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Abstract
Portal hypertension (PHT) is an important consequ-
ence of liver cirrhosis, which can lead to complications 
that adversely affect a patient’s quality of life and 
survival, such as upper gastrointestinal bleeding, 
ascites, and portosystemic encephalopathy. In recent 
years, advances in molecular biology have led to major 
discoveries in the pathological processes of PHT, 
including the signaling pathways that may be involved: 
PI3K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and 
farnesoid X receptor. However, the pathogenesis of 
PHT is complex and there are numerous pathways 
involved. Therefore, the targeting of signaling path-
ways for medical management is lagging. This article 
summarizes the progress that has been made in 
understanding the signaling pathways in PHT, and 
provides ideas for treatment of the disorder.
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Core tip: Portal hypertension (PHT) is a syndrome of 
portal venous system hemodynamics in liver cirrhosis. 
Current therapeutic options are often insufficient to 
prevent progression of the disease. We therefore may 
find more effective clinical treatments by understanding 
the signal pathways involved in the disease. This paper 
is an up-to-date and thorough review of the signaling 
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pathways that may be involved in the pathogenesis of 
PHT in liver cirrhosis.
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INTRODUCTION
Portal hypertension (PHT), the main consequence of 
cirrhosis, can lead to complications, such as variceal 
hemorrhage, ascites, and portosystemic encephalo-
pathy. These complications may cause both diminished 
quality of life and mortality, and also may necessitate 
liver transplantation[1-3]. PHT is characterized by 
abnormally elevated intrahepatic venous pressure, 
which is due to various etiological factors. Increased 
intrahepatic vascular resistance (IHVR) and increased 
portal venous blood flow are the major pathological 
processes in the development of PHT[4]. IHVR is mainly 
determined by liver fibrosis, intrahepatic vasocon-
striction, intrahepatic angiogenesis, and abnormal blood 
flow. Narrowing of intrahepatic microvessels, caused 
by fibrosis, can increase resistance and be responsible, 
in part, for increased responsiveness of these venules 
to vasoconstrictive substances[5]. Angiogenesis, the 
formation of new vessels from preexisting vasculature, 
is an important pathophysiological feature of PHT 
that enhances IHVR[4,6]. Another feature of PHT is the 
development of hyper-dynamic splanchnic circulation, 
with an increased blood flow in splanchnic organs that 
drain into the portal vein and a consequent increase 
in portal venous inflow[7]. The increased splanchnic 
and portal blood flow further elevates portal pressure. 
Although the pathophysiology of PHT has been studied 
extensively, its precise mechanisms are undefined.

An improved understanding of the molecular mech-
anisms of PHT is crucial to developing effective treatment 
strategies. Despite the incomplete knowledge of PHT 
pathophysiology, certain molecular pathways have been 
identified. The current review reveals that PI3K-AKT-
mTOR, RhoA/Rho-kinase, JAK2/STAT3, farnesoid X 
receptor (FXR) and other signaling pathways might be 
targetable in the treatment of PHT. We believe that this 
summary of the roles of the signaling pathways in PTH 
may help investigators find relevant targets for PHT 
treatment.

PI3K-AKT-MTOR SIGNALING
Overview of mTOR
The kinase known as targets of rapamycin (TOR), 
belonging to the phosphatidylinositol kinase-related 
kinase, is an evolutionarily conserved protein kinase that 
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was first found in yeast. The homologous substance of 
TOR in mammals is referred to collectively as mTOR[8]. 
mTOR is a ubiquitously expressed serine kinase that 
regulates cell growth and proliferation, and mTOR 
signaling plays a role in immunological processes, an-
giogenesis and fibrogenesis[9,10]. The mTOR signaling 
pathway is highly active in the evolution of PHT[11]. 
Mejias et al[9] found that rapamycin could reduce portal 
pressure by blocking mTOR and thus alleviate hyper-
dynamic visceral circulation, an effect that may be due 
to rapamycin’s inhibition of lymphocyte proliferation, 
neovascularization, and fibrosis.

