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Abstract: Metastasized castration-resistant prostate cancer (mCRPC), is the most advanced form of
prostate neoplasia, where massive spread to the skeletal tissue is frequent. Patients with this condition
are benefiting from an increasing number of treatment options. However, assessing tumor response
in patients with multiple localizations might be challenging. For this reason, many computational
approaches have been developed in the last decades to quantify the skeletal tumor burden and
treatment response. In this review, we analyzed the progressive development and diffusion of such
approaches. A computerized literature search of the PubMed/Medline was conducted, including
articles between January 2008 and March 2018. The search was expanded by manually reviewing the
reference list of the chosen articles. Thirty-five studies were identified. The number of eligible
studies greatly increased over time. Studies could be categorized in the following categories:
automated analysis of 2D scans, SUV-based thresholding, hybrid CT- and SUV-based thresholding,
and MRI-based thresholding. All methods are discussed in detail. Automated analysis of bone tumor
burden in mCRPC is a growing field of research; when choosing the appropriate method of analysis,
it is important to consider the possible advantages as well as the limitations thoroughly.

Keywords: mCRPC; computational analysis; bone metastases; bone scan; PET-CT

1. Introduction

Prostate cancer is the most common non-cutaneous neoplasia in western countries, affecting up to
one in five individuals, with incidence increasing with age [1]. Depending on initial staging, a variable
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percentage of these patients will experience progression to castration-resistant prostate cancer, defined
as evidence of rising tumor marker in spite of androgen blockade [2]. Under these conditions,
metastastization to the skeletal system frequently occurs; this process can significantly contribute
to morbidity and mortality [3]. Once considered as a harbinger of terminal disease, today bone
metastases can be treated with a variety of modalities, including anti-androgen, cytotoxic, immune,
and radioisotope therapy [2,4-7]. Owing to the new therapeutic modalities, survival of mCRPC
patients has improved significantly [8]. However, skeletal metabolic alterations associated with bone
metastases remain the principal prognostic factor [9]. The presence and extension of bone metastases
are easily investigated with imaging methods [10]: these techniques include the identification of
increased mineral density (at X-ray computed tomography), of bone turnover (afforded by bone scan
or by fluoride PET/CT), as well as the characterization of the prostate-specific transmembrane antigen
using PSMA-PET. While these methods can identify the characteristics associated with the presence of
bone metastases, an accurate estimation of the total tumor burden is challenging, especially in patients
with extensive metastastization. An exact quantification of this parameter, expressed as total volume
of metastatic tissue or as a percentage of normal trabecular bone occupied by metastases, could help
in prognostic stratification as well as in monitoring the therapeutic effectiveness. Over the course
of the last decade, many attempts have been carried out to estimate this parameter by applying a
computational algorithm to the clinical images (whether scintigraphic or X-ray based). In this review,
we are going to analyze the computational methods currently available or in development, to identify
the advantages and the disadvantage of each one of them, in order to clarify which of these methods is
the most promising for current mCRPC patient care.

2. Methods

2.1. Search Strategy

A computerized literature search of the PubMed /Medline was conducted. A search algorithm,
based on a combination of these terms: “metastatic castration-resistant prostate cancer” OR “metastatic
CRPC” AND “computational analysis” OR “bone automated analysis” OR “bone tumor burden”
OR “bone tumor volume”. This search comprised articles published in English in the last decade,
i.e., between 2008 and 2018. This choice was motivated by the need to describe the current development
in computational analysis and to focus on the currently used methods, also considering the current
and constantly evolving computational capabilities of the actual devices.

The search was expanded by manually reviewing the reference list of the chosen articles.

2.2. Study Selection

Studies or study subset, which investigated the role of computational /automated analysis of
CT, SPECT/CT, or PET/CT images in identifying and quantifying bone metastases from CRPC,
were included. The following articles were excluded: (I) articles outside the field of interest of the
current review; (II) editorials, letters, or conference proceedings; (III) case reports; (IV) phantom,
simulation, and/or preclinical studies. Titles and abstract were first screened; in case of unequivocal
ineligibility the article was rejected. The full text of the articles that passed this screening process
was then assessed to determine its eligibility. In these selected papers, a thorough evaluation of the
references was conducted, to identify potential further studies.

