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Abstract

High fat diets can have detrimental effects on the skeleton as well as cause intestinal dysbiosis. 

Exercise prevents high fat (HF) diet-induced obesity and also improves bone density and prevents 

the intestinal dysbiosis that promotes energy storage. Previous studies indicate a link between 

intestinal microbial balance and bone health. Therefore, we examined whether exercise could 

prevent HF-induced bone pathology in male mice and determined whether benefits correlate to 

changes in host intestinal microbiota. Male C57Bl/6 mice were fed either a low fat diet (LF; 10 

kcal% fat) or a HF diet (60 kcal% fat) and put under sedentary or voluntary exercise conditions for 

14 weeks. Our results indicated that HF diet reduced trabecular bone volume, when corrected for 

differences in body weight, of both the tibia (40% reduction) and vertebrae (25% reduction) as 

well and increased marrow adiposity (44% increase). More importantly, these effects were 

prevented by exercise. Exercise also had a significant effect on several cortical bone parameters 

and enhanced bone mechanical properties in LF but not HF fed mice. Microbiome analyses 

indicated that exercise altered the HF induced changes in microbial composition by reducing the 

Firmicutes/Bacteriodetes ratio. This ratio negatively correlated with bone volume as did levels of 

Clostridia and Lachnospiraceae. In contrast, the abundance of several Actinobacteria phylum 

members (i.e., Bifidobacteriaceae) were positively correlated with bone volume. Taken together, 

exercise can prevent many of the negative effects of a high fat diet on male skeletal health. 

Exercise induced changes in microbiota composition could represent a novel mechanism that 

contributes to exercise induced benefits to bone health.
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Introduction

Osteoporosis affects more than 10 million people in the U.S. and annually accounts for over 

2 million bone breaks [1]. Many factors including obesity contribute to low bone mass [2]. 

Obesity in the U.S. is increasing and currently accounts for more than 2 billion people [3,4]. 

While the etiology of obesity is complex and involves both genetic and environmental 

factors [3], the rise in obesity is especially attributed to the western diet, which is high in fat, 

simple carbohydrates, and processed foods [5]. While a healthy increase in body mass can 

benefit bone health, due to the elevated weight bearing properties, these benefits can be lost 

within the context of a high fat (HF) diet-induced weight gain [2,6].

The impact of of obesity and HF diets on bone health is an area of significant concern [7–

11]. Rodent models provide a means to examine the direct effects of HF diets on bone health 

and obesity-related pathologies [12]. Many reports demonstrate that a high fat diet (ie: 60 

kcal% fat) given to young (5 to 6-week-old) rodents for 12 weeks results in reduced bone 

density, formation and stiffness as well as increased marrow adiposity [13–16]. High fat 

diets (60 kcal% fat) also promoted alveolar bone loss, with greater bone loss occurring in 

young compared to adult mice [17,18]. In fact, adult mice display variable responses to HF 

consumption, including increased bone density initially (possibly due to the increased 

weight-bearing load) followed by bone loss at later time points [19][20]. Interestingly, not 

all fats have negative effects on bone; unsaturated fat and diacylglycerol are reported to have 

beneficial bone effects [21–23].

Recent studies demonstrate that HF diets significantly alter the intestinal microbiota which 

may in turn lead to systemic pathologies such as metabolic syndrome and cardiovascular 

disease [24–28] The human gut harbors at least 1014 bacteria with unique metabolic 

functions that cannot be performed by the host [29,30]. Therefore, healthy composition of 

gut microbiota (eubiosis) plays an important role in physiological homeostasis. In contrast, 

intestinal dysbiosis, characterized by an imbalance of host microbes or a predominance of 

harmful bacteria in the gut can result in the pathogenesis of disease [31]. Environmental 

factors such as diet can modify microbiota composition. For example, mice fed a HF have 

reduced levels of Bacteroidetes in fecal samples, while a HF and high sugar diet increased 

the amount of Clostridium innocuum, Catenibacterium mitsuokai and Enterococcus spp. in 

the feces [27,32]. In humans, phyla level shifts have been reported with HF containing 

