drugs and diseases or side effects (Wishart, 2008). However,
Drugbank might not completely overlap with those in STITCH or the Therapeutic Target
Database. In this study, we first identified direct protein targets (DPTs) using Drugbank
and the STITCH database. We then identified proteins associated with these DPTs using
the Mentha database. Finally, we built an aspirin-target network. Enrichment analysis was
used to analyze the proteins of this network. This method of analysis permits a deeper
understanding of how aspirin may prevent cancer and drive the development of future
chemotherapeutic medication.

MATERIALS AND METHODS
Drug-target search
In this study, Drugbank (https://www.drugbank.ca/) (Wishart et al., 2006) and STITCH
(http://stitch.embl.de/) (Kuhn et al., 2007) were utilized to identify aspirin-target
interactions to produce an aspirin-target network. A visualization chart was constructed
with the resultant data, followed by more extensive data analysis and proposals for
subsequent validation experiments.

Network generation/visualization and analysis of gene enrichment
sets
Mentha (http://mentha.uniroma2.it/) was used to analyze protein–protein interactions
(PPIs) to find DPT-associated genes with the 0.3 set as the minimum interaction scores
(Calderone, Castagnoli & Cesareni, 2013). DAVID was used for the GO enrichment analysis
and KEGG enrichment analysis (Huang, Sherman & Lempicki, 2008).

Aspirin-linked cancer genomic data exploration using the cBio
cancer genomics portal
The cBio Cancer Genomics Portal (http://cbioportal.org) represents a free platform that
allows multidimensional exploration of cancer genomic data by translating molecular
profiles sequenced from cell lines and cancer tissues into easily comprehensible proteomic,
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gene expression, epigenetic and genetic events (Cerami et al., 2012). With the cBio Portal,
we explored the connections of aspirin-associated genes across the genetic databases of
several cancer-related studies. Using the portal search function, all of the aspirin-associated
genes found in cancer study samples were categorized as altered or not altered.Wewere also
able to construct multiple visualization platforms by grouping the cancer data alterations
based on aspirin gene data sets.

RESULTS
Identification of DPTs
Drugbank and STITCH were used to identify direct protein targets (DPTs) of aspirin; these
18 primary DPTs of aspirin were PTGS1, PTGS2, AKR1C1, PRKAA1, EDNRA, IKBKB,
TP53, HSPA5, RPS6KA3, NFKBIA, NFKB2, CRP, SELP, TBXA2R, REN, MMP9, NOS3,
and IL10. Then, we used Mentha to analyze protein–protein interactions (PPIs) to find
DPT-associated genes and uncovered 961 unique target-protein interactions, which we
determined to be aspirin-related DPT-associated genes along with the 18 primary targets
(Table 1).

GO pathway analysis
The online DAVID software was used to determine overrepresented GO categories based
on our previously identified DPT-associated genes. GO analysis revealed significant
genetic enrichment in the area of biological processes (BP), which was comprised of the
regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism (27.4%),
signal transduction (27.2%), cell communication (23.4%), protein metabolism (16.7%),
apoptosis (3.9%), regulation of gene expression and epigenetics (1.5%), regulation of the
cell cycle (1.5%), DNA repair (1.4%), regulation of cell growth (0.8%), and regulation of cell
proliferation (0.8%). For the area of the cell components (CC), these genes were enriched
in the nucleus (70.6%), cytoplasm (64.3%), nucleolus (21.5%), cytosol (21%), exosomes
(20.1%), nucleoplasm (13.2%), centrosome (11.8%), ribonucleoprotein complex (2.4%),
protein complex (2.1%) and PML body (1.9%). Additionally, GOmolecular function (MF)
analyses showed that these genes were significantly enriched in transcription regulator
activity (11.3%), ubiquitin-specific protease activity (9.9%), transcription factor activity
(9.7%), protein serine/threonine kinase activity (8.7%), receptor signaling complex scaffold
activity (5.3%), chaperone activity (2.5%), protein binding (2.3%), protein serine/threonine
phosphatase activity (1.1%), DNA repair protein (1.1%), and DNA topoisomerase activity
(0.4%) (Fig. 1).