The selection process is outlined in Figure 1.



Bioengineering 2018, 5, 58 30f13

Database | «61 Studies

Initial
Search

‘ ; ' Elimination

” o * 38 Studies
of ineligible | were
studies removed
> Reference |°®12further
> . studies
Screenmg were added
‘ Final
Sample (35
Studies)

Figure 1. Study selection workflow. Here are detailed the steps required to construct the study database
of the present study.

2.3. Article Categorization

For each selected article, information was collected about the following parameters: basic
information (journal, year of publication, author names and country of origin, study type); technical
characteristics (type of device used, type of performed analysis, planar or 3D imaging, type of
tracer etc.), and finally patients’ data (number of enrolled patients, mean age, average Gleason and
prevalence of “high risk” patients, mean PSA level).

3. Results and Discussion

3.1. General Parameter

In total, 35 studies were identified. The main studies parameters are listed in Table 1 and in
Figure 2. Twenty-five studies (72%) were single-institution, nine studies (25%) were multi-institution,
and one was a review [11].

The number of eligible studies increased over time, indicating a growing interest in the subject
of automated analysis of tumor burden (Figure 1). Most single-institution studies (n = 9/25, 36%)
originated from the United States; moreover, most of the multi-institutional studies included an
American center (n = 6/9, 67%) [12-22]. Five studies originated from Germany [23-27], four from
Sweden [28-31], and six from Japan [32-37]. Information about patient number, acquisition technique,
type of employed isotope (when applicable) and method of computational analysis were obtainable
from all studies. Seven studies (21%) did not include information about mean patients’” age; one did
not specify the enrollment method. Twenty-five studies (73%) provided the mean PSA level at the time
of scan; only seven (21%) allowed obtaining information about the “high risk” status.

Mean age was very consistent across the studies, ranging from 65 to 75 years. Conversely,
PSA levels were very heterogenous, probably because of different clinical protocols and disease
aggressiveness. Studies conducted in the US utilized mostly 18F-NaF PET/CT, where this tracer was
“re-discovered” following the spread of hybrid PET/CT imaging [46]. In Germany, most studies were
focused on 68Ga-PSMA-PET/CT, as there is a long-standing history of development and theranostic
use of this tracer [47]. In Sweden, studies using an artificial neural network method, applied to 2D
bone scintigraphies (EXINI bone scan, EXINI Diagnostics, Lund, Sweden) prevailed [28]; a similar
situation is observed in Japan, where a version of this tool, based on a custom database (BONENAVI,
FUJIFILM RI Pharma, Tokyo, Japan), is marketed [32].
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Table 1. Characteristics of the selected studies.

