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Abstract: Cardiovascular diseases (CVDs) have become the biggest threat to human health, and they
are accelerated by hypertension. The best way to avoid the many complications of CVDs is to
manage and prevent hypertension at an early stage. However, there are no symptoms at all for
most types of hypertension, especially for prehypertension. The awareness and control rates of
hypertension are extremely low. In this study, a novel hypertension management method based
on arterial wave propagation theory and photoplethysmography (PPG) morphological theory was
researched to explore the physiological changes in different blood pressure (BP) levels. Pulse Arrival
Time (PAT) and photoplethysmogram (PPG) features were extracted from electrocardiogram (ECG)
and PPG signals to represent the arterial wave propagation theory and PPG morphological theory,
respectively. Three feature sets, one containing PAT only, one containing PPG features only, and one
containing both PAT and PPG features, were used to classify the different BP categories, defined
as normotension, prehypertension, and hypertension. PPG features were shown to classify BP
categories more accurately than PAT. Furthermore, PAT and PPG combined features improved
the BP classification performance. The F1 scores to classify normotension versus prehypertension
reached 84.34%, the scores for normotension versus hypertension reached 94.84%, and the scores
for normotension plus prehypertension versus hypertension reached 88.49%. This indicates that the
simultaneous collection of ECG and PPG signals could detect hypertension.

Keywords: pulse oximeter; blood pressure monitoring; pulse arrival time; global health; digital
medicine; wearable devices

1. Introduction

Hypertension is a major factor of many cardiovascular diseases (CVDs), which are a group of
disorders of the heart and blood vessels, including coronary heart disease, cerebrovascular disease,
peripheral arterial disease, rheumatic heart disease, etc. [1]. Although sometimes there are symptoms
of headache, lack of breath, chest pain, and so on, for most people with hypertension, there are no
symptoms at all. Therefore, it is also known as the “silent killer”, and 13% of global death is attributed
to it [1]. With each heartbeat, blood is pumped via the contraction of the heart and flows through the
whole body following the arterial system. Blood pressure is formed by the main propulsion of the
heart’s pumped blood and blockage of the microcirculatory system. Therefore, the higher is the blood
pressure, the more difficult it is for the heart to pump. This undoubtedly increases the burden of the
heart and, in the long term, will lead to a series of CVDs and damage to the heart, blood vessels, brain,
kidneys, and so on.
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Fortunately, blood pressure is the most important preventable factor of CVDs. Early
prevention and management of hypertension are the major and most effective means of improving
people’s health levels worldwide. Healthy lifestyles (healthy diet, non-alcohol consumption,
non-tobacco use, and physical activity), early detection, evaluation of blood pressure levels, proper
diagnosis, and treatment with low-cost medication are beneficial in the prevention and control of
hypertension [2]. The seventh report of the Joint National Committee on Prevention, Detection,
Evaluation, and Treatment of High Blood Pressure (JNC7) [3], which is funded and published by
the US National Institutes of Health, is widely adopted. According to this report, different BP levels
are divided into different hypertension categories, including normotension, prehypertension, stage 1
hypertension, and stage 2 hypertension. Due to the number of research participants, this study adopted
the three BP categories of normotension, prehypertension, and hypertension, labeled according to the
BP ranges of the JNC7 report [3].

Clearly, earlier attention and treatment are more effective in preventing hypertension and other
CVDs. However, as we know, most hypertension patients have no symptoms in the stage of elevated
blood pressure and even in hypertension. Thus, many people miss the best time for treatment and
experience some complications. However, some physiological signals change based on blood pressure
level [4,5], such as electrocardiogram (ECG) and photoplethysmography (PPG). The morphological
changes in physiological signals mainly reflect the change of function status of the heart and vascular
system. Therefore, the morphological information of PPG could be used to assess hypertension [6].
For this purpose, the Medical Information Mart for Intensive Care (MIMIC) database [7,8] was used to
collect the dataset for this study, which involves arterial blood pressure (ABP), ECG and PPG signals.