KEGG pathway analysis
The functional characteristics of these aspirin-related genes were characterized by the use
of the KEGG pathway enrichment analysis, which is a feature embedded in the DAVID
software. The top 10 KEGG pathways linked to aspirin DPTs and their DPT-associated
genes include Epstein-Barr virus infection (63 genes), ubiquitin-mediated proteolysis
(46 genes), pathways in cancer (78 genes), cell cycle (40 genes), NF-kappaB signaling
pathway (33 genes), herpes simplex infection (47 genes), TNF signaling pathway (35
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Table 1 Identification of DPT-associated genes using mentha.

# DPT of aspirin DPT-associated genes

1 PTGS1 PTGS2, CAV2, CAV1, PTGIS, NCL
2 PTGS2 EP300, USP22, COPS7A, ELAVL1, CAV1, ELMO1, COPS5, DERL1, NUCB1, PTGIS, CTNNB1, TP53, PTGS1, APP, CELF2,

AGTR1, NOS2
3 AKR1C1 COMMD8, TFF3, PTPN3, MAPK3
4 PRKAA1 RIMBP3, TRIP6, L3MBTL3, ABI1, ARHGAP22, HMBOX1, NRBF2, MTFR2, PRKAG2, VPS37B, STK11, CDC37, FKBP5,

HOMEZ, RBPMS, THAP1, PRKAB1, IKZF3, MAGED1, ROPN1, PHC2, SDE2, PNMA5, CHERP, VPS52, CAMKK1,
RFX6, INO80E, EMILIN1, THAP7, PPM1E, MORC4, LZTS2, XRN2, PLEKHA4, MTUS2, UBXN11, CRTC2, TFPT,
WDR62, NAB2, SORBS1, RC3H1, PRKAG1, KRT40, RPTOR, FNIP1, CRBN, TXNIP, ABI2, HDAC5, SSX2IP, CTBP1,
TOMM34, USP10, TSC22D4, TRIM27, MAP3K7, PPM1F, FANCA, BHLHE40, ZBED1, APRT, CFTR, ACACA, ULK1,
CDX4, HSP90AB1, PRKAB2, KIF1C, FANCG, HSP90AA1, FSBP, HSPB1, CPE, PPP2CA, NEDD1, PSMD11, MDM4,
EPM2A, TP53, MTOR, PRKAA2, AES, GOLGA2, PPM1A, TSC2

5 EDNRA ARRB1, ARRB2, HDAC7, KAT5, COPS5, EDN1, SCR
6 IKBKB PRKCA, CREBBP, IRAK1, ERC1, CTNNB1, FANCA, PPP2CA, TP53, AURKA, COPS4, MUC1, TNFAIP3, TNFRSF1A,

AKT1, PRKCD, MAP3K1, MAVS, TNF, PRKCE, TRIM21, RIPK1, RICTOR, RELA, TRAF3IP2, NCOA3, COPS3, STAP2,
MAP3K7, NFKB1, MAP3K14, TRAF1, TRAF2, CDC37, NFKBIB, KEAP1, NFKBIA, CHUK, IKBKG, EGLN3, COPS7A,
USP18, LATS2, HOMER3, BTRC, PPM1B, BCL10, TAX, JUN, HSP90AB1, SRC, TRIM27, PEBP1, MTOR, HTT, MEOX2,
CSNK2B, HNRNPU, PRKCQ, IKBKE, TWIST1, MAPK14, TRIM40, BRAP, NLRC5, RPTOR, TNIP2, PELI1, NEDD4L,
TRAPPC9, TP63, CUEDC2, TAB2, KLHL21, FAF1, TRAF6, FOXO3, TP73, HSP90AA1, GLI1, PPP2R3C, CSF2RA, TSC1,
COPS5, NAA20, PPP1CA, PRKDC, CSF2RB, CLTC, PPARG, PLK1, ROCK1, MAP3K11, PRKCI, ORF71, SNAP23

7 TP53 MT1A, CDK1, S100A6, BRCC3, RPL5, BANP, BRCA2, UFD1L, GPX2, CDKN1A, HSP90B1, P0DMV9, P0DMV8, RCC1,
NQO1, XRCC1, CREB1, HNF4A, MTOR, TP53, BMI1, PPIF, NMT1, PHB, ZBTB2, SFN, YWHAZ, VRK2, SET, HECW1,
Q7L7W2, BRE, RBBP6, HSPA4, UBB, TOP2A, VDR, EEF2, TPT1, HSC82, TNFAIP3, MDM2, NFKBIA, MAPK3,

