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Abstract: In this paper, the characteristics of new porous coatings fabricated at three voltages in
electrolytes based on H3PO4 with calcium nitrate tetrahydrate, magnesium nitrate hexahydrate,
and copper(II) nitrate trihydrate are presented. The SEM, energy dispersive spectroscopy (EDS),
glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS),
and XRD techniques for coating identification were used. It was found that the higher the plasma
electrolytic oxidation (PEO) (micro arc oxidation (MAO)) voltage, the thicker the porous coating with
higher amounts of built-in elements coming from the electrolyte and more amorphous phase with
signals from crystalline Ca(H2PO4)2·H2O and/or Ti(HPO4)2·H2O. Additionally, the external parts of
the obtained porous coatings formed on titanium consisted mainly of Ti4+, Ca2+, Mg2+ and PO4

3−,
HPO4

2−, H2PO4
−, P2O7

4− as well as Zn2+ or copper Cu+/Cu2+. The surface should be characterized
by high biocompatibility, due to the presence of structures based on calcium and phosphates, and
have bactericidal properties, due to the presence of zinc and copper ions. Furthermore, the addition
of magnesium ions should accelerate the healing of postoperative wounds, which could lead to faster
patient recovery.

Keywords: micro arc oxidation; plasma electrolytic oxidation; DC PEO; DC MAO; titanium;
calcium nitrate tetrahydrate; magnesium nitrate hexahydrate; copper(II) nitrate trihydrate;
85% phosphoric acid

1. Introduction

The phenomenon of luminescence occurring on the surface of metals during the galvanic process
was first observed by Sluginov in 1880 [1], and the information was published for the first time by
Braun in 1898 [2]. In 1929, Dufford showed that during the electrolysis of metals such as aluminum,
zinc, silver, tantalum, tungsten, magnesium, cerium, antimony, and mercury in selected electrolytes,
the phenomenon of luminescence was observed [3]. In addition, he noticed that this phenomenon

Materials 2018, 11, 1680; doi:10.3390/ma11091680 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-1412-1079
http://www.mdpi.com/1996-1944/11/9/1680?type=check_update&version=1
http://dx.doi.org/10.3390/ma11091680
http://www.mdpi.com/journal/materials


Materials 2018, 11, 1680 2 of 20

was not observed with lead, iron, copper, nickel, molybdenum, tin, and platinum. Such luminescence
phenomenon was developed, inter alia, by McNeill, Gruss, Yerokhin, and Nie [4,5]. In addition,
Yerokhin at al. proposed a definition of that process, that it is “an electrolytic treatment of anodically
polarized metal surfaces carried out above the dielectric breakdown voltage of the growing oxide
film”, as well as an explanation of the formation of porous coatings [5,6]. According to this theory,
during small voltage polarization, the passive layer is forming, which may be dissolved with the
voltage increase. Further increases of voltage result in film repassivation and growth of a new porous
oxide film. In the next step of voltage increase, the electric field strength in the oxide film reaches
a critical value, after which the film is broken through due to impact or tunneling ionization (here,
luminescent sparks are observed). A further increase of voltage results in the following: thermal
ionization, larger arc discharges, film fusing and alloying with electrolyte elements, microdischarges
penetrating through to the substrate, powerful arcs, destructive effects, and thermal cracking of
the coating. It should be also pointed out that on the same plasma electrolytic oxidation (PEO)
treated surface, more than one of the described processes may occur concurrently [5]. Over the
years, the phenomenon of galvanic luminescence occurring during the anodic polarization of selected
metals and electrolytes has been defined as microplasma oxidation, anode spark electrolysis, plasma
electrolytic anode treatment, plasma electrolytic oxidation, or micro arc oxidation [7]. Systematic
studies proposed coating growth [8–10] and discharging [11–14] behaviors as well as electrolyte
influence on the ignition of plasma electrolytic oxidation processes [15]. Meanwhile, Curran and
Clyne described the thermophysical properties of plasma electrolytic oxidation [16] and the porosity
of PEO coatings [17]. Other authors studied oxygen evolution during PEO [18] and the effects of
electrical parameters on that process [19] as well as phase formation in ceramic PEO coatings [20,21]
and their corrosion resistance [22]. The PEO process has been performed by researchers under different
conditions, i.e., DC [23,24], AC [25,26], and pulse [27,28] currents, which result in different surface
morphology [29,30] and chemical composition [31,32] as well as mechanical [33,34] and electrochemical
properties [35,36]. For the most frequently treated materials by PEO processes, aluminum [37–40]
and its alloys [40–44], magnesium [45] and its alloys [46–54], titanium [55–60] and its alloys [61–67],
zirconium [68–77] and its alloys [78,79], tantalum [80–83], niobium [84–88], and hafnium [89] should
be included. In the present paper, PEO coatings obtained on titanium in novel electrolytes, which have
never been used or described in the literature until now, are presented (Table 1). These electrolytes are
based on orthophosphoric acid and three different nitrates.