Western diets that appear to impact host metabolism and contribute to the development of 

obesity [25,26]. Obese individuals have an imbalance in primary bacterial phyla comprising 

the gastrointestinal microbiota, characterized by a decreased abundance of Bacteroidetes and 

a greater Firmicutes:Bacteriodetes ratio [26,29,33]. How intestinal dysbiosis can affect the 

skeleton is an area of active investigation [34–38]. The gut-bone signaling axis is thus 

receiving increasing attention as a therapeutic target to treat osteoporosis [36,39–45].
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Regular exercise is a well-accepted means to protect against many chronic diseases, 

including obesity [46]. Exercise can normalize body weight, reduce body fat, improve 

glucose metabolism as well as reduce markers of systemic inflammation in mouse models of 

diet-induced obesity [47–50]. Voluntary exercise can prevent HF-induced intestinal 

dysbiosis [51] as well as reduce the incidence of colon cancer [46][52]. Numerous studies 

demonstrate that exercise increases bone density, consistent with Wolf’s law of bone 

adaption to loading [53]. Although exercise and diet can influence bone health separately, it 

is not well known if exercise can prevent HF diet-induced changes in skeletal physiology. 

Thus, the current study tested the hypothesis that voluntary exercise can prevent HF-induced 

changes in bone structure and strength in male mice. Similar to published studies in female 

mice [54][55], we find that exercise prevents the effects of a HF diet on bone (osteoporosis 

and marrow adiposity). We further show that microbiota changes correlate with changes in 

bone health parameters and may represent a novel mechanism by which exercise may 

prevent the bone compromise reported with HF consumption.

Methods

Mouse Model

Male C57BL/6 mice were purchased from Jackson Laboratory (Bar Harbor, Maine) as 

littermates at 5 weeks of age. Mice were allowed to acclimate to their environment for 1 

week with a standard chow (18 kcal% fat, 58 kcal% carbohydrate, 24 kcal% protein) before 

diets were altered (at 6 weeks of age) and running wheels were mounted in cages for the 

corresponding voluntary exercise groups. After the acclimation period, mice were given 

either low fat diet chow (LF: 10 kcal% fat, 20 kcal% protein, 70 kcal% carbohydrate for a 

total of 3.85kcal/gm; catalog number D12450B) or high fat diet chow (HF: 60 kcal% fat, 20 

kcal% protein, 20 kcal% carbohydrate for a total of 5.24 kcal/gm; catalog number 12492) 

for 14 weeks (Research Diets Inc., New Brunswick, New Jersey). The source of fat is lard 

(cholesterol content is 72mg/100gm). Major differences between the diets are that the low 

fat diet contains 20 g% lard compared to 245 g% lard in the high fat diet, whereas the high 

fat diet contains 0 g% corn starch compared to 315 g% cornstarch in the low fat diet. For the 

groups allowed voluntary exercise, a non-load bearing 14.6 cm hamster wheel (PetSmart, 

Phoenix, AZ) was suspended from a metal rod in the cages and revolutions were recorded 

using a bike odometer. Running distances were calculated from the product of wheel 

circumference and revolutions, as previously described [51]. All mice were kept on a light/

dark (12 h/12 h) cycle at 23°C. Final body weight was determined at the end of week 12 on 

the protocol. At week 14 of the protocol mice were euthanized and tissues were harvested. 

The right and left soleus weights, heart and epididymal fat pad weights, and right and left 

tibia lengths were recorded. The protocol was approved by the Midwestern University 

Institutional Animal Care and Use Committee and studies were conducted in accordance 

with safe animal care and use following National Institutes of Health guidelines for humane 

animal care.
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Fasting blood glucose measurements

Fasting blood glucose was measured after 13 weeks of the diet and exercise protocols. Mice 

were fasted overnight in cages without bedding prior to measuring tail vein blood glucose 

levels using a OneTouch UltraMini® monitor (LifeScan, Inc. Milpitas, CA).

Micro-computed tomography (μCT) analysis

One tibia was fixed in formalin at harvest and placed in 70% ethanol 24 hours later for 

scanning using the GE Explore μCT system at a voxel size of 20 μm from 720 views with a 

beam strength of 80 kV and 450 μA. Thresholds were chosen based on the average of the 

system auto-thresholds obtained from the low fat diet sedentary mouse group. An average 

isosurface threshold of 700 for trabecular bone and 1200 for cortical bone was used. Each 

scan included tibias from each experimental group and a phantom control. Trabecular bone 

analyses were made in a region of trabecular bone immediately distal to the growth plate and 

extending to 10% of the tibia length toward the diaphysis and excluding the outer cortical 

shell. The trabecular region was oriented so that the region analyzed was perpendicular to 

the growth plate. Trabecular isosurface images were taken from the same region as the 

trabecular bone was analyzed. Trabecular bone mineral density (BMD), bone volume 

fraction (BV/TV), thickness (Tb.Th), spacing (Tb.Sp), and number (Tb.N) were determined 

using GE Healthcare MicroView software. Cortical measurements were performed in a 2 × 2 

× 2 mm cube aligned distally where the external diaphyseal shape transitions from pointed 

to nearly circular. Cortical bone parameters measured include thickness, cross sectional 

surface area, inner perimeter, outer perimeter, moment of inertia (MOI), marrow area, and 

bone mineral density values (measured using a 0.1 × 0.1 × 0.1 mm cube in the same region) 

were determined using MicroView software.