40f13

Type of Pt Mean  Mean Mean  High
First Author Year Reference Country ype o S Techinique Tracer Analysis ea ea PSA Risk
Study Number Age Gleason .
(ng/mL) Ratio
NAKAJIMA 2017 [11] JAPAN/SWEDEN  RW - - - REVIEW - - - -
KWEE 2014 [12] USA P 30 PET/CT 18F-CHOLINE = PET-BASED SEGMENTATION 73 N/A 35.1 N/A
HYBRID CT- AND PET-BASED
YIP 2014 [13] USA NS 16 PET/CT 18F-FLUORIDE SEGMENTATION 69 N/A N/A N/A
ETCHEBEHERE 2015 [14] USA R 42 PET/CT 18F-FLUORIDE = PET-BASED SEGMENTATION 71.7 N/A 54 64.3%
ROHREN 2015 [15] USA R 68 PET/CT 18F-FLUORIDE = PET-BASED SEGMENTATION 65.7 N/A N/A N/A
HYBRID CT- AND PET-BASED o
LIN 2016 [16] USA P 35 PET/CT 18F-FLUORIDE SEGMENTATION 71.5 7.8 49 41%
HYBRID CT- AND PET-BASED o
HARMON 2017 [17] USA P 58 PET/CT 18F-FLUORIDE SEGMENTATION 71 N/A N/A 48%
ETCHEBEHERE 2016 [18] USA/BRASIL R 41 PET/CT 18F-FLUORIDE = PET-BASED SEGMENTATION 71 N/A 150 61.9%
SOUTH
LEE 2016 [19] KOREA /USA P 42 PET/CT 18F-CHOLINE  PET-BASED SEGMENTATION 73 N/A 329 N/A
ALVA 2017 [20] USA/SWEDEN R 145 BONE SCAN  99mTc-DPD EXINI BONE SCAN ANN 71.8 9 188.7 70%
ANAND 2016 [21] USA /SWEDEN R 80 BONE SCAN 99mTe-MDP EXINI BONE SCAN ANN 71 N/A 157.5 N/A
ARMSTRONG 2014 [22] USA/SWEDEN R 85 BONE SCAN SPEIgI(;};ED " EXINI BONE SCAN ANN N/A N/A N/A N/A
HYBRID CT- AND PET-BASED
BIETH 2017 [23] GERMANY R 45 PET/CT 68-Ga-PSMA SEGMENTATION 71 N/A 43 N/A
SCHMUCK 2017 [24] GERMANY R 101 PET/CT 68-Ga-PSMA PET-BASED SEGMENTATION 69.1 7 41 N/A
BONE SCAN  99mTc-MPD
THOMAS 2017 [25] GERMANY R 30 AND AND EXI\I/\}ISEIilI\JIEAiICAAﬁisAIé\T N; N/A N/A N/A N/A
PET/CT 68-Ga-PSMA
FIZ 2017 [26] GERMANY/ITALY R 47 SPE??/ECT 99mTe-DPD CT-BASED SEGMENTATION 69.5 8 788 68%
MIEDERER 2015 [27] GERMANY R 14 ** BONE SCAN  99mTc-DPD EXINI BONE SCAN ANN 71 N/A N/A N/A
SADIK 2009 [28] SWEDEN R 41 BONE SCAN  99mTc-MPD EXINI BONE SCAN ANN 65 N/A N/A N/A
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Table 1. Cont.
Mean High
First Author Year Reference Country Type of Ps. Techinique Tracer Analysis Mean Mean PSA Risk
Study Number Age Gleason .
(ng/mL) Ratio
LINDGREN BONE SCAN  99mTc-HPD HYBRID CT- AND PET-BASED
BELAI 2017 [29] SWEDEN R 48 AND AND SEGMENTATION; EXINI BONE 73 7.7 374 N/A
PET/CT 18-F-FLUORIDE SCAN ANN
WASSBERG 2017 [30] SWEDEN P 10 PET/CT 18F-FLUORIDE = PET-BASED SEGMENTATION 74.6 8.1 208.5 50%
KABOTEH 2013 [31] SWEDEN R 266 BONE SCAN  99mTc-MDP EXINI BONE SCAN ANN 76 N/A N/A N/A
TAKAHASHI 2012 [32] JAPAN R 158 BONE SCAN  99mTc-MPD BONENAVI BONE SCAN ANN 69.5 N/A 148 N/A
WAKABAYASHI 2013 [33] JAPAN R 52 BONE SCAN  99mTc-MPD BONENAVI BONE SCAN ANN 71 9 N/A***  N/A
SHINTAWATI 2015 [34] JAPAN P 20 BONE SCAN  99mTc-MPD BONENAVI BONE SCAN ANN N/A N/A N/A N/A
MITSUI 2012 [35] JAPAN R 42 BONE SCAN 99mTc-MDP BONENAVI BONE SCAN ANN 73 8 65.3 N/A
UEMURA 2016 [36] JAPAN R 41 BONE SCAN SPEIgI(lz};ED .  BONENAVI BONE SCAN ANN 73 N/A 56.8 N/A
BONE SPECT-BASED SEGMENTATION;
UMEDA 2018 [37] JAPAN R 47 SPECT/CT 99mTc-MDP BONENAVI BONE SCAN ANN 74 N/A N/A N/A
BROWN 2012 [38] USA R 20 BONE SCAN  99mTc-MDP CAD ANALYSIS N/A N/A N/A N/A
BONE SCAN 99mTc-HPD
MEIRELLES 2010 [39] USA P 39 AND AND EXINI BONE SCAN ANN 68 N/A N/A N/A
PET/CT 18-F-FDG
) NOT
DENNIS 2012 [40] USA R 88 BONE SCAN SPECIFIED * EXINI BONE SCAN ANN 67.7 8 95.95 N/A
) SWEDEN/UK/ NOT
REZA 2016 [41] FINLAND,/FRANCE R 47 BONE SCAN SPECIFIED * EXINI BONE SCAN ANN 68 N/A 83.1 N/A
FOSBJL 2018 [42] DENMARK R 88 BONE SCAN SPEEII%TED . EXINI BONE SCAN ANN 71 N/A 212 N/A
MARKOV RANDOM
BLACKLEDGE 2014 [43] UK P 7 MRI NONE FIELD MODEL N/A N/A N/A N/A
, MRI AND NOT MR SEGMENTATION AND
PEREZ-LOPEZ 2016 [44] UK R 3 BONE SCAN  SPECIFIED * EXINI BONE SCAN ANN N/A N/A 3 N/a
BRISSET 2015 [45] USA/HOLLAND P 12 CT AND MR NONE VOXEL-BASED ANALYSIS N/A N/A N/A N/A