Table 1. Electrolytes and conditions of the plasma electrolytic oxidation (PEO) process.

Electrolytes Voltage Current Density Ref.

H2O, NaAlO2, Na3PO4·12H2O, KOH, NaCl 100–900 mA·cm−2 (f = 50 Hz) [7]
H2O, Na3PO4·12H2O, KOH, Na2SO4, (HOCH2)3CNH2, (NH4)2HPO4, C2H7NO2 70 mA·cm−2 (f = 50 Hz) [23]
H3PO4, Ca(NO3)2·4H2O, Mg(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O 500, 575, 650 V [24]

H3PO4, Cu(NO3)2·3H2O 450 V [32]
H2O, Na2SiO3, (NaPO3)6, NaAlO2 microparticle 80 mA·cm−2 (f = 300 Hz) [33]

H3PO4, Mg(NO3)2·6H2O, Zn(NO3)2·6H2O 500–650 V [35]
H2O, Na3PO4, FeSO4 350 V (f = 100 Hz) [55]
H2O, NaAlO2, KOH 400 V (f = 2000 Hz) [56]

H2O, (CH3COO)2Ca·H2O, NaH2PO4·2H2O 300, 390 V (f = 900 Hz) [58]
H2O, Ca(CH3COO)2,Sr(CH3COO)2 400, 450 V (f = 100 Hz) [59]

H3PO4, Ca(NO3)2·4H2O 500, 575, 650 V [60]
H2O, Na3PO4, Co(CH3COO)2 350 V (f = 100 Hz) [61]

H2O, Na3PO4·12H2O, Na2B4O7·10H2O, Na3WO4·2H2O 50 mA·cm−2 [62]
H2O, Na2SiO3, Na2CO3, NaOH 12 mA·cm−2 (f = 100 Hz) [63]

H2O, C6H18O24P6, KOH, EDTA-Na2, Ca(CH3COO)2 20, 50, 80 V [64]
H2O, NaAlO2, Na2SiO3, (NaPO3)6 550 V [65]
H2O, Na2HPO4, C4H6O4Ca·H2O +400 V/−80 V (f = 250 Hz) [66]
H2O, C3H9O6P, C4H6O4Ca·H2O +400 V/−80 V (f = 250 Hz) [66]

H2O, Na2HPO4, C3H7CaO6P·H2O +400 V/−80 V (f = 250 Hz) [66]
H2O, (CH3COO)2Ca·H2O, NaH2PO4·H2O 350–500 V (f = 1000 Hz) [67]

H2O, Ca(CH3COO)2·H2O 300 V (f = 1000 Hz) [90]
H2O, (CH1COO)2Ca, C3H7Na2O6P 250–400 V (f = 100 Hz) [91]

H2O, (CH3COO)2Ca·H2O, C3H7Na2O6P·5H2O 450 V (f = 100 Hz) [92]
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Table 1. Cont.

Electrolytes Voltage Current Density Ref.