Histomorphometry

Tibias were fixed in 10% formalin for 24 hours then changed to 70% Ethanol. Fixed samples 

were processed on an automated Thermo Electron Excesior tissue processor for dehydration, 

clearing, and infiltration using a routine overnight processing schedule. Samples were 

embedded in Surgipath-embedding paraffin on a Sakura Tissue Teck II-embedding center. 

Paraffin blocks were sectioned at 5 μm on a Reichert Jung 2030 rotary microtome. Slides 

were stained for TRAP activity and counterstained with hematoxylin according to 

manufacturer’s protocol (387A-1KT, Sigma, St. Louis, MO). Slides were photographed in 5 

sections per slide at 25x magnification for osteoblast and osteoclast counts and at 10x 

magnification for adipocytes. Image Pro-plus software was used in analysis of slide images. 

In the tibia trabecular region, ranging from the growth plate to 2mm toward the diaphysis, 

osteoblast and osteoclast surface area was measured and expressed as a percentage of total 

bone surface. Similarly, adipocytes greater than 30 μm in size were counted in the same area 

and expressed as the number per μm of marrow area. Histological analyses and 

measurements were performed in a blinded manner to treatment groups.

Serum measurements

Blood was collected at the time of harvest via cardiac puncture, allowed to clot at room 

temperature for 5 min, and then centrifuged at 4000 rpm for 10 min. Serum was removed 
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and stored at −80°C. Tartrate-resistant acid phosphatase (TRAP5b) and Osteocalcin (OC) 

were measured using Mouse assay kits (SB-TR103, Immunodiagnostic Systems Inc., 

Fountain Hills, AZ and BT-470 Biomedical Technologies Inc., Stoughton, MA, respectively) 

according to the manufacturer’s protocol.

Mechanical Testing

Mouse tibial diaphyses were wrapped in gauze which was soaked in 1X phosphate buffered 

saline and stored at −20°C until ready for analysis. Tibia diaphysis were then thawed at 

room temperature and subjected to three-point bending. The bones were placed on the 

support of the apparatus with the flat lateral side facing down and loaded using an MTS 

Insight at 0.05 mm/s until failure. The stiffness, elastic modulus and ultimate stress were 

calculated as previously described [56]. Measures were done blinded.

Fecal pellet collection and DNA extraction, sequencing and analyses

Extraction of DNA from fecal bacteria followed the protocol of Wang et al. [57]. Fecal 

pellets were collected directly from the mice at week 12 of the diet and exercise protocol, 

and stored at −80 °C prior to lysis in 1 ml extraction buffer [50 mM Tris (pH 7.4), 100 mM 

EDTA (pH 8.0), 400 mM NaCl, 0.5% SDS] containing 20 μl proteinase K (20 mg/ml). 

Bacterial disruption was achieved using 0.1-mm diameter zirconia/silica beads (BioSpec 

Products, Bartlesville, OK) and a Mini-Beadbeater-8 k Cell Disrupter (BioSpec Products, 

Bartlesville, OK). Bacterial total DNA was extracted using phenol:chloroform:isoamyl 

alcohol technique [57]. DNA concentrations and purity were assessed by using the 

NanoDrop® (NanoDop ND-2000 spectrophotometer; Thermo Scientific, Wilmington, DE). 

A minimum ratio of 1.9 – 2.0 was accepted for the 260:280 ratio. Microbial sequencing was 

performed based on bacterial 16S rRNA gene sequencing analysis on the MiSeq Illumina 

platform (Argonne National Laboratory, Institute for Genomics and Systems Biology, Next 

Generation Sequencing Core) as previously described by Caporaso et al. [58,59]. 

Bioinformatic analysis of sequencing data was conducted using the QIIME 1.5.0 software 

suite [59]. Reads from all samples were clustered at 97% sequence identity into operational 

taxonomic units (OTUs) then aligned to the October 12th, 2012 Greengenes bacterial 

reference tree [60].