Many researchers have used the MIMIC database assuming that all simultaneously collected
signals were synchronized [9–13]. However, the creators of the MIMIC database have reported errors
in the data matching and alignment in some recordings, as mentioned by Clifford et al. [14], confirming
that not all signals were synchronized. This contradiction motivated our study, and we thought it
would be useful to test the synchronicity-dependent features (features that rely on the time interval
between ECG and PPG events) and asynchronicity-dependent features (features that rely only on
features extracted from PPG events) to gain insights about the usability of the MIMIC database for
evaluating hypertension either by using ECG and PPG signals or by using PPG alone.

The rest of this paper is organized as follows: Section 2 explains the methods used in this study,
including data collection, signal process, and feature extraction. Section 3 shows the comparison
results of the different classification models and different feature sets. Finally, Sections 4 and 5 discuss
the results and conclusions on the differences and optimizations of arterial wave propagation theory
and PPG morphological theory, respectively.

2. Methods

2.1. Database

In this study, the data were collected from the MIMIC database, which is a free-to-use database
that contains tens of thousands of Intensive Care Unit (ICU) patients [7,8]. The recordings with arterial
blood pressure (ABP, measured using a catheter in the radial artery), electrocardiograph (ECG) and
photoplethysmography (PPG) were collected and archived for this study. During data collection, there
were some abnormal and noisy recordings, for example, missing peak, pulsus bisferiens, no signal
(sensor-off), and so on. These recordings were excluded in this study. Meanwhile, to explore and
model the relationship between ABP, ECG, and PPG signals, 120 one-second-length signals with stable,
complete ECG, ABP, and PPG signals without heart disease except for hypertension were cut from raw
recordings for each subject. In the end, 121 subjects’ records, each 120 s in length, were collected in
this research.
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2.2. PAT Feature

The definition of PAT in the literature is highly inconsistent [15]. On many occasions, PAT is used
to refer to Pulse Transit Time (PTT), and in other publications, PTT referred to as PAT [15]. Moreover,
the calculation of PAT is not consistent in the literature, but some general convention exists. It is
worthy to note that the R-wave of an ECG and the foot of the PPG waveform is perhaps the most
commonly used in the literature. In 2013, Choi et al. [16] tested three different measurement points for
PAT, including the peak (PATRS), middle (PATRb-2 or PATW-1), and end (PATRO) of the PPG waveform.
Their study recommended the use of PAT-middle as it is highly correlated with BP, and therefore,
in our study we used the PATRb-2 to represent the PAT feature.

2.3. PPG Features

As the referenced blood pressure source of this study, the original ABP signal did not undergo any
preprocessing. Systolic blood pressure (SBP) and blood pressure categories were extracted and labeled
directly from the original ABP waveform signal [17]. A 0.5–10 Hz 4th Chebyshev II bandpass filter
was adopted to remove the noise of raw PPG signals and improve the signal quality index (SQI) [18],
and a 0.5–40 Hz 4th Butterworth bandpass filter was used to filter the noise of raw ECG signals [19].
Additionally, a normalization process was conducted for filtered ECG and PPG signals to divide the
pulsating part of blood volume (the AC part) by the non-pulsating part (the DC part). Further, two
forward differential processes were implemented to acquire the velocity waveform of PPG signals
(VPG) and the acceleration waveform of PPG signals (APG). Note, the first order differential to the
original PPG signal to obtain the VPG signal, and the second order differential to the original PPG
signal to obtain the acceleration of PPG waveform signals. To visualize main events within these
signals, the TERMA framework [20] and Eventogram [21] can be used. Finally, ECG, PPG, VPG,
and APG were together regarded as the feature extraction signal resources.