H2O, (CH3COO)2Ca·H2O, C3H7Na2O6P·5H2O 250–500 V (f = 1000 Hz) [93,94]
H2O, Ca(CH3COO)2·H2O, CaC3H7O6P 190–600 V (f = 660 Hz) [95,96]

H2O, (CH3COO)2Ca·H2O, C3H7Na2O6P·5H2O 200–500 V (f = 900 Hz) [97]
H2O, Na4P2O7·10H2O and KOH, NaAlO2 0–300 V [98]
Na2B4O7·10H2O, (CH3COO)2Mn·4H2O 450–500 V [99]

H2O, (CH3COO)2Ca·H2O 230 V [100]
H2O, (CH3COO)2Ca·H2O, NaH2PO4·2H2O 260–420 V [101]

H2O, CaHPO4, Ca(H2PO4)2, Na6P6O18, Ca(CH3COO)2 20, 100 mA·cm−2 [102]
H2O, KOH 290 V (f = 100–200 Hz) [103]
H2O, KOH 350 V (f = 1000 Hz) [104]

H2O, (NaPO3)6, NaF, NaAlO2 150–200 V [105]
H2O, K2Al2O4, Na3PO4, NaOH 400 V [106]

H2O, CaCl2 and KH2PO4 320–340 V [107]
H2O, H2SO4 and Ti2(SO4)3 1100 V [108]

H2O, Na2(EDTA), CaO, Ca(H2PO4)2, Na2SiO3·H2O 350 V (f = 200 Hz) [109]
H2O, Na2SiO3, NaOH 280 V [110]

H2O, CaO, Na6P6O18, Na2H2EDTA·5.5H2O, KOH AC 0.5–2 mA·cm−2 [111]
2O, (NaPO3)6, NaF, NaAlO2 60 mA·cm−2 (f = 100, 600 Hz) [112]

H2O, Na3PO4, FeSO4, Co(CH3COO)2, Ni(CH3COO)2, K2ZrF6 350 V (f = 100 Hz) [113]
H2O, Ca(CH3COO)2·H2O, C3H7Na2O6P 150 V [114]

H2O, Na2SiO3·9H2O, Na3PO4·12H2O, Na2SiO3·9H2O, Na3PO4·12H2O 80 mA·cm−2 (f = 150 Hz) [115]
H2O, Na3PO4·12H2O, α-Al2O3 nanoparticles 20 mA·cm−2 [116]

It should also be pointed out that in hydroxyapatite-like structures it is possible to substitute the
Ca2+ ions for Ca2+, Mg2+, Cu2+, and Zn2+, as well as OH– for Cu+, which will be used in the fabrication
of novel PEO coatings. The porous calcium–phosphate coatings obtained on titanium [117–119] and
enriched with biocompatible magnesium, which causes faster wound healing [120–125], as well as
antibacterial zinc [126–132] and copper [133–136], may be used as biomaterial, which will be fully
accepted by the tissue environment.

However, without results inter alia presented in those papers, it is not possible to predict the real
possibility of that substitution during plasma treatment in electrolyte in which the ions are present, as
well as the thickness and porosity of the PEO coatings. Therefore, in the present paper, the results of
x-ray photoelectron spectroscopy (XPS) (10 top nanometers) will be helpful in explaining the oxidation
states of those chemical elements as well as chemical composition for all volumes, thicknesses, and
pore shapes of obtained coatings by energy dispersive spectroscopy (EDS), XRD, glow discharge
optical emission spectroscopy (GDOES), and SEM.

2. Materials and Methods

Porous coatings obtained on titanium samples (10 × 10 × 2 mm) by PEO treatment in electrolyte
(constant volume of 500 mL for each experiment) containing phosphoric acid (85% w/w) with the addition
of calcium nitrate tetrahydrate Ca(NO3)2·4H2O, magnesium nitrate hexahydrate Mg(NO3)2·6H2O, and
copper(II) nitrate trihydrate Cu(NO3)2·3H2O in weight ratios of 1:1:1 (Table 2) at 3 voltages, 500 V
(PEO time: 3 min), 575 V (PEO times: 1, 3, 5 min), and 600 V (PEO time: 3 min), using a PWR 1600H
power supply (KIKUSUI Electronics Corp., Yokohama, Kanagawa, Japan) were fabricated. For their
characterization, the complementary measurement methods SEM, EDS, GDOES, XPS, and XRD [137–141]
were used. Descriptions of the setups are presented in Table 3 and are detailed in reference [24].

Table 2. Experimental plan and code sample names.