Statistical analyses

All measurements are presented as the mean ± SE. Statistical significance was determined 

by 2-way ANOVA using a Fisher’s LSD post-hoc test in Prism 7 (GraphPad, Inc.). Student t-

tests were used for comparisons of exercise between LF and HF groups. Pearson’s 

correlations were used to identify correlations to BV/TV. A p-value of less than 0.05 was 

considered statistically significant.

Results

Voluntary exercise prevents obesity

Six-week-old male C57BL/6 mice were randomly divided into HF or LF diet groups and 

then further divided into either a voluntary exercise group or a sedentary group for 14 weeks. 

Exercise mice spontaneously exercised, with no statistical difference in the total wheel 
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distances of the LF and HF exercise groups (Fig. 1A). At 20 weeks of age general body 

parameters were obtained. Exercise mice had significantly lower body weights than their 

sedentary counterparts (16% and 43.6% for LF and HF diets, respectively; Fig 1B). Based 

on 2-way ANOVA, both diet and exercise had a significant effect on final body weight. 

Exercise significantly prevented LF and HF weight gain (Fig. 1B). Indicators of exercise 

training, heart and soleus muscle mass, were weighed and confirmed a physiologic response 

to exercise. Heart weights normalized to final body weight were significantly higher in 

exercised mice of both diet groups (p = 0.0054, Fig. 1C). Diet alone did not influence heart 

weights. Exercise also significantly increased soleus muscle mass in both diet groups, by 

51.7% in the LF/exercise and 63.1% in the HF/exercise mice (Fig 1D, p < 0.0001). While 

epididymal fat pad mass was greatest in the sedentary HF diet mice, it was decreased in both 

diet groups by exercise (Fig 1E, p < 0.0001); LF/exercise mice had 37.6% less epididymal 

fat weight and HF/exercise mice had 64.5% less in pad weight than their corresponding 

sedentary controls. Both diet and exercise significantly influenced final fat pad weights (Fig 

1E, p < 0.0001). Examination of metabolic status by fasting serum blood glucose levels 

suggests that exercise prevented metabolic dysregulation associated with a HF diet (Fig. 1F). 

Tibia length measurements indicated that bone growth was not influenced by diet or exercise 

treatments (Fig. 1G).

Influence of diet and exercise on bone health

To determine the impact of the HF diet and exercise on bone health, we examined two 

different bone sites: tibia and vertebrae (L3). When tibial bone volume fraction (BV/TV) is 

not corrected to weight, exercise decreased BV/TV in LF mice likely due to the weight loss 

(Table 1). The HF diet fed sedentary mice had significantly lower tibial BV/TV than LF 

sedentary mice. Exercise in HF mice modestly increased BV/TV when the values are not 

corrected for body weight (Table 1). Vertebral BV/TV (not corrected for body weight) did 

not show a difference between groups (Table 2), suggesting that vertebral BV/TV was 

relatively constant across groups. However, because of the significant differences in body 

mass, BV/TV data was also corrected to body weight and a significant protective effect of 

exercise was demonstrated in both tibial and vertebral BV/TV in HF mice (Fig. 2A–D). 

Two-way ANOVA analyses indicated that diet and exercise interact to influence bone 

volume at both tibia and vertebral sites. Trabecular bone structural parameters were also 

affected. In tibia, exercise had negative effects on trabecular number and spacing in LF mice 

(Table 1). In contrast, exercise increased trabecular thickness in the HF mice (Table 1).

Exercise prevents marrow adiposity in HF diet fed mice

Consistent with a reciprocal relationship to bone density, the HF/sendentary mice displayed 

an increase in bone marrow adiposity. Exercise prevented the marrow adiposity in the HF 

mice, and had only a modest effect on marrow adiposity in LF mice (Fig. 2E, F). Additional 

cortical bone analyses indicated that LF/exercise mice had lower cortical area and thickness 

(Fig. 3B) but greater cortical BMD (Fig. 3B) and inner perimeter (Fig. 3C), compared to LF/

sedentary mice. Similar cortical responses were seen in HF/exercised mice, except for the 

decrease in cortical area. Two-way ANOVA revealed that exercise significantly affected 

cortical area, thickness, inner perimeter and marrow area. When expressed relative to body 
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weight, the cortical area, thickness and BMD were affected by both exercise and diet (Fig 

3D).

Effect of exercise and diet on bone strength

Calculated strength, moment of inertia, based on microcomputed tomography measures 

indicated there were no differences between groups, even when calculated in multiple 

directions (lxx, lyy) (Fig 4). However, three-point bending analyses indicated that elastic 

modulus and stiffness changed in response to exercise in the LF group but not the HF group 

(Fig 4).