8 HSPA5 AMFR, PPP2R2B, MAPRE1, SIL1, ERLEC1, CFTR, Q6T424, SEC61A1, CBL, SNW1, MAP1LC3A, DMKN, AGO4, SPG20,
OS9, EIF2AK3, DNAJB11, HNRNPA3, PDIA6, MTNR1A, MTNR1B, HSPA8, DNAJC10, PAWR, SH3BP4, SEC63,
UBQLN4, HSPBP1, AKT1, YWHAB, CPT1A, GRB2, RELA, EP300, SQSTM1, GPX7, DPH1, HDAC6, UCHL5, DNAJC1,
UBL4A, UBE3A, ID2, DNAJC3, FUS, TMEM132A, VHL, CLU, P01266, VIM, RPN1, AIRE, ERLIN2, TP53, RAF1, EGFR,
F7VJQ1, SVIL, PRNP, ERN1, HNRNPA1, FCHSD2, A2M, LDLR, HSPB1, KRT8, PIAS1, P0DMV8

9 RPS6KA3 BARX1, EIF3C, CREBBP, CSNK2B, TRAF2, YBX1, SMS, HIST1H3J, PEA15, FBXO43, MAPT, FGFR1, ATP5J, MAPK1,
PDPK1, MAPK3, NFKBIA, HMGN1, H2AFX, MASP1

10 NFKBIA MTOR, ZNF212, NFKBIB, ARRB2, UBA52, RPS6KA1, COMMD1, DNAJA3, UBE2D3, PTPN13, NEDD9, CUL1, SUMO4,
ARRB1, VCP, REL, UL54, FBXW11, SKP1, RELB, IKBKG, BTRC, RELA, TBK1, G3BP2, HIF1AN, RWDD3, PIK3R1,
CSNK1A1, UBE2D1, COPS2, UBE2I, CSNK2B, MAPK14, MAP3K14, BARD1, IKZF4, NCOR2, POM121, UBE2D2,
DYNLL1, UBE2L3, NFKB2, MAP3K1, ITPK1, IKBKE, RPS6KA3, CDC34, ABL1, TP53, RPS3, ATF4, UBC, IKBKB, CHUK,
NFKB1, POLRMT, SOCS3, MAP3K7, PRKCA, PSMA4, PIR, AURKA, IKBKAP, BCL10, CAPN1, HOXB7, HNRNPA1,
SLC25A4, PSMA2, LYL1, TNF

11 NFKB2 NFKB2, REL, TSC22D3, FBXW7, FBXW11, RELA, RELB, BTRC, MAP3K14, DPF2, EPS8, NFKBIB, STAT3, BCL3, NFKB1,
CHUK, MAP3K8, MEN1, NKRF, NR3C1, SP1, P0C722, P0C723, P03207, NFKBIE, NFKBIA

12 CRP RPL13A, DGCR14, MAPK3, LAMC3, CRP, APCS, C1QA, CFH, MAPK1, FCGR2C, HIST1H1A, HIST2H2AC, GMPPA,
FN1, SPA, FCN2, GLUD1

13 SELP SELP, CD24, COL18A1, SELPLG, SNX17, SNX27, AP1M1, VCAN, GP1BA, EZR
14 TBXA2R GNA11, GNB1, KCNMA1, PSME3, NME2, AAMP, YWHAZ, GNB2L1, RPGRIP1L, PKN1, RAB11A, PRDX4, GNAQ,

GHRL, GNG2, GNAS, KCNMB1, GPRASP1, WDR36, GRK5, PRKG1, GNA13, GRK6, PTGIR, PRKCA, PSMA7, SIVA1,
PRKACA, GNAI2

15 REN AGT, ATP6AP2
16 MMP9 COL18A1, CXCL5, CXCL6, VCAN, COL1A2, CLU, TIMP1, TGFB1, SRGN
17 NOS3 ACTN2, CTNNB1, MPRIP, IMMT, EFEMP1, H3F3B, TXNDC11, HTRA1, RNF31, FIS1, CAV1, NOSTRIN, AKT1, NOSIP,

ST13, GCDH, ACTB, GUCY1B3, GOLGA2, CDC37, MAGEA11, ACTN4, EFEMP2, UMPS, P0DP23, P0DP24, P0DP25,
HSP90AA1, TAX, APOE, P0DP30, P0DP31, P0DP29

18 IL10 IL10RA, IL10RB, A2M
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Figure 1 Gene ontology (GO) enrichment analysis on the direct protein targets (DPTs) and DPT-
associated genes of aspirin. (A) GO biological process (BP) analysis, (B) GO cell component (CC) analy-
sis, (C) GO molecular function (MF) analysis.