Sample Name Voltage Electrolyte Type
Electrolyte Composition

Salts Salt Concentrations (g/L)

Ti_CaMgZn_500V 500 V
Electrolyte 1

Ca(NO3)2·4H2O and
Mg(NO3)2·6H2O &

Zn(NO3)2·6H2O
166.7 + 166.7 + 166.7Ti_CaMgZn_575V 575 V

Ti_CaMgZn_650V 650 V

Ti_CaMgCu_500V 500 V
Electrolyte 2

Ca(NO3)2·4H2O and
Mg(NO3)2·6H2O &

Cu(NO3)2·3H2O
166.7 + 166.7 + 166.7Ti_CaMgCu_575V 575 V

Ti_CaMgCu_650V 650 V
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Table 3. Setups of SEM, energy dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS),
glow discharge optical emission spectroscopy (GDEOS), and XRD equipment.

Technique Equipment Manufacturer

SEM Quanta 650 FEI Field Electron and Iron Company, Hillsboro, OR, USA

EDS Noran System Six EDS, Silicon Drift Detectors: Keith Thompson, Thermo
Fisher Scientific, Madison, WI, USA

XPS SCIENCE SES 2002 Scienta AB, Scienta Omicron, Uppsala, Sweden

GDOES GD Profiler 2 HORIBA Scientific, Palaiseau, France

XRD Bruker-AXS D8 Advance Bruker Corporation, Billerica, MA, USA

3. Results

Figure 1 shows the surface morphologies of coating surfaces formed on titanium at 500 V, 575 V,
and 650 V in two different electrolytes based on phosphoric acid. Two solutions were used: Electrolyte
1, containing H3PO4 with the addition of calcium nitrate tetrahydrate Ca(NO3)2·4H2O, magnesium
nitrate hexahydrate Mg(NO3)2·6H2O, and zinc nitrate hexahydrate Zn(NO3)2·6H2O; and Electrolyte
2, with additions of calcium nitrate tetrahydrate Ca(NO3)2·4H2O, magnesium nitrate hexahydrate
Mg(NO3)2·6H2O, and copper(II) nitrate trihydrate Cu(NO3)2·3H2O. It should be pointed out that all
the obtained coatings were porous and had a well-developed surface.

In Figure 2 and Table 4, the EDS semiquantitative results for samples obtained in Electrolyte 1
are presented as Ca/P, Mg/P, Zn/P, and M/P ratios. The Ca/P ratios were equal to 0.051 ± 0.003
natural units (n.u.), 0.063 ± 0.003 n.u., and 0.069 ± 0.003 n.u. for 500, 575, and 650 V, respectively. The
Mg/P ratios were equal to 0.051 ± 0.004 n.u. (500 V), 0.058 ± 0.003 n.u. (575 V), and 0.060 ± 0.006 n.u.
(650 V). The Zn/P ratios for 500, 575, and 650 V were equal to 0.052 ± 0.004 n.u., 0.065 ± 0.005 n.u.,
and 0.071 ± 0.010 n.u., respectively. The M/P ratios were equal to 0.153 ± 0.008, 0.187 ± 0.006, and
0.200 ± 0.020 for 500, 575, and 650 V, respectively.

Figure 3 and Table 5 present the EDS semiquantitative results for samples obtained in Electrolyte 2
as Ca/P, Mg/P, Cu/P, and M/P. The Ca/P ratios were equal to 0.062± 0.003 n.u., 0.068± 0.004 n.u., and
0.071± 0.003 n.u. for 500, 575, and 650 V, respectively. The Mg/P ratios were equal to 0.058± 0.002 n.u.,
0.059 ± 0.003 n.u., and 0.064 ± 0.003 n.u. for 500, 575, and 650 V, respectively. The Cu/P ratios
for samples obtained at 500, 575, and 650 V were equal to 0.039 ± 0.003 n.u., 0.048 ± 0.002 n.u.,
and 0.062 ± 0.005 n.u., respectively. The M/P ratios for samples obtained at 500, 575, and 650 V were
equal to 0.158 ± 0.006 n.u., 0.175 ± 0.006 n.u., and 0.197 ± 0.004 n.u., respectively.

Table 4. Statistical description of EDS of coatings formed in Electrolyte 1. n.u., no units.

Ratios Voltage x σ Q1 Q2 Q3

Ca/P
n.u.