Influence of diet and exercise on bone formation and resorption

Examination of osteoblast and osteoclast parameters indicated no significant differences 

between groups, except that serum TRAP levels were lower in the HF/exercise compared to 

LF/exercise groups (Fig 5). This suggests that bone formation and resorption responses 

likely occurred much earlier in the response to exercise and that differences were not 

detectable after 14-weeks of exercise training. To identify possible associations between 

parameters that we measured and BV/TV we ran Pearson Correlation Analyses but general 

parameters such as body weight, muscle weight and marrow adipocyte number did not 

correlate with BV/TV or BV/TV/BW (data not shown).

Gut microbiome changes in response to diet and exercise

Mouse fecal microbiota were sequenced to determine if there were changes in the 

microbiota composition that could be associated with changes in BV/TV. We focused on the 

Firmicutes to Bacteriodetes ratio, since these bacterial phyla are the most abundant in the GI 

tract and a higher ratio is linked with dysbiosis and disease. The HF diet only modestly 

increased the Firmicutes to Bacteriodetes ratio in the sedentary group compared to the 

corresponding LF sedentary group, while exercise significantly decreased the ratio in the HF 

group (Fig 6A). Two-way ANOVA analysis demonstrated that exercise had a significant 

effect on intestinal microbial balance, reducing the Firmicutes:Bacteriodetes ratio 

(p=0.0281).

Further examination by Pearson Correlation analyses identified associations between 

microbiota composition and BV/TV. Specifically, a significant negative correlation was 

found between the Firmicutes:Bacteriodetes ratio and BV/TV/BW (p= 0.05, r = −0.4379; 

Fig 6B), consistent with dysbiosis being linked to bone loss [34]. Relationships between 

BV/TV and changes in specific bacteria (phylum, class, order and family) were also found. 

For example, Firmicutes sub-groups, Clostridia and Lachnospiraceae (class and family 

subgroups, respectively) were negatively associated with BV/TV/BW (Fig 6C). Other 

Firmicutes family members also demonstrated a negative correlation, but were not 

statistically significant (data not shown). A strong positive correlation was demonstrated 

between members of the Actinobacteria phylum and BV/TV/BW (Fig 6D; p <0.0015).
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Discussion

The Western diet comprised of high fat is thought to be a key contributor to the current 

epidemic of obesity across the U.S. [4,5]. Diet and obesity are linked with intestinal 

dysbiosis [26,28–30] as well as bone loss [13–15,17][61] in both human and animal studies. 

On the other hand, regular exercise has been shown to benefit not only overall health but 

also reduce obesity and benefit skeletal health [46–50,53]. In the current study, we examined 

the effect of voluntary exercise, during the period of 6–20 weeks of age, on HF-induced 

bone loss in male mice. Our findings demonstrate that voluntary wheel running prevented 

HF diet induced marrow adiposity as well as trabecular bone volume loss (when corrected to 

body weight). Interestingly, exercise had an effect on cortical bone parameters in both HF 

and LF mice but benefited bone strength parameters in LF mice only. Associated with these 

effects, our results clearly show that exercise affects microbiota composition and reduces the 

Firmicutes/Bacteridetes ratio which negatively correlated with bone volume fraction relative 

to body weight. Given the recent evidence in the literature supporting the role of microbiota 

in bone health, we propose that exercise may prevent HF-induced bone loss through changes 

in microbiota composition.

Numerous studies support the link between the composition of the microbiota and the 

regulation of bone density. Intestinal dysbiosis (microbiota imbalance favoring pathogenic 

over beneficial bacterial strains) as observed in inflammatory bowel disease is negatively 

associated with bone density [34]. Similarly, oral microbiota composition of mice promotes 

periodontal disease when transferred to germ-free mice [62]. On the other hand, treatment 

with prebiotics or probiotics, which promote a healthy microbiota can also promote skeletal 

health. For example, treatment of ovariectomized mice with probiotic Lactobacillus reuteri, 
LGG or VSL#3 can shift the microbiota composition as well as prevent estrogen deficiency 

induced bone loss [37,63,64]. Probiotics are also demonstrated to benefit the bone density of 

healthy male mice [65], diabetic mice [66], female mice experiencing inflammation [67] and 

periodontal disease [68–70]. Prebiotic ingestion promotes healthy microbiota composition 

and bone health parameters in mice and humans [35,43,71,72]. However, specific microbiota 

compositions required for bone health are not known. Our study suggests that high 

Firmicutes:Bacterodetes ratios negatively correlate with bone density. This is consistent with 

a recent report indicating higher Firmicutes:Bacterodetes ratios in osteoporotic versus 

normal control patients [73]. Interestingly, a postitive correlation was found between 

members of Actinobacteria phylum (including the Bifidobacteriaceae family) and bone 

density. Members of the Bifidobacteriaceae family are known gut protecting bacteria, that 

reduce intestinal inflammation and optimize epithelial cell health [74]. Additional studies 

are needed to determine if the gut-bone relationships depend upon these mechanisms.