LEGEND: R: retrospective; P: prospective; NS: non-specified; RW: review; N/A: not available; ANN: artificial neural network; * Unspecified 99mTc-labelled diphosphonate; ** Included a

multicentric survey; *** Only median value was provided; **** Expressed as log.
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PUBLICATIONS BY YEAR OF ISSUE
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Figure 2. Temporal distribution of the selected studies. Nearly half of the computational studies were
published in the last two years.

3.2. Types of Computational Approaches

Our literature research shows that the problem of skeletal tumor volume quantification in
metastatic nCRPC has been tackled using different methods. For the purpose of the current review,
we sorted these approaches in four different categories: 2D bone scan segmentation, 3D segmentation
based on SUV threshold, 3D segmentation based on CT data or on CT/SUV integration, and MR-based
or non-isotope-based methods. Each of these methods presents its own advantages and limitations;
in the following parts we are going to discuss them in detail. An overview of the methods’
characteristics can be found in Table 2.

Table 2. Advantages and disadvantages of the study types. The table includes also the relative

frequency of the described method, when compared to the other ones.

Method

Advantages

Disadvantages

Relative Frequency

Neural network
analysis applied to

Wide diffusion of bone scan
Ease of use

Opverlap artifacts
Lack of specificity
Frequent need for
manual corrections

Common (prevalent
diffusion of

planar bone scan Reproducibility bone scan)
Prompt readability Need for local databases
“Flare” responses
Relatively easy and Need for
PET-based prompt applica-tif)r} threshold recalibration
thresholding 3D volume definition Need for active exclusion Uncommon

High specificity using
co-registered CT

of non-bone and
non-tumor uptakes

Hybrid CT- and

High accuracy thanks to
dual segmentation

Computationally intensive

Long elaboration times

Rare (presently only

PET/SPECT-based High inf ti tput e
t}{resholdinagse s:igtal::lr:e ?gr};;ord\;; P Not yet validated for research application)
research applications clinical practice
Excellent .
MR-based and lesion-to-background contrast Whole—body .MRI still not
. . o diffusely utilized Rare (presently only
other non-isotopic No radiation burden to the i e
methods patient and to the Need for long acquisition research application)

general population

and elaboration time
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3.2.1. Automated 2D Analysis of Bone Scans

This computational technique utilizes an automated analysis of tracer distribution, based
on a neural network, to identify and quantify bone metastases on planar bone scintigraphies
automatically [32,38]. It proceeds by comparing the selected scan to those present in its database to
tell apart tumor-related uptakes from the physiological tracer distribution. This algorithm should in
fact allow isolating the signal of metastases from normal structures (urinary bladder, kidneys, etc.).
The program can also provide an estimate, the bone scan index (BSI) which represents the percentage
of available intraosseous space invaded from metastases. The software application can be also
re-trained with different, region-specific databases; to this date two main versions are available:
the EXINI bone scan (EXINI Diagnostics, Lund, Sweden), which was calibrated with scan obtained
from Swedish patients [28] and the BONENAVI system (FUJIFILM RI Pharma, Tokyo, Japan), trained
with scintigraphies from Japanese individuals [32].