mTOR regulates fibrosis
Mammals have two mTOR complexes: mTORC1 and 
mTORC2. mTORC1 is an important regulator of ribosome 
production and translation and has two downstream 
effectors, including the eukaryotic initiation factor 
4E-binding protein-1 (4E-BP1) and ribosomal protein 
S6 kinase. mTORC1 integrates signaling from growth 
factor receptors, then activates the p70 ribosomal 
protein S6 kinase (p70S6K) by phosphorylation and 
inhibits the eukaryotic initiation factor 4E-BP1. Thus, 
mTORC1 forms two different signaling pathways to 
regulate mRNA translation and to control protein 
synthesis[12,13]. mTORC2 phosphorylates the serine/
threonine protein kinase Akt/protein kinase B at serine 
residue Ser473[14] and participates in the regulation of 
phosphorylation and activation of cytoskeletal actin, 
protein kinase B (Akt/protein kinase B), protein kinase C, 
and glucocorticoid-induced protein kinase 1 in serum[8]. 
In vivo, growth factors, mitogen and other hormones 
lead to the activation of p70S6K by phosphorylation of 
mTOR through phosphatidylinositol 3-kinase-related 
kinase (PI3K)-Akt pathways, which upregulate the 
expression of cyclin D1, D3 and E to control cell-cycle 
progression[10]. One effect of this activity is increased 
proliferation of hepatic stellate cells (HSCs). Activation 
of HSCs increases the contractility of intrahepatic 
vessels, thereby increasing resistance to liver blood flow. 
p70S6K phosphorylation stimulates the production of 
the synthesis of collagen and other extracellular matrix 
components, predominately type Ⅰ collagen[15]. It is 
generally accepted that the activation of HSCs leads 
to fibrosis, which is one of the important steps in the 
development of PHT[16]. It has been proposed that 
activation of mTOR promotes both HSC proliferation 
as well as the synthesis of extracellular matrix, which 
accelerates liver fibrosis and the development of 
PTH[15,16].

PI3K-Akt regulates mTOR signaling involved in 
angiogenesis
Akt, also called protein kinase B, is a threonine protein 
kinase akin to the PI3K protein family. One of the 
functions of Akt is direct phosphorylation of mTOR. 
Another is maintaining Rheb’s GTP-binding state by 
inactivating tuberous sclerosis complex 2 to enhance 
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mTOR activity[17,18]. Akt is an important upstream 
mediator of mTOR and is regulated by mTORC2[14]. 
In previous studies[15,19], the Akt/mTOR signaling 
pathway was activated in bile duct ligation-induced 
cirrhotic rats and was implicated in the activation 
of HSCs. The Akt/mTOR signaling pathway is the 
major downstream effector of PI3K and regulates 
cell growth, proliferation, motility and apoptosis[14,17]. 
While AKT directly affects mTOR, mTORC1 reciprocally 
regulates the growth factor responsiveness of PI3K 
and Akt through feedback inhibition[20,21]. The direct 
phosphorylation of 4E-BP1 by mTORC1 reportedly 
initiates translation of hypoxia inducible factor-1α 
(HIF-1α), which promotes the expression of vascular 
endothelial growth factor (VEGF), thereby regulating 
angiogenesis in physiological and pathological con-
ditions[22,23]. Under certain conditions, VEGF and 
endothelial cell surface receptors bind to activate the 
PI3K-Akt signaling pathway and further activate mTOR 
kinase, thereby enhancing portal pressure (Figure 1). 
It may be effective for inhibiting the development of 
PHT by inhibiting Akt or mTOR directly. However, the 
specific effect needs further investigation.

RHOA/RHO-KINASE SIGNALING
Activation of the RhoA/Rho-kinase signaling pathway, 

by participating in vasoconstriction and vasodilation 
responses[24-26], is one of the key mechanisms of PHT 
development.