In this study, the feature points were extracted beat by beat, and the heart-beat pair was divided
by the R wave of the ECG, which was identified by a reliable detector [22–24]. In one beat period,
some feature points of PPG and its derivatives were defined [25], and the detailed waveforms and
names are clearly marked in Figure 1. Several types of features were defined based on ECG, PPG, VPG,
and APG signals. They are the pulse arrival time (PAT) extracted from ECG and PPG signals; PPG
morphology features (135 features) extracted from PPG, VPG, and APG signals, including time spans
(23 features); PPG amplitudes (14 features); features of VPG and APG (20 features); waveform area
(4 features); power area (15 features); ratio (43 features); and slope (16 features). The detailed features
are defined as follows:

Time Span (23): The time span features are expressed as their letters with a dash on top (e.g., SD).
Features of PPG Amplitude (14): The S, N, D, w-1, a-2, b-2, c-2, etc. features were defined in PPG
waveform. They represent the amplitude of the corresponding waveform from the PPG baseline.
Features of VPG and APG (20): The a, b, c, d, and e features were defined in the APG waveform,
and the w, x, y, and z features were defined in the VPG waveform. They represent the amplitude of the
corresponding waveform from the APG baseline and VPG baseline. Other features based on these
features were also defined, such as b/a, c/a, d/a, e/a, (b-c-d-e)/a, (b-c-d)/a, and so on.
Waveform Area (4): The waveform AC component area features are expressed as their letters with a
polyline on top (e.g., ÔS).

Power Area (15): The power area features are expressed as their letters with a brace on top (e.g.,
︷︸︸︷
OS ).

For example, the
︷︸︸︷
OS feature represents the quadratic sum of the curve point from the onset point O

to the systolic peak S.
Ratio (43): The ratio features are expressed directly as their ratio formulae (e.g., OS/OO, ÔS/ÔO).

Slope (16): The slope features are expressed as their letters with a tilde on top (e.g., ÕS).
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photoplethysmogram (APG) waveforms. The definition of feature points can be found in our past 
research [25]. The PPG amplitude is represented by the feature name and the amplitudes is 
represented by the height from PPG baseline to feature points such as a, a-1, a-2, etc. The shaded area 
contains features associated with hypertension. 
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Several classifiers are discussed in the literature; however, we selected four distinctive classifiers: 
Logistic Regression, AdaBoost Tree, Bagged Tree, and K Nearest Neighbors (KNN). These classifiers 
represent different classification theories such as regression, decision tree, cluster, and bagged 
decision tree. From the results, we can see that KNN achieves better classification performance than 
the others. As we know, KNN is a very common classifier that can be used in many applications and 
can be easy to realize. 

In this study, the dataset was divided into a training set (70%) and a testing set (30%). In the 
training phase, the training adopted 10-fold cross validation to validate the generalization ability of 
the trained model. The trained model was then used to predict for the testing set. The F1 score was 
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where Precision = TP/(TP + FP) and Recall = TP/(TP + FN). TP stands for true positives, FP stands for 
false positives, and FN stands for false negatives. To comprehensively evaluate the trained models, 
various evaluation indexes were used, including sensitivity (SE), specificity (SP), and the F1 score, 
which is the harmonic mean of precision and sensitivity. In this study, all the signal processing, 
modeling, and evaluating were carried out via MATLAB software (R2017b version), developed and 
released by MathWorks (Natick, MA, USA) company. 

3. Results 

In our past research [18,25,26], we conducted a BP management study based on a clinical dataset 
collected in China by a PPG device designed for that study. In that study, 10 PPG features were 
evaluated and selected for BP category classification. Based on that study, the same 10 PPG features 

Figure 1. The characteristics of arterial blood pressure (ABP), electrocardiogram (ECG),
photoplethysmogram (PPG), velocity photoplethysmogram (VPG), and acceleration
photoplethysmogram (APG) waveforms. The definition of feature points can be found in our
past research [25]. The PPG amplitude is represented by the feature name and the amplitudes is
represented by the height from PPG baseline to feature points such as a, a-1, a-2, etc. The shaded area
contains features associated with hypertension.

2.4. Classification Models

Several classifiers are discussed in the literature; however, we selected four distinctive classifiers:
Logistic Regression, AdaBoost Tree, Bagged Tree, and K Nearest Neighbors (KNN). These classifiers
represent different classification theories such as regression, decision tree, cluster, and bagged decision
tree. From the results, we can see that KNN achieves better classification performance than the others.
As we know, KNN is a very common classifier that can be used in many applications and can be easy
to realize.