500 V 0.051 0.003 0.050 0.052 0.052
575 V 0.063 0.003 0.062 0.064 0.065
650 V 0.069 0.003 0.068 0.071 0.071

Mg/P
n.u.

500 V 0.051 0.004 0.049 0.051 0.053
575 V 0.058 0.003 0.057 0.060 0.060
650 V 0.060 0.006 0.057 0.063 0.063

Zn/P
n.u.

500 V 0.052 0.004 0.050 0.053 0.054
575 V 0.065 0.005 0.063 0.068 0.068
650 V 0.071 0.010 0.065 0.075 0.075

M/P
n.u.

500 V 0.153 0.008 0.149 0.151 0.157
575 V 0.187 0.006 0.184 0.188 0.190
650 V 0.200 0.015 0.192 0.195 0.206
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Table 5. Statistical description of EDS of coatings formed in Electrolyte 2. n.u., no units.

Ratios Voltage x σ Q1 Q2 Q3

Ca/P
n.u.

500 V 0.062 0.003 0.060 0.061 0.062
575 V 0.068 0.004 0.066 0.068 0.071
650 V 0.071 0.003 0.068 0.072 0.073

Mg/P
n.u.

500 V 0.058 0.002 0.057 0.057 0.059
575 V 0.059 0.003 0.056 0.060 0.061
650 V 0.064 0.003 0.064 0.064 0.066

Cu/P
n.u.

500 V 0.039 0.003 0.037 0.040 0.040
575 V 0.048 0.002 0.047 0.048 0.050
650 V 0.062 0.005 0.059 0.061 0.063

M/P
n.u.

500 V 0.158 0.006 0.156 0.156 0.159
575 V 0.175 0.006 0.172 0.176 0.177
650 V 0.197 0.004 0.195 0.196 0.197

The diffraction data of PEO coatings formed in Electrolytes 1 and 2 at three voltages are presented
in Figure 4. For both electrolytes, similar phenomena were observed, i.e., for samples oxidized at 500
and 575 V, only signal from titanium as metal matrix was detected, while for 650 V other crystalline
phases, such as Ca(H2PO4)2·H2O and Ti(HPO4)2·H2O for samples obtained in Electrolyte 1 and
Ca(H2PO4)2·H2O for samples obtained in Electrolyte 2, were recorded. It was also found that voltage
growth in PEO coatings caused amorphous phase accretion as well.

GDOES data of PEO coatings formed in Electrolyte 1 at 500, 575, and 650 V are presented in
Figure 5. The top and porous sublayers, which are enriched in Zn, P, and O and depleted in Ca,
Mg, and Ti, have thicknesses of about 200, 300, and 500 s of sputtering time for 500, 575, and 650
V, respectively, while the thickness of the second (semiporous) one, which was enriched in calcium,
magnesium, zinc, phosphorus, and oxygen and depleted in titanium, was in the range of 700 s (500 V)
up to 2000 s (650 V) of sputtering time. On the other hand, the thicknesses of the third (transition)
sublayers, in which a decrease of all signals, except titanium, was observed, increased from 800 s
(500 V) up to 2000 s (650 V) of sputtering time. In Figure 6, the GDOES results of PEO coatings formed
in Electrolyte 2 at the same three voltages are presented.

The top and porous sublayers, which are enriched in P and O and depleted in Ca, Mg, Cu, and Ti,
have thicknesses related to sputtering times equal to about 100, 300, and 600 s for 500, 575, and 650 V,
respectively, while the thickness of the second (semiporous) layer, which is enriched in Ca, Mg, Cu,
P, and O and depleted in Ti, is in the range of 600 s (500 V) up to 1900 s (650 V) of sputtering time.
Here, the thicknesses of the transition sublayers are in the range from 600 s (500 V) up to 1500 s (650 V)
of sputtering time. The part of C, N, and O signals may originate in the first top sublayers from
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contamination (from air and cleaning compounds). In addition, the H signals maxima, which are
always placed in third-transition sublayers, is the end of the coating porosity. It should also be noted
that the accretion of voltage caused an increase in coating thickness. In Figures 7 and 8, the XPS spectra
of PEO coatings formed in Electrolytes 1 and 2 are presented. Based on the obtained results, it can
be concluded that the top external 10 nm layers of the PEO coating consist mainly of phosphorus,
oxygen, nitrogen, titanium, calcium, magnesium, and zinc (Electrolyte 1) or copper (Electrolyte 2).
The bindings of C with O and N with O can be interpreted as contaminants (cleaning process and
adsorbed air). The phosphorus (P 2p) and oxygen (O 1s) spectra were in the range of 133.6–134 eV
and 531.3–531.5 eV, respectively, which can be interpreted as the groups PO4