Overview of RhoA
The Ras homolog gene family member A (RhoA) is a 
member of the small molecular weight G proteins in the 
Ras superfamily. RhoA signaling participates in many 
cellular responses, including cell contraction, adhesion, 
proliferation and migration[27]. RhoA, a member of 
the GTP-binding protein Rho GTPase family, circulates 
between activated GTP-RhoA and stationary GDP-
RhoA. RhoA-GDP and RhoA-GTP are interconverted 
by a dephosphorylation/phosphorylation process and 
then trigger or terminate a cellular cascade activation/
reaction, acting as a “molecular switch”. Only RhoA 
activates Rho-kinase in the membrane-bound activated 
state and has downstream effects[28,29].

RhoA/Rho-kinase signaling and portal pressure
Geranylgeranyl pyrophosphate (GGPP), as a key 
substance in the transfer of RhoA to cell membranes, 
plays a role in the activation of the RhoA/Rho kinase 
signaling pathway. RhoA is linked to GGPP, a byproduct 
of cholesterol synthesis, to “lipidize” GGPP so it can be 
inserted into the cell membrane to form membrane-
bound RhoA (a small GTPase protein on the cell surface) 
and activate the RhoA/Rho kinase pathway by binding 
to angiotensin[26,30,31]. Trebicka et al[32] found that statins, 
3-hydroxy-3-methyl-glutaryl CoA reductase inhibitors, 
inhibited the expression of 3-hydroxy-3-methyl-glutaryl 
CoA reductase, which downregulated the expression 
of GGPP and then blocked the RhoA/Rho-kinase 
signaling pathway, leading to reduced activation of 
HSC. Liu et al[33] found that sodium ferulate can affect 
the activation of RhoA and the contraction of activated 
HSC by reducing the synthesis of GGPP in HSCs in 
liver cirrhosis. These actions reduce the intrahepatic 
resistance in cirrhotic rats. Zhang et al[34] found that a 
selective agonist of estrogen receptor β could reduce 
IHVR by reducing RhoA expression, thus inhibiting the 
myosin light chain activity and increasing the levels 
of endothelial nitric oxide synthase (eNOS), which 
leads to decreased portal vein pressure in cirrhotic 
ovariectomized rats.

Wei et al[35] demonstrated that sodium ferulate 
inhibits the hepatic RhoA/Rho-kinase signaling pathway 
and increases eNOS synthesis, eventually leading to 
reduced hepatic portal pressure in cirrhotic rats. This 
reaction indicates that the RhoA/Rho-kinase signaling 
pathway is involved in the formation of PHT. The 
activation of Rho kinase increases portal pressure in 
two ways: first, by inhibition of myosin light chain phos
phatase, which produces a downstream effect that 
increases smooth muscle contractions[29,36]. Myosin 
phosphatase, myosin light chain, adducin, mono serine 
protein kinase, and protein kinase C-protein inhibitor 
protein (CPI-17) are substrates of Rho kinase. The 
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Figure 1  PI3K-AKT-mTOR signaling pathways in the development of 
hepatic portal hypertension. PI3K-AKT-mTOR: In vivo, growth factors, 
mitogens and hormones interact with PI3K, which activates Akt that then 
activates mTOR. Mammals have two mTOR complexes: mTORC1 and 
mTORC2. Akt can phosphorylate mTORC1 and then activate p70S6K via 
phosphorylation to inhibit 4E-BP1. Activated p70S6K promotes the proliferation 
of HSCs and stimulates both the production of ribosomes and the synthesis 
of collagen and other extracellular matrix constituents. mTORC1 can inhibit 
4E-BP1, promote the splitting of VEGF, and regulate angiogenesis. Akt can 
inactivate tuberous sclerosis complex 2 and enhance mTOR activity. mTORC2 
regulates Akt. Akt: Protein kinase B; ECM: Extracellular matrix; HSC: Hepatic 
stellate cell; mTOR: Mammalian targets of rapamycin; mTORC: Mammalian 
targets of rapamycin complex; p70S6K: p70 ribosomal protein S6 Kinase; 
TSC2: Tuberous sclerosis complex 2; VEGF: Vascular endothelial growth 
factor; 4E-BP1: 4E-binding protein-1.
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most studied Rho kinase substrates involved in PHT 
formation are myosin phosphatase, myosin light chain 
and CPI-17. Activation of Rho kinase leads to the 
phosphorylation of myosin targeting subunit 1, which 
inactivates myosin phosphatase. Inactivation of myosin 
phosphatase did not lead to dephosphorylation of 
myosin light chain. This, in turn, leads to an increase 
in cytoplasmic myosin light chain phosphorylation and 
increased crosslinking of myosin, thereby promoting 
vasoconstriction. CPI-17 was combined with myosin 
light chain phosphatase to inhibit the activation of 
myosin light chain phosphatase and promote the 
contraction of smooth muscle cells[37]. The second way 
of increasing portal pressure is the downregulation of 
eNOS expression and reduction of its activity[38]. The 
activity of eNOS, which is another downstream target 
of the RhoA/Rho-kinase pathway[39] that is involved 

