Skip to main content
. 2018 Sep 16;18(9):3119. doi: 10.3390/s18093119
Algorithm 1. The processing of generating behavioral semantic clustering.
Input: semantic features F= {f1,f2,,fm }
   The number of category k
Output: S = { S1,S2,,Sk }.
Repeat
  for j = 1, 2, , m do {
    According to, calculate the posterior probability of fj: λji= pM(zi=i | fi)}
  for i = 1, 2, , m do {
      Calculate mean vector: μi= j=1mλjifjj=1mλji
      Calculate covariance matrix: Σi= j=1mλji(fj μi) T Σ1 (fj  μi)j=1mλji
      Calculate mixture coefficient: αi= 1m j=1mλji }
  Update semantic parameters { ( αi, μi, Σi ) | 1i k}
Until find out the optimization of λj
  for j = 1, 2, , m do {
    According to λj=arg maxi ϵ {1, 2,,k}λji, generate behavioral semantic clustering:
S=Sλj{fj}
  }