Full-size DOI: 10.7717/peerj.5667/fig-1
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Table 2 KEGG pathway associated with cancer.

KEGG pathway-term Count pValue Genes

bta05200: Pathways in cancer 78 2.79E−20 GNA13, HSP90AB1, PTGS2, MMP9, GNA11, PPARG, NFKB1, NFKB2,
PTEN, TGFB1, CTNNB1, GLI1, AKT1, EDNRA, AGTR1, CDKN2A, CASP8,
PRKACA, GNG2, NOS2, CHUK, PRKCA, CTBP1, HSP90AA1, BCR,
ROCK1, RELA, TP53, RB1, DAPK3, CDK2, RAD51, DAPK1, MAPK1,
HIF1A, GNAQ, GNB1, LAMC3, JUN, MAPK3, MAPK9, MDM2, PIAS2,
GNAS, MAPK8, TRAF1, TRAF2, FGFR1, GNAI2, PML, EGLN3, NFKBIA,
BCL2L1, PTK2, BCL2, TRAF6, PIK3R1, FN1, AXIN1, DVL2, MSH2, VHL,
CREBBP, BRCA2, SMAD3, SMAD2, STAT3, HSP90B1, LAMA4, CDKN1A,
HDAC2, HDAC1, GSK3B, IKBKG, PLCG2, MTOR, IKBKB, ABL1

bta05215:Prostate cancer 28 6.53E−13 HSP90AB1, FGFR1, NFKBIA, NFKB1, PTEN, CTNNB1, AKT1, PDPK1,
BCL2, CHUK, PIK3R1, HSP90AA1, RELA, CREB1, CREBBP, TP53, RB1,
CDK2, MAPK1, CDKN1A, ATF4, HSP90B1, GSK3B, MAPK3, IKBKG,
MDM2, MTOR, IKBKB

bta05212:Pancreatic cancer 21 1.02E−09 RELA, TP53, SMAD3, BRCA2, SMAD2, NFKB1, BCL2L1, RB1, STAT3,
TGFB1, RAD51, AKT1, MAPK1, CDKN2A, MAPK3, IKBKG, MAPK9,
MAPK8, IKBKB, CHUK, PIK3R1

bta05222:Small cell lung cancer 24 2.04E−09 TRAF1, TRAF2, PTGS2, RELA, TP53, NFKBIA, NFKB1, BCL2L1, RB1,
PTEN, CDK2, AKT1, LAMA4, PTK2, LAMC3, BCL2, IKBKG, PIAS2, NOS2,
TRAF6, IKBKB, CHUK, PIK3R1, FN1

bta05210:Colorectal cancer 16 8.94E−06 MSH2, TP53, SMAD3, SMAD2, TGFB1, CTNNB1, AKT1, MAPK1, GSK3B,
JUN, BCL2, MAPK3, MAPK9, MAPK8, PIK3R1, AXIN1

bta05219:Bladder cancer 11 1.21E−04 MAPK1, CDKN1A, CDKN2A, MMP9, MAPK3, TP53, MDM2, RB1, DAPK3,
SRC, DAPK1

bta05213:Endometrial cancer 11 9.87E−04 AKT1, MAPK1, PDPK1, GSK3B, MAPK3, TP53, FOXO3, PTEN, PIK3R1,
AXIN1, CTNNB1

bta05223:Non-small cell lung cancer 11 0.002081 AKT1, PRKCA, MAPK1, PDPK1, CDKN2A, MAPK3, PLCG2, TP53, RB1,
FOXO3, PIK3R1

bta05211:Renal cell carcinoma 11 0.007081 AKT1, MAPK1, HIF1A, VHL, JUN, MAPK3, CREBBP, EGLN3, RAP1B,
TGFB1, PIK3R1

genes), toxoplasmosis (37 genes), viral carcinogenesis (52 genes), and FOXO signaling
pathway (37 genes). We primarily focused on the KEGG pathways associated with cancers:
prostate cancer (28 genes), pancreatic cancer (21 genes), small-cell lung cancer (24 genes),
colorectal cancer (16 genes), bladder cancer (11 genes), endometrial cancer (11 genes),
non-small-cell lung cancer (11 genes), and renal cell carcinoma (11 genes; Table 2).