in regulating portal pressure, may be negatively-
regulated by RhoA/Rho-eNOS activity; this effect 
causes the relaxation of vascular smooth muscle and 
plays a key role in maintaining the steady state of the 
vascular wall[40]. Rosado et al[41] found that terutroban, 
a thromboxane-A2/prostaglandin-endoperoxide 
receptor antagonist, reduced portal pressure by 
inhibiting Rho-kinase activity and enhancing eNOS-
dependent vasodilatation in cirrhotic rats.

In addition, coupling of the angiotensin-type Ⅱ 
receptor 1 (AT1R) to heterotrimeric G proteins (Gaq/11 
and Ga12/13) allows stimulation and activation of 
the RhoA/Rho kinase pathway, which is involved in 
extracellular matrix production; these reactions are 
crucial in the development of fibrosis and PHT[42,43] 
(Figure 2).

Thus, the RhoA/Rho kinase signaling pathway is 
important in regulating IHVR and increasing portal 
pressure. It may be effective for inhibiting vasocon-
striction by inhibiting the key mechanisms in the RhoA/
Rho-kinase signaling pathway, such as phosphorylation 
of myosin light chain directly. However, the specific 
effect needs further investigation.

JAK2/STAT3 SIGNALING
Overview of JAK2/STAT3
The janus kinase/signal transducers and activators 
of transcription (JAK/STAT) signaling pathway parti-
cipates in numerous pathophysiological processes. 
Various cytokines produce corresponding tissue and 
cell-specific effects through combinations of four 
members of the JAK family and seven members of 
the STAT family. JAK2, the most conserved isoform 
of the JAK family, acts directly on downstream STAT3 
in JAK/STAT signaling[44]. The JAK2/STAT3 pathway 
interacts with numerous cytokines that can be 
activated by angiotensin Ⅱ, interferonγ, transforming 
growth factor β (TGF-β), etc. Upon activation, STAT3 
is phosphorylated to become p-STAT3, which can 
form homodimers or heterodimers, translocate to the 
nucleus, and bind to specific regulatory sequences on 
DNA[45]; these products then regulate the expression of 
VEGF, TGF-β, eNOS, and inducible nitric oxide synthase 
(iNOS), a process that is important in cell proliferation, 
fibrosis and angiogenesis[46-48]. It has been found that 
JAK2/STAT3 signaling is overactive in PHT and involved 
in its development[44,49].