Changes in the microbiota composition can affect bone health in a variety of ways, including 

by influencing intestinal barrier strength, immune cell activation, and gut-bone signaling 

pathways such as incretins and serotonin [37,41,45,75–77]. In addition, changes in the 

microbiota and diet can lead to differences in metabolites produced by the bacteria [28]. For 

example, short chain fatty acids (an end-product of bacterial digestion of fiber, a prebiotic) 

are demonstrated to enhance calcium absorption in the colon [78,79] and can also directly 
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benefit osteoblast maturation [80]. Phytoestrogens/polyphenols can also benefit bone 

directly through their enhancement of estrogen receptor signaling [53][81–83].

Only a few studies have examined the effect of exercise on HF diet induced bone pathology. 

Kang et al. [84] examined the bone health of 8-week-old rats fed a HF diet (45% kcal fat) 

for 8 weeks followed by an 8 week period of swimming. HF rats displayed reduced femur 

and tibia BMD, while swimming exercise raised HF rat bone density to control levels. In 

another study, Styner et al. [55] feed 10-week-old female C57BL/6 mice a HF (45 kcal fat 

%) diet and further divided the groups into sedentary and exercise (running wheel) for 6 

weeks. Both regular diet and HF mice displayed increases in tibial BV/TV in response to 

exercise (from 10 to 14% for regular diet and from 9.2 to 13% for high-fat diet fed mice). 

Several cortical bone parameters were also increased in response to exercise, such as cortical 

area and periosteal and endosteal perimeters regardless of regular diet or high fat diet. 

However, HF alone did not cause bone loss. Interestingly, in our studies both HF/sendentary 

and the LF/exercise mice displayed a decrease bone volume fraction compared to LF mice. 

Trabecular bone structural analyses also looked worse in the LF exercise group. This 

suggests that LF diet may not benefit bone health under exercise conditions. The data 

suggests that the compromise to bone volume fraction in LF exercise mice was secondary to 

the reduced weght bearing load and not to a reduction in calorie consumption (data not 

reported). We did observe a trend to increase BV/TV in the HF exercise compared to HF 

sedentary group. However, when corrected to body weight, tibial and vertebral bone volume 

fraction did not change in LF mouse groups (suggesting the bone loss was coordinate with 

weight loss) but decreased in the HF sedentary mice. Similar to Styner et al. [55], cortical 

analyses indicated an increase in endosteal perimeter in HF mice. Previous studies support 

that HF can be detrimental to cortical bone parameters, especially when fed to growing mice 

[85]. Several variables likely contribute to the different responses between our study and the 

one by Styner [55] including mouse sex (male versus female), mouse age (study began at 6 

versus 10 weeks), percent HF (60% rather than 45%), diet comparision (10% LF versus 18% 

fat), and study length.

Examination of marrow adiposity in the Styner et al. [55] study indicated that HF increases 

and exercise decreases marrow adiposity. Similarly, we found that exercise prevented HF 

induced marrow adiposity in male mice. Recently, a second study by Styner et al. (55), in 4-

week-old female mice fed a 10% low fat or 45% high fat diet for 12 weeks and then allowed 

to exercise for 6-weeks (while still consuming the diets) indicated that HF increases bone 

volume while exercise had no effect on BV/TV but did decrease marrow adiposity. In our 

study, exercise decreased marrow adiposity only in HF mice, however bone strength 

measures were only benefited in LF mice, which demonstrated increased elastic modulus 

and stiffness. This suggests that HF may suppress beneficial bone mineral/matrix changes in 

response to exercise.

It is important to note that in the current study, diets were given to mice for 14 weeks, 

beginning at 6-weeks of age, a stage where bone growth/modeling is occurring. We were 

concerned that this could impact bone growth and affect our measurements. However, 

measures of tibial length indicated that the 60% high fat diet did not affect growth. This is 

consistent with studies by Bielohuby et al [86] who found that 4-week-old male rats fed a 
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HF and low carbohydrate diet (66% fat, 1% carbohydrate) for 4-weeks did not display any 

growth suppression. However, a 94% fat diet does reduce growth, likely due to reduction of 

protein intake [86]. Similar to our study, the HF rats exhibited bone loss and reduced 

markers of bone formation, while resorption was unaffected [86].

