Skip to main content
. 2018 Aug 27;18(9):2830. doi: 10.3390/s18092830
Algorithm 1 Reinforcement learning with evolution strategies.
1: Given
2:     Parent NN with weight matrix W(i) i=1,2
3:     number of children m
4:     learning_rate η
5: Start
6:     for iteration in a predefined range do
7:         for h in range m do
8:            Child(h)= Parent NN + random noise (W(i)(h)=W(i)+noise)
9:            Evaluate Child(h)Reward(h)
10:         Calculate Mean_reward
11:         Gain(h)=Reward(h)Mean_reward h=1,,m
12:         Parent NN → Parent NN + η×h=1mGain(h)×Child(h)    W(i)=η×Gain(h)×W(i)(h)
13:         Evaluate Parent NN
14: End
Return the highest performing Parent NN