Mining genetic alterations and networks of aspirin-associated genes
in cancer with the cBio portal
Prostate cancer
There were large variations of 24.23% to 73.3% in the gene sets analyzed among 9 prostate
cancer gene analysis studies. OncoPrint results showed that 1412 (50%) cases had an
alteration in at least one of these 28 gene sets (PTEN 18%, TP53 16%, RB1 8%, IKBKB
7%, HDAC2 7%, FGFR1 6%, PIK3R1 5%) (Fig. 2A and Fig. S1). With the help of the CBio
portal, we were able to obtain interactive analyses and view constructed networks of genes
that were altered in cancer. Figure 3A depicts a gene network consisting of PTEN, TP53,
and IKBKB genes and their respective gene neighbors. PTEN and TP53may play important
roles in this network.
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Figure 2 Mining genetic alterations connected with aspirin-associated genes in cancer studies with
the cBio cancer genomics portal. (A) Prostate cancer, (B) pancreatic cancer, (C) small-cell lung can-
cer, (D) colorectal cancer, (E) bladder cancer, (F) endometrial cancer, (G) non-small-cell lung cancer,
(H) renal cell carcinoma.

Full-size DOI: 10.7717/peerj.5667/fig-2
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Figure 3 Visual display of the gene network connected to genes in cancer. (A) Prostate cancer,
(B) pancreatic cancer, (C) small-cell lung cancer, (D) colorectal cancer, (E) bladder cancer,
(F) endometrial cancer, (G) non-small-cell lung cancer, (H) renal cell carcinoma.

Full-size DOI: 10.7717/peerj.5667/fig-3
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Pancreasubtic cancer
The gene sets for the five analyzed pancreatic cancer studies revealed variations of 35.35%
to 87.16% among the gene sets. The results showed that 670 (70%) cases had an alteration
in at least one of these gene sets (TP53 58%, SMAD2 4%, TGFB1 2.5%, AKT1 2.3%, RB1
1.9%, SMAD3 1.7%, and STAT3 1.7%) (Fig. 2B and Fig. S2). As shown in Fig. 3B, TP53
may play an important role in this network.

Small-cell lung cancer
Upon the analysis of four small-cell lung cancer studies, we noted alterations of 78.43% to
100% between the gene sets. The OncoPrint results showed that 193 (91.9%) cases had an
alteration in at least one of the 24 gene sets (TP53 86%, RB1 65%, FN1 12%, PTEN 8%,
LAMC3 5%, NOS2 4%, and LAMA4 3%) (Fig. 2C and Fig. S3). As shown in Fig. 3C, there
was a close relationship between TP53 and RB1, and TP53 may play an important role in
this network.

Colorectal cancer
There were variations of 31.41% to 84.78% for the five colorectal cancer study gene sets
that we interpreted. The results showed that 892 (51.1%) cases had an alteration in at least
one of these gene sets (TP53 37%, SMAD2 5%, CTNNB1 4%, PIK3R1 4%, and SMAD3
3%) (Fig. 2D and Fig. S4). We focused primarily on TP53, and the network of TP53 is
shown in Fig. 3D.

Bladder cancer
Weobserved alterations ranging from 36.08% to 91.18% in gene sets from the nine analyzed
bladder cancer studies. The results show that 1316 (74.9%) cases had an alteration in at
least one of the 11 gene sets (TP53 41%, CDKN2A 31%, RB1 20%, CDKN1A 9%, and
MDM2 8%) (Fig. 2E and Fig. S5). The network of these genes is shown in Fig. 3E, and
TP53 and CDKN2A may play an important role in this network.

Endometrial cancer
The three endometrial genetic studies that we analyzed had gene set variations ranging
from 49.6% to 94.33%. The results showed that 1036 (71%) cases had an alteration in at
least one of these gene sets (PTEN 48%, PIK3R1 24%, TP53 23%, CTNNB1 20%, and
AXIN1 5%) (Fig. 2F and Fig. S6). The network of these genes is shown in Fig. 3F.