Over the course of years, BSI has been used to estimate the total tumor burden and to predict the
patients’ clinical course. An early report from Sadik and colleagues indicated that the use of this system
increased the sensitivity and the percent of agreement of the reporting physicians [28]. A later paper
by Takahashi indicated that the automated method works at best with manual corrections from the
reader [32]. A work by Meirelles observed how BSl is a strong predictor of survival in mCRPC patients;
but so was 18F-FDG, probably as a measure of tumor de-differentiation and aggressiveness [39].
Mitusi and Dennis showed that a decrease of BSI after therapy was predictive of survival [35,40];
Reza showed that BSI changes predicted progression-free survival in patients treated with the novel
anti-androgen Darolutamide [41]. Parallelly, Anand and colleagues analyzed the correlation between
BSI and enzalutamide response [21]. In a paper from the group of Kaboteh, a strong association
between BSI, appearance of new lesions and two-years survival was demonstrated [31]. Furthermore,
a correlation was observed between BSI and diverse bone turnover markers [33]. The paper by
Armstrong et al. indicated a correlation between imaging and biochemical markers as well as a
strong association between bone-related imaging index and survival [22]. A further survival analysis
was performed in the work by Uemura [36], where BSI was pitted against other potential survival
predictors and showed a significant discriminatory power.

The paper from Miederer was the first paper investigating the correlation between BSI and
insurgence of hematologic toxicity in a group of mCRPC treated with 223-RaCl, [27]. Remarkably;,
the incidence of toxicity reported by this paper is significantly higher than the one described in the
larger validation trials; this is likely to depend from the greater tumor load in his patient population.
On the same line, the work by the group of Alva identified the group of patients with BSI < 5 as
optimal candidates for the 223RaCl, therapy, as these were more likely to be able to receive the entire
course of six cycles of the bone-seeking alpha-emitter [20]. Recently, Fosbel and co-worker confirmed
the capability of BSI to predict both overall survival and hematologic toxicity in a larger series [42].

In the work from Shintawati and co-workers, BSI was evaluated on bone scan acquired at different
time points after injection [34]. The index increased significantly from 2 h p.i. up to 4 h and again in
the late 6 h scan; the variation was greatest in the pelvic segment. In the process, some physiological
uptakes were sometimes misclassified as lesions at different time points. The authors conclude that
the acquisition time should be standardized and that the neural network should be again trained with
scans acquired at that specific time point.

Finally, a work by Thomas et al. compared BSI, visual analysis and 68-Ga-PSMA-PET/CT:
the latter was able to detect more lesions [25]. However, no changes in clinical management would
have resulted from the improved detection.

In general, the advantages linked with this method are the easiness of use, the prompt availability
of an easy to interpret score, the wide diffusion of bone scintigraphy as an imaging method, and its
reproducibility [34]. The disadvantages of such an approach lay in the bidimensional nature of the
bone scan and in the lack of specificity of the method. In fact, there is no established uptake threshold
that can distinguish benign from metastatic uptake on planar scintigraphy: for this reason, fractures,
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degenerative joint disease, overlapping renal uptake, benign cartilage calcifications, Paget’s disease,
and many more instance could all be misclassified as tumor volume, especially when in proximity or
overlapping with metastatic foci. All these instances need to be manually corrected by the operator;
however, the necessary level of certainty to make such corrections can only be achieved by integrating
the scan with SPECT imaging or by resorting to a co-registered /recent CT.

Moreover, if the system is trained on a specific population, it might not function properly when
applied to a different one. In fact, Takahashi and co-workers reported a significant increase in specificity
when using a program that was trained specifically for the local population when compared to a
software application trained with a foreign one. The authors attributed this phenomenon to a difference
in the average physical constitution, which causes a different photon attenuation that cannot be
compensated in the absence of transmissive information.

Finally, if used to perform longitudinal evaluations, the method could be misguided by the
so-called “flare” reaction, represented by a temporary an increase of activity within the bone
localizations, which then is followed by a radiological response [48].