In this study, the dataset was divided into a training set (70%) and a testing set (30%). In the
training phase, the training adopted 10-fold cross validation to validate the generalization ability of
the trained model. The trained model was then used to predict for the testing set. The F1 score was
calculated as an evaluation measure, as follows:

F1 score = 2× Recall× Precision/(Recall + Precision) (1)

where Precision = TP/(TP + FP) and Recall = TP/(TP + FN). TP stands for true positives, FP stands for
false positives, and FN stands for false negatives. To comprehensively evaluate the trained models,
various evaluation indexes were used, including sensitivity (SE), specificity (SP), and the F1 score,
which is the harmonic mean of precision and sensitivity. In this study, all the signal processing,
modeling, and evaluating were carried out via MATLAB software (R2017b version), developed and
released by MathWorks (Natick, MA, USA) company.
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3. Results

In our past research [18,25,26], we conducted a BP management study based on a clinical dataset
collected in China by a PPG device designed for that study. In that study, 10 PPG features were
evaluated and selected for BP category classification. Based on that study, the same 10 PPG features
and new extracted PAT features were adopted here to classify the different BP categories to optimize
the arterial wave propagation theory and PPG morphological theory. The 10 PPG features are shown
in Table 1. We can see that the features are mainly in the bd segment.

Table 1. Photoplethysmogram (PPG) morphological features. ANOVA stands for analysis of variance.

Feature # PPG Features Normotension Prehypertension Hypertension ANOVA p-Value

1
︷ ︸︸ ︷
S+1c−1 /

︷ ︸︸ ︷
O+1O+1

0.52 ± 0.45 0.52 ± 0.42 0.38 ± 0.45 <0.01

2 b̃−2d−2 −2.94 ± 7.66 −3.35 ± 7.11 −0.93 ± 8.65 <0.01
3 Sc−2 0.06 ± 0.05 0.06 ± 0.04 0.04 ± 0.05 <0.01
4 c-2/S 0.79 ± 0.17 0.78 ± 0.16 0.83 ± 0.19 <0.01
5 Sd−2 0.09 ± 0.06 0.09 ± 0.04 0.09 ± 0.06 <0.01
6 (b-c-d)/a −0.53 ± 0.64 −0.61 ± 0.59 −0.48 ± 0.61 <0.01
7 d −0.52 ± 0.61 −0.41 ± 0.57 −0.69 ± 0.63 <0.01
8 c-1/w −0.25 ± 0.27 −0.26 ± 0.26 −0.14 ± 0.28 <0.01
9 d/a −0.21 ± 0.26 −0.17 ± 0.25 −0.27 ± 0.25 <0.01

10 S̃c−2 −6.79 ± 6.03 −7.34 ± 5.71 −5.31 ± 7.01 <0.01

The 10 PPG features and PAT feature were used to classify the different BP categories, which
include normotension (46 subjects), prehypertension (41 subjects), and hypertension (34 subjects).
Meanwhile, four different classifiers were trained and tested. Table 2 shows the classification
performances of the different trials and feature sets. In general, the KNNs achieved the best
classification performance compared to the other classifiers. Our findings were that the PPG features
were more beneficial in classifying BP categories than the single PAT feature. Further, the combination
of PAT feature and PPG features greatly improved the classification performance of using only
PPG features.

A comparison was also carried out with our past research. Because of the difference in the PPG
datasets of this study (MIMIC database) and the past one (collected by a designed device [26]), the 10
PPG features were also used to classify the BP categories to compare with the past research, and,
further, an optimization using the PAT feature and 10 PPG features was compared. To our knowledge,
no study has previously investigated this research question on the same database.
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Table 2. Classification performance of PAT and PPG features. In this table, SE, SP, and F1 represent the sensitivity, specificity, and F1 score, respectively. Normal,
Prehyp. and Hyp. represent normotension, prehypertension, and hypertension, respectively. The results of this table were achieved based on the test set.