Non-small-cell lung cancer
Among the analyzed NSCL cancer studies, alterations ranging from 40.61% to 97.19%
were found for the submitted gene sets. The results showed that 2046 (64%) cases had an
alteration in at least one of these gene sets (TP53 49%, CDKN2A 25%, EGFR 17%, PIK3CA
9%, and RB1 7%) (Fig. 2G and Fig. S7). The network of these genes is shown in Fig. 3G.
This indicates that TP53 may play important roles in the occurrence of NSCLC.

Renal cell carcinoma
The renal cell carcinoma studies included in our analysis displayed intergene set alterations
of 4.11% to 78.48%. The results showed that 827 (30%) cases had an alteration in at least
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one of these gene sets (VHL 27%, CREBBP 1.4%, and AKT1 0.6%) (Fig. 2H and Fig. S8).
The network of these genes is shown in Fig. 3H.

DISCUSSION
Acetylsalicylic acid was renamed aspirin in 1899 (Fuster & Sweeny, 2011). In 1988, a
case-control study was the first to record a negative correlation between colorectal cancer
and aspirin use (Kume et al., 2010), which suggests that aspirin might be protective against
cancer. Further investigations based on cohorts of cardiovascular disease patients taking
aspirin found that aspirin may generally lower the risk of cancer. Six separate trials that
analyzed patients who took daily low-dose aspirin (75 mg and above) for three years
revealed that aspirin conferred an overall relative risk of 0.76 for cancer with a longer
duration of aspirin intake resulting in higher benefits (Rothwell et al., 2012). In fact,
several lines of evidence highlight that aspirin may be beneficial in decreasing mortality
in cancer, especially colorectal cancer-related death. This protection may also extend to
other malignancies, such as prostate, lung, breast and gastroesophageal cancers. Given the
strong epidemiological evidence, it is hypothesized that aspirin may act on common cancer
pathways to suppress cancer progression and metastases (Cao et al., 2016). In 2007, the
United States Preventive Services Task Force (USPSTF) initially discouraged aspirin use
for preventing colorectal cancer. However, the updated USPSTF 2015 recommendations
acknowledge the existence of several compelling sources of evidence and included colorectal
cancer prevention into the rationale for routine, low-dose aspirin intake for those with
specific cardiovascular risk profiles between the ages of 50 to 69. This landmark decision
was the first to endorse a pharmacological compound for use as a preventive agent against
cancer in a population not specifically known to have a high risk of developingmalignancies.
Despite these advancements, we still possess a limited understanding of how aspirin exerts
its benefits. Our study utilized bioinformatics methods to establish a drug target network
to dissect the underlying molecular mechanisms of aspirin in cancer. We first determined
primary aspirin DPTs and functionally linked them to their respective proteins with the
help of drug interaction databases and protein–protein interaction database (Drugbank,
STITCH, and Mentha). Next, using samples from large-scale cancer genomic projects in
the cBio portal, we verified if there were previously identified genetic alterations that were
characterized for aspirin-associated genes/proteins. This method allowed us to clearly map
out aspirin-related DPTs and their associated genes to their biological pathways using the
available databases. Not only does this information contribute to the current knowledge of
how aspirin prevents cancer, it also uncovers potential treatment targets and provides new
directions for cancer therapeutics.