In summary, our studies support that a HF diet can modify bone density and the microbiota 

while exercise prevents many of these changes. Our studies further implicate a role for the 

microbiota as a key therapeutic target for bone health. Additional studies are needed to tease 

out significant relationships and identifying patterns of bacterial compositions that benefit 

bone health. Certainly, given the epidemic of obesity in the US, this is an important area of 

research that could shed light on the role of the gut-bone signaling axis in contributing to 

load induced bone health.
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Highlights

• Exercise prevents high fat diet induced bone loss in male mice when corrected 

to body weight.

• Exercise prevents high fat diet induced marrow adiposity in male mice.

• Exercise enhances bone mechanical properties in low-fat but not high fat fed 

male mice.

• Exercise decreases the Firmicutes/Bacteriodetes ratio in high fat fed male 

mice.

• The abundance of Actinobacteria phylum (including Bifidobacteriaceae) 

positively correlates with bone volume.
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Figure 1. General mouse body parameters confirm exercise (Ex) reduces fat mass and increases 
muscle mass
Male mice (6 weeks of age) were fed a low fat or high fat diet for 14 weeks. Exercise groups 

(Ex) had running wheels in their cage, sedentary groups (Sed) did not. At 20 weeks of age, 

the experiment was ended and mouse weight, tissue mass and bone length were determined. 

A) Total distance traveled in running wheel during the course of the experiment (14 weeks) 

as determined by wheel monitors (n=6/group). B) Body weight expressed as a percent 

increase relative to baseline weights. C–E) Final heart, soleus muscle and epididymal fat pad 

mass corrected to final body weight, respectively (n ≥ 16 per group). F) Fasting blood 

glucose levels. G) Tibia length at harvest (n ≥ 16 per group). Values are average ± SE. For 

B–F statistical analyses were performed by 2-way ANOVA with Fisher post-test. * p ≤ 0.05, 

** p ≤ 0.01, **** p ≤ 0.0001.
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Figure 2. Exercise prevents trabecular bone loss and marrow adiposity
Male mice (6 weeks of age) were fed a low fat or high fat diet for 14 weeks. Exercise groups 

(Ex) had running wheels in their cage, sedentary groups (Sed) did not. At 20 weeks of age, 

bones were scanned by microcomputed tomography and sectioned for histology. A) 

Proximal tibia metaphyseal bone volume fraction (BV/TV%) corrected for body weight. 

Isosurface images shown to right. (n ≥ 16) B) Representative tibial isosurfaces. C) Lumbar 

vertebrae (L3, L4) BV/TV% corrected for body weight. Isosurface images shown to right (n 

≥ 9). D) Representative vertebral isosurfaces. E) Number of adipocytes in the marrow area 

of the proximal tibia. F) Representative histological images at a magnification of 10x. (n ≥ 

11). Values are averages ± SE. Statistical analysis was performed by 2-way ANOVA with 

Fisher post-test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.01, **** p ≤ 0.0001.
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Figure 3. Exercise alters cortical bone structure even in mice fed a high fat diet
Tibias obtained from low fat or high fat fed male mice, 20 weeks of age, that were sedentary 

(Sed) or exercised (Ex), were analyzed by microcomputed tomography for cortical bone 

changes. A) Representative isosurface of cortical bone cross sections of the tibia diaphysis. 

Cortical bone parameters measures: B) cortical area (Ct.Ar), cortical thickness (Ct.Th), 

crotical bone mineral density (Ct.BMD); C) endosteal perimeter (Ec.Pm), periosteal 

perimeter (Ps.Pm), marrow area (Ma.Ar); and D) measures expressed relative to body 

weight (BW). Values are averages ± SE. Statistical analysis was performed by 2-way 

ANOVA with Fisher post-test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.01, **** p ≤ 0.0001. n = 

21, 18, 20, 20.
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Figure 4. Cortical bone strength analyses
Tibia diaphyseal cortical bone strength analyses in sedentary (Sed) and exercise (Ex) mice 

fed low or high fat diets for 14 weeks. Top row: Microcomputed tomography analyses of 

cortical bone strength: polar moment of inertia (z-plane) and moment of inertia in x and y 

planes. n = 21, 18, 20, 20. Bottom row: Strength testing of tibias. n = 10, 7, 9, 8. All values 

are averages ± SE. Statistical analysis was performed by 2-way ANOVA with Fisher post-

test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.01, **** p ≤ 0.0001.
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Figure 5. Osteoblast and osteoclast surface and serum marker levels
Bone remodeling markers were assessed in male mice 20-weeks of age, at the end of the 14-

week study on mice that were sedentary (Sed) or exercises (Ex) and fed low or high fat diets. 