JAK2/STAT3 regulate angiogenesis and vasoconstriction
Angiogenesis is considered one of the factors in 
the development of PHT. Pathological angiogenesis 
may lead to increased intrahepatic circulatory 
resistance, and subsequently cause PHT and its severe 
complications such as variceal bleeding. VEGF is 
one of the cytokines involved in the development of 
angiogenesis[50,51]. Wang et al[52] found that AG490, a 
specific antagonist of JAK2, decreased the formation 
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Figure 2  Proposed signaling pathways in the development of hepatic 
portal hypertension. RhoA/Rho-kinase: GGPP “lipidizes” RhoA to form 
membrane-bound RhoA and to activate Rho-kinase. AT1R stimulates 
JAK2 to phosphorylate and then activate Rho-kinase. Activated Rho-
kinase phosphorylates the myosin targeting subunit 1, which inactivates 
myosin phosphatase. The inactivation of myosin phosphatase increases the 
phosphorylation of myosin light chain and promotes vasoconstriction. CPI-17 
combines with myosin light chain phosphatase to inhibit the activation of the 
enzymes and promote the contraction of smooth muscle cells. The activation 
of Rho-kinase could downregulate the expression of eNOS and reduce its 
activity. The coupling of AT1R to Gaq/11 and Ga12/13 promotes Rho-kinase 
activation, which is involved in extracellular matrix production. JAK2/STAT3: 
Cytokines activate the JAK2/STAT3 pathway. Enhanced JAK2/STAT3 
signaling upregulates TGF-β and iNOS expression and accelerates intestinal 
inflammation, which aggravates endothelial dysfunction and angiogenesis. 
IL-6 binds to its receptor, activates JAK2, phosphorylates it, and then causes 
the phosphorylation of STAT3 in cells, thereby activating HSC and promoting 
hypoxia inducible factor expression. These events can upregulate the activation 
of IL-6 and reactivate the STAT3 pathway, which forms a loop, constantly 
activating HSC, causing vessel contraction, and ultimately increasing portal 
pressure. AT1R: Angiotensin-type Ⅱ receptor 1; CPI-17: C-protein inhibitor 
protein; eNOS: Endothelial nitric oxide synthase; GGPP: Geranylgeranyl 
pyrophosphate; HIF: Hypoxia inducible factor; HSC: Hepatic stellate cell; 
IL-6: Interleukin-6; IL-6R: Interleukin-6 receptor; iNOS: Inducible nitric oxide 
synthase; JAK2: Janus kinase 2; MLCP: Myosin light chain phosphatase; MP: 
Myosin phosphatase; MYPT1: Myosin phosphatase target subunit 1; RhoA: Ras 
homolog gene family member A; STAT3: Signal transducers and activators of 
transcription; TGF-β: Transforming growth factor β; VEGF: Vascular endothelial 
growth factor.
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of new blood vessels in the liver by inhibiting the 
expression of JAK2/STAT3 signaling, which suppressed 
the activation of HSCs and reduced the expression of 
VEGF. JAK2/STAT3 signaling may stimulate vascular 
hyperplasia and decrease vascular tone by increasing the 
expression of VEGF, thus promoting the development 
of PHT. Interleukin-17 activates HSCs by STAT3 signaling, 
and activation of HSCs plays a key role in the formation 
of PHT[53]. IL-6 also activates the STAT3 pathway. IL-6 
binds to its receptor, activates JAK2, phosphorylates it, 
and then causes the phosphorylation of STAT3 in cells; 
these reactions result in the activation of HSCs and 
promotion of HLF expression, which can upregulate the 
activation of IL-6 and reactivate the STAT3 pathway. 
Thus, a loop is formed that constantly activates HSCs, 
ultimately causing hepatic vessel contractions that lead 
to increased portal pressure[54].

Endogenous angiogenesis and increased eNOS-
derived nitric oxide levels in PHT have been consider-
ed important in the maintenance of PHT, and JAK2/
STAT3 has been reported to promote eNOS protein 
expression[52,55].

Visceral inflammation is usually present in patients 
with PHT, especially in those with advanced PHT, and the 
inflammation can accentuate endothelial dysfunction 
and angiogenesis[56]. Relevant studies[52] have shown 
that enhanced JAK2/STAT3 signaling accelerates 
intestinal inflammation in PHT rats by upregulating 
TGF-β and iNOS expression. These findings suggest 
that JAK2/STAT3 participates in the pathogenesis of 
PHT by regulating factors such as VEGF, eNOS, TGF-β 
and iNOS.