Using the tools available on the online platform, we identified 18 primary DPTs, 961
secondary DPT-associated genes/proteins, and eight enriched KEGG pathways linked to
aspirin-associated genes. These eight enriched KEGG pathways included several cancers.
The cBio portal was used to analyze associations between these genes and cancer based
on the TCGA database. The results show that most of the gene protein targets could be
found to have alteration in cancer samples, and the network analysis showed that TP53,
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PTEN, and RB1 might play important roles in the mechanism of aspirin. Human cancers
commonly displaymutated or inactivated versions of the TP53 and PTEN tumor suppressor
genes. TP53 is a crucial cell cycle regulator and is responsible for inducing apoptosis. As
shown in Fig. 3, TP53 was found to possess a central role in the gene networks that we
constructed. A large proportion of genetic defects in prostate cancer were identified to
be mutations or deletions that result in attenuations of TP53 and PTEN expressions
and culminate in enhanced carcinogenesis. By controlling PTEN transcription, p53 can
suppress tumorigenesis when there is PTEN deficiency. It has been reported that copy
number alterations of p53 and RB1 could be prognostic markers in prostate cancer as RB1
and TP53 were found to cooperate in suppressing metastasis (Ku et al., 2017). Functionally
inactivating RB1 and TP53 appeared to be enough to stimulate SCLC development in mice,
whereas restoring their expression in human SCLC cell lines halted further tumorigenesis
by the induction of G1-arrest and cell apoptosis (Fiorentino et al., 2016). It has been
reported that mutations in TP53 and CKDN2A define the genetic landscape of pancreatic
ductal adenocarcinoma. Alterations in TP53 can promote invasion and metastasis by
increasing PDGFRB transcription and reversing the repressive function of the p73/NF-Y
complex (Weissmueller et al., 2014). The p16 protein is encoded by the CDKN2A gene that
resides on chromosome 9p21 and operates as a tumor suppressing gene. It represents a
crucial cyclin-inhibiting cell cycle mediator, which serves to protect against premature
cell transition from the G1 into the S phase. It was reported that a higher proportion of
mutations occurred in CDKN2A in sample probands with familial pancreatic cancer (Zhen
et al., 2015). NF-κB is upregulated in prostate cancer, whereas the knockdown of NF-κB
decreased the expression of survivin, which is an important anti-apoptotic protein and
NF-κB target gene, and induced capase-3 cleavage (Zhuang et al., 2014). Thus, IKBKB was
named after its function of phosphorylating I κBmolecules, which is the inhibitor of NF-κB
transcription factors (Schmid & Birbach, 2008), and indicates that IKBKB could act as a
tumor suppressor. The Forkhead BoxO family of transcription factors is comprised of three
principal members, FOXO1, FOXO3, and FOXO4, which facilitate intracellular processes,
such as glucose metabolism, cell differentiation, cell cycle regulation and other cellular
functions. As a tumor suppressor, FOXO1 negatively regulates the highly oncogenic
phosphatidylinositol 3-kinase (P13K)/AKT signaling pathway (Wallis et al., 2015). For
colorectal cancer, aspirin has been recommended for use in the prevention of CRC. The
PIK3CA mutation has been found to be a potential predictive biomarker for CRC (Ogino
et al., 2014). Among the significantly enriched pathways from the KEGG analysis, many
pathways have been proven to be involved in cancer metastasis, such as the FoxO signaling
pathway (Lin et al., 2015), the AMPK signaling pathway (Goodwin et al., 2014), and the
MAPK signaling pathway (Li et al., 2016). This evidence suggests that aspirin might also
take part in the process of cancer metastasis and this should be verified in the further
research. It is noteworthy that apart from the cancers identified in this study, aspirin might
also have chemoprotective activity on other cancers, such as melanoma and ovarian cancer.
Previous studies suggest that long-term aspirin use may be associated with a reduced risk
of melanoma, especially among women (Famenini & Young, 2014; Gamba et al., 2013).
Aspirin use was also associated with a reduced risk of ovarian cancer, especially among
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daily users of low-dose aspirin (Trabert et al., 2014). If there was a continuous annotation
update in the database, then more targets would be found in aspirin.

Thus, aspirin has anti-tumorigenic and chemopreventative activities in multiple tumors
based on evidence from the bioinformatics analysis. In this study, the bioinformatics
analysis helped visualize the molecular network bridging connectivity between aspirin-
associated genes, aspirin and its primary targets, which demonstrates that these components
are functionally related. This phenomenon may be biologically linked to the clinical impact
that aspirin has on cancers, which may facilitate understanding of the tumor-preventing
mechanism(s) of aspirin. Then, the molecular pathological epidemiology (MPE) could be
used to study the ‘‘hot’’ proteins/genes as biomarker and individualized treatment as well
as the outcomes. Although several limitations exist in this study, such as the verification of
aspirin PPI, the evidence of a drug enrichment analysis baseline, and a lack of verification
of clinical outcomes, all of these limitations will be the focus of further research. By
establishing an aspirin target network, examining phenotypic variations in the context of
aspirin-associated genes, and by characterizing cancer-specific gene signatures we gained
insight into the role of aspirin in the prevention and treatment of diseases, including
cancers.

CONCLUSIONS
This bioinformatics analysis approach may significantly advance drug-disease research
and increase our knowledge of the pathophysiology of malignant disease, which will
significantly enhance our ability to devise techniques that can diagnose cancer earlier and
more accurately. Given the rapid growth spurt in the field of aspirin biology, we hope that
the results of this study will be able to provide new research directions for aspirin in cancer
and for other human diseases.
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