Proximal tibia histomorphometry analyses are shown in graphs on left (n ≥ 12). Serum 

osteoblast and osteoclast markers (osteocalcin and TRAP) are shown on the right 

(n=6,5,6,6). Values are averages ± SE. Statistical analysis was performed by 2-way ANOVA 

with Fisher post-test. * p ≤ 0.05.

McCabe et al. Page 22

Bone. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Correlation between microbiome and bone volume fraction
Male mice were fed with either low fat or high fat diet for 14-weeks and allowed to 

voluntarily exercise using a running wheel in cages (for exercise mice only). Fecal material 

was collected at time of harvest and analyzed for microbiota composition. A) Firmicutes/

Bacteriodetes ratio for each group. Statistical analysis was performed by 2-way ANOVA 

with Fisher post-test. * p ≤ 0.05. B) Pearson’s correlation analyses for Firmicutes/

Bacteriodetes ratio compared to BV/TV/BW. Each dot represents one mouse. C) Pearson’s 

correlation analyses were used to examine further relationships between the Firmicutes 

family of bacteria (sub-phylum) populations and BV/TV corrected for body weight. D) 

Pearson’s correlation analyses were used to examine relationships between subpopulations 

of the Actinobacteria bacterial phylum and BV/TV corrected for body weight. Gray stars 

denote significant correlations. n = 6, 6, 5, 5.
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Table 1

Tibia Trabecular Parameters

Low Fat Diet High Fat Diet

Sedentary (n = 21) Exercise (n = 17) Sedentary (n = 19) Exercise (n = 18)

BVF (%) 31.6 ± 2.9 24.9 ± 2.0 * 22.3 ± 1.4 ** 26.6 ± 2.2

BMD (mg/cc) 149.6 ± 12.0 135.8 ± 10.3 133.6 ± 4.6 150.9 ± 10.3

BMC (mg) 0.36 ± 0.03 0.33 ± 0.02 0.31 ± 0.01 0.31 ± 0.01

Tb.Th (μm) 43.7 ± 1.4 43.6 ± 1.1 40.1 ± 0.6 45.8 ± 1.5 ^

Tb.N (1/mm) 6.80 ± 0.43 5.66 ± 0.39 * 5.66 ± 0.30 5.90 ± 0.40 *

Tb.Sp (μm) 110.9 ± 13.0 151.1 ± 16.8 * 145.4 ± 9.7 137.8 ± 15.0

BVF, bone volume fraction; BMD, bone mineral density; BMC, bone mineral content; Tb.Th, trabecular thickness; Tb.N, trabecular number; 
Tb.Sp, trabecular spacing.

*
p ≤ 0.05,

**
p ≤ 0.01, compared to low fat sedentary,

^
p ≤ 0.01, compared to high fat sedentary.

Statistics 2-way ANOVA with Fisher’s post-test.
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Table 2

Vertebral Trabecular Parameters

Low Fat Diet High Fat Diet

Sedentary (n=13) Exercise (n=9) Sedentary (n=13) Exercise (n=13)

BVF (%) 82.5 ± 1.4 76.7 ± 2.0 77.2 ± 2.2 79.7 ± 2.3

BMD (mg/cc) 311 ± 7 286 ± 6 * 282 ± 8 ** 289 ± 7

BMC (mg) 0.56 ± 0.03 0.48 ± 0.03 0.51 ± 0.03 0.50 ± 0.05

Tb.Th (μm) 99.2 ± 4.8 85.2 ± 4.3 85.4 ± 6.7 88.5 ± 5.2

Tb.N (1/mm) 8.5 ± 0.3 9.1 ± 0.2 9.4 ± 0.4 9.0 ± 0.3

Tb.Sp (μm) 20.2 ± 1.1 25.4 ± 1.5 23.7 ± 1.7 22.4 ± 1.8

BVF, bone volume; BMC, bone mineral content; BMD, bone mineral density; Tb.Th, trabecular thickness; Tb.N, trabecular number; Tb.Sp, 
trabecular spacing. Values are mean ± SE.

*
p ≤ 0.05,

**
p ≤ 0.01 to sedentary low-fat mice.
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