Recent studies[49,57] have found a relationship bet-
ween the JAK2/STAT3 signaling pathway and RhoA/
Rho-kinase signaling. JAK2 was shown to establish a 
link between AT1R and the RhoA/Rho-kinase pathway 
in smooth muscle cells. AT1R stimulates JAK2 to 
phosphorylate and then induce Arhgef1, the nucleotide 
exchange factor responsible for activating RhoA, 
which activates Rho-kinase, eventually leading to 
vasoconstriction (Figure 2).

FXR PATHWAY
Activation of the above three signaling pathways mainly 
promotes the formation of PHT, while activation of the 
FXR pathway can reduce PHT.

Overview of FXR
FXR is a bile acid-reactive transcription factor and 
member of the nuclear receptor superfamily (NR1H4)[58] 
that is highly expressed in the liver and small intestine. 
Like other nuclear receptor members, FXR has an 
N-terminal activation domain (AF1) that interacts with 
a cofactor, a conserved DNA-binding domain, and 
a unique ligand-binding domain, allowing receptor 
dimerization and the C-terminal activation domain 
(AF2) to regulate the interaction[59,60]. In recent years, 

it has been recognized that the FXR plays a key role 
in the metabolism of bile acids and intestinal flora, 
as bile acids and FXR closely interact[61,62]. In many 
liver diseases, FXR is involved in fibrosis, and in the 
gastrointestinal tract it has immunological activity and 
vascular function[63]. FXR is a major transcriptional 
regulator of genes involved in bile acid homeostasis and 
is a regulator of lipid and carbohydrate metabolism in 
the normal liver[64].

Studies have documented deficiency of the FXR 
system in rat cirrhosis models, and FXR agonists can 
improve PHT through various pathways by activating 
FXR, which is related to vascular regulation and PHT[64]. 
Small heterodimer partner, the direct target gene of 
FXR, is a downstream orphan nuclear receptor for FXR 
that inhibits many other nuclear receptors, including 
cholesterol 7 alpha-hydroxylase[65]; it is increased 
after stimulation of FXR agonist INT-747 in a cirrhosis 
model[64]. The beneficial effects of this process involve 
hemodynamic changes of intrahepatic endothelial 
dysfunction and the molecular repair of intrahepatic 
eNOS activity[64].

FXR regulates vasodilation
In cirrhotic PHT, a decrease in intrahepatic eNOS 
activity is key to the pathogenesis of increased 
IHVR[6], which is mainly caused by impaired hepatic 
vascular dilatation through the combination of redu-
ced eNOS activity and nitric oxide bioavailability[66,67]. 
FXR affects blood vessel nitric oxide signaling by 
increasing eNOS concentrations[68]. In animal models 
of cirrhosis, obeticholic acid, a steroid FXR agonist 
and chenodeoxycholic acid derivative, restored intra-
hepatic eNOS levels and enhanced the expression of 
dimethylarginine dimethylamidohydrolase-1 (DDAH-1). 
Increases in DDAH-1 reduce the level of systemic 
asymmetric dimethylarginine (ADMA), thus upregulating 
the expression of eNOS, and then modulating nitric 
oxide production, which eventually results in decreased 
portal vein pressure[64,69]. ADMA is a competitive inhibitor 
of the eNOS substrate L-arginine and decreases eNOS 
phosphorylation of vascular endothelial cells in vitro and 
in vivo[70]. DDAH-1 is a key enzyme that metabolizes 
liver ADMA[69]. In addition, studies have found that 
alanine-glyoxylate aminotransferase-2 (AGXT2), which 
is present in mitochondria, is involved in the metabolism 
of ADMA. Rodionov et al[71] found that ADMA levels were 
significantly reduced in the liver and plasma of AGXT2
overexpressing mice. Caplin et al[72] found that the 
ADMA levels were significantly increased in the plasma 
of AGXT2 knockout mice. The FXR agonist PX20606 
upregulates GTP cyclohydrolase-1, a key enzyme in 
the synthesis of cofactor tetrahydrobiopterin (BH4), 
resulting in increased amounts of BH4; sufficient con
centrations of BH4 are essential for eNOS to catalyze 
nitric oxide. The enhancement of eNOS activity and BH4 
has improved nitric oxide-mediated sinus endothelial 
function[68]. FXR agonism also decreases inflammatory 
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responses, and the associated development of PHT, 
by reducing the expression of iNOS and cycloogenase 
2[73].