Trial Feature Set
AdaBoost Tree Logistic Regression K-Nearest Neighbors Bagged Tree

SE (%) SP (%) F1 (%) SE (%) SP (%) F1 (%) SE (%) SP (%) F1 (%) SE (%) SP (%) F1 (%)

Normal (46)
vs.

Prehyp. (41)

PAT feature 67.42 65.46 66.88 56.91 56.27 56.85 46.69 73.29 53.93 67.63 65.24 66.95
10 PPG features 90.13 41.81 72.76 71.65 46.01 63.66 79.48 77.07 78.62 79.20 77.14 78.48

(PAT + 10 PPG) features 75.67 72.72 74.67 67.35 56.20 63.92 83.92 84.76 84.34 83.50 84.26 83.88

Normal (46)
vs.

Hyp. (34)

PAT feature 63.48 80.56 68.10 63.04 80.71 67.85 40.09 93.08 54.08 63.48 80.56 68.10
10 PPG features 75.65 88.81 80.11 62.09 82.47 67.94 84.78 91.31 86.94 81.65 91.09 84.98

(PAT + 10 PPG) features 87.57 94.33 90.15 78.87 82.62 79.11 94.26 96.17 94.84 92.70 96.39 94.13

(Norm + Prehyp.) (87)
vs.

Hyp. (34)

PAT feature 40.44 95.37 53.19 45.51 88.76 52.38 40.27 95.37 53.01 40.44 95.37 53.19
10 PPG features 53.16 94.63 63.79 35.02 94.55 47.10 74.40 93.92 78.44 68.09 94.94 75.32

(PAT + 10 PPG) features 74.22 95.23 79.71 55.20 91.20 62.26 87.47 95.93 88.49 85.87 96.50 88.22
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4. Discussion

PPG signal is affected by heart activity, vascular wall function, and peripheral arterial
status [27]. Therefore, it is a very complex physiological signal with abundant information [28,29].
The morphological information of PPG signals plays an important role in the analysis of cardiovascular
activity. In past research, many PPG morphological features [29,30] have been proposed, including the
Crest Time, Delta T, Augmentation Index, Large Artery Stiffness Index [31], PPG intensity ratio [32],
etc. Some novel features showed excellent performance in BP prediction or hypertension management.
However, most of the research was conducted based on a small quantity of healthy participants [33].
A more comprehensive and systematic study needs to be implemented to improve and validate the
arterial wave propagation and PPG morphological theories.

Several issues have been studied in our past research, such as optimal SQI [34], optimal filter for
PPG signal [18], detection of PPG morphological characteristics [35–38], generating diagnostic PPG
features for abnormality evaluation [25], compressing PPG signals [39], and so on. To continue in
our previous research direction, we aimed in this study to: (1) identify special signatures in both PAT
feature and PPG features for hypertensive and prehypertensive subjects and to differentiate them from
normotensive subjects; and (2) use such features to monitor management of BP level and to check
treatment compliance using the MIMIC database.

PAT and PPG features reflect different physiological information: PAT can indicate the
transmission of the arterial wave in the blood vessel, while PPG features can indicate the status change
of vascular tissue and blood volume. Therefore, three experimental analyses were implemented
to determine the feature differences in the different BP level classifications (normotension versus
prehypertension, normotension versus hypertension, and normotension plus prehypertension versus
prehypertension). Based on our past research, 10 PPG features were used in this study for these
experimental classifications. Table 2 shows the 10 PPG features that were evaluated in our past
research. To determine the characteristics of features to classify, four different type classifiers were
adopted: the AdaBoost Tree, Logistic Regression, K-Nearest Neighbors (KNN), and Bagged Tree.
The KNN classifier showed the best performance compared with the other models.