3.2.2. SUV-Based Thresholding

This method is applied to PET (or possibly to quantitative SPECT) and utilizes a definite
standardized uptake value (SUV) cutoff to calculate the volume of tissue with high tracer uptake,
which is supposed to be expression of metastatic involvement. Many tracers were tested with this
method: 18F-NaF [14,30], 11C-Choline [12,19], and 68Ga-PSMA [24]; it has the advantages of affording
a 3D evaluation, thus eliminating the overlap artifacts, and to be relatively easy and speedy to employ.
Moreover, whenever a co-registered CT or MR is available, the specificity of the method is significantly
higher, as the operator can use the morphological data to eliminate all the uptake source that may not
be related to tumor manifestations manually.

Similarly to BSI, PET-based tumor volume segmentation was used to predict the patients’ clinical
outcome. The earliest work that used this approach dates to 2014, when Kwee and colleagues calculated
tumor volume and activity on a series of 11C-Choline scans [12,19]. These parameters strongly
correlated with PSA level and were able to predict survival at univariate survival analysis. The same
group used the same index to assess treatment response (a variety of therapeutic modalities were
employed) and concluded that automated analysis could be relevant in predicting therapy outcome
and thus play a role in personalized medicine Later on, a group at Texas University established a
SUV threshold for tumor volume in fluoride PET and used this value to predict overall survival,
hematologic toxicity, and skeletal-related events [14,15,18]. In 2017, a paper by Wassberg demonstrated
the repeatability of NaF-derived volumetric parameters [30].

A recent a large series by Schmuck, Derlin, and co-workers translated the concept of 3D
segmentation onto the PSMA-based PET imaging [24]. Here, the authors demonstrated a very
tight correlation between 68-Ga-PSMA based tumor volume and circulating PSA levels, moreover,
volumetric parameters predicted therapy efficacy.

Lastly, a recent work by Umeda et al. used quantitative SPECT to establish a SUV threshold,
which was used to discriminate metastases from degenerative changes and to compute a “total bone
uptake” as a measure of tumor burden [37]. This value was compared to BSI and resulted slightly
more efficient in assessing presence of disease a therapy response.

In PET- and SPECT-based segmentation, an accurate standardization is needed, since SUV is
dependent from different factors, like image acquisition and data reconstruction, VOI definition,
tracer-specific pathophysiological factors, or the kinetics of tracer distribution. Even in single-center
studies, SUV can show relevant variation over the years, as the detectors’ sensitivity dwindles [49].
Besides, the adoption of a fixed threshold does not in any way ensure a full specificity of the segmented
uptake (as SUV of many benign processes overlaps with the metastases-related one) [50]; increasing
this threshold might result in a loss of sensitivity while decreasing it might affect specificity. In general,
SUV-based analyses share the limitations of bone scan evaluations, since the risk of establishing
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an inadequate threshold cannot be fully eliminated. However, the 3D nature and the presence of
co-registered morphological imaging can help the reader in correcting such automated evaluations.
Moreover, the adoption of more specific tracers, such as 68Ga- or 18F-PSMA can increase the methods
specificity when compared to bene-seeking tracers, thus allowing for a more confident application of
this method.

3.2.3. Hybrid CT- and SUV-Based Thresholding

In order to overcome the limitations of uptake threshold techniques, hybrid analysis techniques
have been developed in the last few years [13,16,17,23,26]. These methods are applied to multi-modal
imaging (PET/CT or SPECT/CT) and use the information from both the morphologic and the
functional dataset to define the tumor volume accurately. The advantage of this approach is the
high degree of accuracy: for instance, the methodic proposed by Bieth and colleagues [23] starts by
recognizing the bone and by eliminating all the soft tissue; then, it uses a PET-based segmentation
to identify the uptakes within the bone volume. As PSMA uptake in bone is considered to be very
specific and all external PSMA sources have been taken out, it results that this method can provide
a very accurate reading of bone tumor volume. Another approach, developed by our group on the
basis of a bone marrow segmentation application [26,51-54], utilizes a CT-based adaptive threshold
algorithm to discriminate between normal trabecular bone and metastases. These CT-based volumes
are then translated onto the co-registered functional (PET or SPECT) images [26].