3−, HPO4
2−, H2PO4

−,
and P2O7

4−. The Cu 2p spectra maxima (331.1–932.9 eV and 934.5–935.8 eV) and Auger Cu LMM
(566–567.2 eV) suggest the presence of Cu+ and Cu2+, while Ca2+ is proved by the binding energy
(BE) in the range of 347.4−347.7 eV. The BE of Zn 2p (1021.9–1022.4 eV) and Zn LMM (497.9–501.5
eV) proves the existence of Zn2+, while BE in the range of 89.1–92.8 eV (Mg 2s) and 306.2–306.9 eV
(Mg KLL) indicates the existence of Mg2+. The BE of titanium Ti 2p3/is in the range of 459.9−460.2 eV,
which means that titanium is on the fourth oxidation state (Ti4+). Based on the quantitative XPS of the
top 10 nm of PEO coatings obtained in Electrolytes 1 and 2 at three voltages, two ratios, Ca:Mg:Zn and
Ca:Mg:Zn, were found. The Ca:Mg:Zn ratios are equal to 8:32:1 n.u. (500 V), 8:28:1 n.u. (575 V), and
14:45:1 n.u. (650 V), while the Ca:Mg:Zn ratios are equal to 5:5:1 n.u. (500 V), 4:7:1 n.u. (575 V), and
6:5:1 n.u. (650 V). (Ca + Mg + Zn)/P and (Ca + Mg + Cu)/P have their maxima equal to 0.48 n.u. and
0.21 n.u., respectively, at 575 V. The same trend was observed for single Me/P ratios, where M ∈ {Ca,
Mg, Zn, Cu}, i.e., the maxima were recorded for PEO coatings obtained at 575 V.
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Figure 5. GDEOS signals (black), first derivatives (red continuous line), and second derivatives (brown
dashed line) for samples formed in Electrolyte 1.
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Figure 6. GDEOS signals (black), first derivatives (red continuous line), and second derivatives (brown
dashed line) for samples formed in Electrolyte 2.
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4. Discussion

In this paper, the characteristics of new porous coatings fabricated at 500, 575, and 650 V
in electrolytes based on H3PO4 and Mg(NO3)2·6H2O, Ca(NO3)2·4H2O with Cu(NO3)2·3H2O, and
Zn(NO3)2·6H2O were presented. Information on the chemical composition of the PEO coatings was
obtained by use of the XPS method (for the first 10 nm) and EDS and XRD (for the whole volume of
the coatings). Based on EDS results, which were recorded for the whole volume of the coatings, it was
found that increased PEO voltage results in an increase of the average metal-to-phosphorus ratios
(Ca/P, Mg/P, Zn/P, and Cu/P), while XPS analysis of 10 nm showed that the maxima of those ratios
are achieved for the values of the central voltage (575 V), which indicates that the coatings are layered,
as proven by GDOES elemental profiles. All the PEO coatings can be divided into three sublayers:
(i) external porous layer, enriched in P, O, and Zn (Electrolyte 1) and depleted in Ca, Mg, and Cu
(Electrolyte 2) and Ti, but also the most contaminated (CO2, C2H5OH); (ii) semiporous layer, enriched
in Ca, Mg, P, O, and Zn (Electrolyte 1) or Cu (Electrolyte 2), and depleted in Ti; (iii) transition layer,
in which the titanium signal increases and depletion of all other elements (P, O, Ca, Mg, Zn, and Cu)
is detected. On the basis of these XPS data, it was possible to conclude that the extreme surface of
the coatings most likely consists of titanium (Ti4+), calcium (Ca2+), magnesium (Mg2+), and oxygen
with PO4

3−, HPO4
2−, H2PO4

−, and P2O7
4− as well as Zn2+ or Cu+/Cu2+. Furthermore, the XRD

analysis suggests that increasing voltage results in amorphization of the coatings, with the detection of
crystalline phases such as Ca(H2PO4)2·H2O and/or Ti(HPO4)2·H2O.