FXR regulates endothelial dysfunction
The increase of internal vascular resistance caused 
by endothelial dysfunction is one of the factors in PHT 
formation. In some studies[68,74], endothelial dysfunction 
was mainly due to increased activity of vasoconstrictive 
factor (endothelin-1) and impaired nitric oxide sig-
naling in sinusoidal endothelial cells. Endothelin-1 is 
a powerful vasoconstrictor in hepatic sinuses[75]. In 
liver damage, enhanced synthesis of endothelin-1 has 
activated HSCs, which promoted sine refactoring[6,68] 
and increased the amount of phosphorylated moesin, 
a marker of HSC contraction[75]. Endothelin-1 not 
only induces HSC proliferation and contraction, with 
consequent sinusoidal vasoconstriction, but also 
increases extracellular matrix synthesis[68]. FXR agonism 
ameliorated intrahepatic resistance[75] by decreasing 
the expression of endothelin-1[76], which inhibited 
endothelin-1-mediated contraction of hepatic stellate 
cell and increased the production of liver cystathionase-
mediated hydrogen sulfide[68]. Cystathionase is a key 
enzyme for the local production of hydrogen sulfide, a 
potent nitric oxide-independent vasodilator[77] (Figure 
3).

The above four signaling pathways have been 
extensively studied, however some novel signaling 
pathways need further study. Recent studies have 
shown that the increase in reactive oxygen leads to 
increased expression of Nuclear Factor-E2-related 
factor 2/Heme Oxygenase 1 (Nrf2/HO-1) in portal 
hypertensive rats. HO-1 is regulated by Nrf2 and can 
be used to induce hypovascular reactivity or as a 
vasodilator, which also results in increased expression 
of VEGF in the mesenteric artery of patients with 
PHT, which then forms the collateral portal vessels[78]. 
Therefore, reducing the portal pressure by inhibiting 
Nrf2/HO-1 signaling is effective. Zeng et al[79] found 
that Kruppel-like factor 2 inhibits the proliferation of 
sinusoidal endothelial cells and vascular formation 
by downregulating extracellular signal-regulated 
kinases 1/2 signaling, which inhibits the process of 
angiogenesis, and then ameliorates elevated portal 
pressure. Gao et al[80] found that combining celecoxib 
and octreotide not only significantly inhibited the 
expression of phospho-extracellular regulated kinase 
(p-ERK), HIF-1a, and VEGF, but also prevented HIF-
1a from binding to VEGF by blocking the MAPK-ERK 
signaling pathway, which synergistically improves 
hepatic fibrosis and portal hypertonia in thioacetamide
induced cirrhotic rats by inhibiting both intrahepatic 
and extrahepatic angiogenesis. The mechanism respon-
sible may be inactivation of the p-ERK-HIF-1α-VEGF 
signaling pathway.

CONCLUSION
In recent years, progress has been made in under-
standing how PHT develops and in the development 
of potential nonsurgical therapeutic approaches to 
PHT. The limitations of current PHT treatments are 
directed towards the outcomes of PHT, such as bleeding 
varices, and not towards the underlying causes. Several 
signaling pathways are involved in the pathogenesis 
of PHT, including PI3K-AKT-mTOR, RhoA/Rho kinase, 
JAK2/STAT3 and FXR. These pathways affect the 
development of PHT by regulating IHVR and portal 
vein blood flow. In addition, some newly discovered 
signaling pathways may be novel therapeutic targets, 
such as p-ERK-HIF-1α-VEGF signaling. Efforts directed 
toward modifying the pathways should be explored 
for the effective prevention and treatment of PHT, 
however the pathways are incompletely understood 
and deserve further investigation.
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