Using this method, the program can provide both CT- and SPECT/PET-based information, which
may be correlated with clinical and laboratory parameter. In this study, we observed how metabolic
intensity in trabecular bone and tumor volume are predictor of hematologic toxicity in patients treated
with 223RaCl, therapy.

Other hybrid methods include the one proposed by Yip [13], who employed an articulated
registration to segment bone lesions on 18F-NaF-PET/CT scans. This method performed better than
rigid and deformable algorithms. Harmon et al. also segmented bone lesion using an SUV threshold,
after having sorted out all non-osseous tissue by using a CT-based mask [17]. Their result demonstrated
how imaging-grounded metrics (including tumor burden, SUVtotal, and SUVmean) outperformed
clinical parameters in predicting progression-free survival. Finally, the group led by Lindgren Belal
compared two methods of hybrid segmentation (semi-automatic and manual) to BSI [29]. The three
methods were equally effective in predicting overall survival.

Generally, these ‘hybrid” methods can potentially produce more reliable results than the ones
based on counts or SUV thresholding, since they start by defining the target bone region, thus excluding
many confounding uptake sources (such as the urinary system). Moreover, they can produce a large
quantity of potentially useful information, including morphological parameters such as density and
volume as well as functional ones such as uptake intensity. They are however relatively complicated
and not completely suitable to everyday practice, as the analysis is complex, requiring a certain amount
of training and necessitating a relevant computational power or a long elaboration time. For these
reasons, such methods are presently more appropriate for research applications.

3.2.4. MR-Based and other Non-Isotopic Methods

Magnetic resonance imaging (MRI) is actually a powerful tool in detection of tumor burden in
mCRPC. However, due to the long acquisition time of whole-body imaging and the concerns due to
patients” discomfort, it is only rarely used in staging and re-staging of these patients. Nonetheless,
new acquisition techniques, able to speed up the scan process, and the rise of hybrid PET/MR system
could signify an important role for MRI in mCRPC. Accordingly, techniques used to estimate the
osseous tumor burden in MRI are in course of development. Blackledge et al. devised a semi-automatic
method, in which the operator adjusted a threshold parameter to delimit the tumor localizations [43].
In this volume, a probabilistic model is applied to reduce the misclassified voxels. In the whole
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patient population, subjects who responded to treatment displayed a greater global apparent diffusion
coefficient than non-responders.

Perez-Lopez and colleagues utilized a semi-automatic segmentation of T1 and diffusion-weighted
images to calculate the tumor burden, then they compared these results with BSI [44]. Tumor volume
and BSI were correlated; furthermore, tumor burden could predict survival and was associated with
many clinical and radiological parameters.

Finally, Brisset and colleagues set up a complex study, in which, among other parameters,
investigated CT- and MRI-related parameter with a voxel based-analysis [45]. Such parameters
were able to tell apart stable from progressive disease at a longitudinal analysis.

In general, MRI-based method offer the advantage of excellent lesion contrast and the potential to
detect also non-osseous localizations with a high degree of confidence. Moreover, the use of MRI can
spare the patients, handling personnel, and general population from radiation exposure. However,
whole-body MRI is not yet diffuse due to its relatively long acquisition time and thus, low patient
throughput. Although studies on this matter are limited, it remains a promising research path.

4. Conclusions

The application of computational analysis methods to planar or hybrid imaging is a constantly
growing field of imaging science. In the clinical scenario of metastatic CRPC, whose prevalence has
been steadily increasing in recent years, it could improve patients management by allowing an accurate
quantification of tumor load and produce a reliable index to test the therapeutic effectiveness of the
many new treatment methods. Moreover, it has the potential to turn the everyday scan in a plentiful
source of information, which can non-invasively disclose a great quantity of information on tumor
biology as well as on therapy efficacy.

When choosing the most proper approach, it is important to strike a balance between striving for
rapid results and avoiding inaccuracy. In this line, it appears that choosing a specific tracer (such as
68Ga-PSMA) and using all the available information (including functional and morphologic data) can
be helpful in tackling this endeavor and in ensuring the best patient care.
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