PAT has some limitations as it cannot classify these three categories of blood pressure levels; PPG
features showed better performance in classifying hypertension from normotension than the other
experiments. Furthermore, the feature set of PAT feature and 10 PPG features obviously improved the
classification performance for all three experiments. This indicates that the combination of arterial
wave propagation theory and PPG morphological theory can be beneficial in modeling and quantizing
the BP formation, which is comprehensive and complex. Various influencing factors work together to
determine and affect blood pressure, such as a heart′s cyclical activity, vasomotion, total blood volume,
cardiac output, vascular elasticity, peripheral resistance, and so on. Therefore, the blood pressure level
is the physiological response of the cardiovascular system, and cardiac function, total blood volume,
and vascular elasticity play decisive roles in the formation of blood pressure. Hence, it is feasible to use
arterial wave propagation theory to explain blood transmission and to use PPG morphological theory
to explain the changes of vascular aging, stiffness, and compliance that generally occur at different
BP levels.

In our past research, the PPG signal was collected as 1000 Hz sample frequency and 12 bits ADC,
and the blood pressure was collected by a commercial BP device: the Omron 7201 BP device [26].
Comparing the results of this study to the past study, we saw that using the PPG feature set scored
similar results but was lower in accuracy than the past research. The MIMIC database used in this
study contains a wealth of physiological and pathological information and waveform records to study
and explore physiological models and algorithms. However, more attention should be paid to this
database. MIMIC data were collected from ICU wards, which means that many of the participants may
have received medication or other medical treatment that may lead to BP abnormalities. In addition,
it is very likely that the age of most of the participants is generally high. As we know, PPG signal is a
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complex physiological signal; therefore, the low quality of raw PPG signals makes it challenging to
extract physiological characteristics correctly.

The accurate identification of feature points is very important, especially based on the PPG
morphology method, and the PPG signal quality is the key. Because the sampling frequency is only
125 Hz in the MIMIC database, this could lead to the identification error of each characteristic point.
Therefore, this actually limits the database from being extended to blood pressure research, especially
based on PPG morphology, to achieve the dynamic monitoring of blood pressure. Moreover, many
recordings have ECG, ABP (invasive, from one of the radial arteries), and PPG (named “PLETH”)
in the MIMIC database. However, collecting satisfactory recordings with ECG, ABP, and PPG
simultaneously [33] is not easy for many reasons, such as various heart diseases and abnormal
or missing signals.

In addition, the ABP signal is a continuous invasive blood pressure signal collected using a
catheter. Thus, there is a little difference between the dataset in this study and our past research,
which collected the blood pressure using an Omron 7201 cuff BP device [26]. Even so, the result of this
study is similar to but just a bit lower than the past. This indicates that it is feasible to use the PPG
morphological features to manage BP levels. Fortunately, the feature set with PAT feature and PPG
features significantly improved the BP classification performance. This emphasizes the importance of
arterial wave propagation theory in BP formation.

Note, it is assumed that the linear relationship between BP and PAT calculated from the MIMIC
database are inconsistent from subject to subject. If all signals were synchronized, perhaps the
correlation would be more salient. However, there is an overall trend of correlation between BP and
PAT in the recordings used from the MIMIC database.

The proposed method could play a significant role in the early detection of hypertension in low-
and middle-income countries (LMICs). Note that an estimated 1.04 billion people had hypertension
in LMICs in 2010 [40]. Having a non-invasive method that relies on ECG and PPG signals, which
follows the framework recommended in Ref. [41] for tackling noncommunicable diseases by achieving
simplicity and reliability, may decrease morbidity and mortality rates, especially for those living
in LMICs.

5. Conclusions

PPG morphological features were shown to achieve better classification performance than PAT
using the MIMIC database. PPG signals contain sufficient physiological information about the activity
of the heart and arteries. Although they are easily affected by many factors, the 10 evaluated PPG
features achieved an acceptable classification performance. This indicates that the PPG signal, which is
the status response of the heart and arteries, varies according to the BP levels, such as normotension,
prehypertension, and hypertension. Interestingly, adding the PAT feature to the PPG feature set
improved the overall classification performance, even though not all ECG and PPG signals in the
MIMIC database were synchronized. Our results show that the PAT feature and PPG features have
great potential to manage BP levels.
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