It was also observed that using zinc ions as a bactericidal element instead of the copper ions in
PEO coatings obtained on titanium substrate results in a drastic increase of magnesium incorporated
into the obtained structure, combined with a slight increase of calcium ions. The results presented
in this paper may be used to design biocompatible and bactericidal coatings due to the creation
hydroxyapatite-like structures, in which the Ca2+ may be replaced by others, i.e., Mg2+, Zn2+, Cu2+,
and the hydroxy group (OH−) by Cu+ ions. It should be pointed out that while magnesium accelerates
the healing of postoperative wounds, the structure composed of calcium and phosphorus is bone-like.
Therefore, zinc or copper added in controlled quantities would perform antibacterial functions, which,
together with magnesium, would allow faster healing of postoperative wounds.

5. Conclusions

• It is possible to obtain porous calcium–magnesium–phosphate coatings enriched with copper
or zinc.

• The higher the voltage of PEO treatment, the thicker the porous coatings.
• The higher the voltage of PEO treatment, the higher the amount of built-in elements coming from

the electrolyte and more amorphous phase in coatings.
• The top 10 nm layer of the studied coatings consist mainly of Ti4+, Ca2+, Mg2+ and PO4

3−,
HPO4

2−, H2PO4.
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Nomenclature

PEO Plasma electrolytic oxidation
MAO Micro arc oxidation
SEM Scanning electron microscopy
EDS Energy dispersive spectroscopy
GDOES Glow discharge optical emission spectroscopy
XPS X-ray photoelectron spectroscopy
XRD X-ray powder diffraction
x Mean
σ Standard deviation
Q1 First quartile
Q2 Second quartile (median)
Q3 Third quartile
M Metal (here M = Ca + Mg + Zn or M = Ca+ Mg + Cu)
BE Binding energy
f Frequency
DC Direct current
AC Alternating current
n.u. no unit
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89. Stojadinović, S.; Tadić, N.; Vasilic, R. Plasma electrolytic oxidation of hafnium. J. Refract. Met. Hard Mater.
2017, 69, 153–157. [CrossRef]

90. Han, Y.; Hong, S.H.; Xu, K.W. Synthesis of nanocrystalline titania films by micro-arc oxidation. Mater. Lett.
2002, 56, 744–747. [CrossRef]

91. Han, Y.; Xu, K. Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium. J. Biomed.
Mater. Res. 2004, 71A, 608–614. [CrossRef] [PubMed]

92. Huang, P.; Xu, K.W.; Han, Y. Preparation and apatite layer formation of plasma electrolytic oxidation film on
titanium for biomedical application. Mater. Lett. 2005, 59, 185–189. [CrossRef]

93. Song, W.H.; Jun, Y.K.; Han, Y.; Hong, S.H.; Kim, H.E.; Heo, S.J.; Koak, J.Y. Biomimetic apatite coatings on
micro-arc oxidized titania. Biomaterials 2004, 25, 3341–3349. [CrossRef] [PubMed]

94. Zhang, Y.M.; Bataillon-Linez, P.; Huang, P.; Zhao, Y.M.; Han, Y.; Traisnel, M.; Xu, K.W.; Hildebrand, H.F.
Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior.
J. Biomed. Mater. Res. 2003, 68, 383–391. [CrossRef] [PubMed]

95. Li, L.H.; Kong, Y.M.; Kim, H.W.; Kim, Y.W.; Kim, H.E.; Heo, S.J.; Koak, J.Y. Improved biological performance
of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004, 25, 2867–2875. [CrossRef]
[PubMed]

96. Lee, S.H.; Kim, H.W.; Lee, E.J.; Li, L.H.; Kim, H.E. Hydroxyapatite–TiO2 hybrid coating on Ti implants.
J. Biomater. Appl. 2006, 20, 194–208. [CrossRef] [PubMed]

97. Han, Y.; Hong, S.H.; Xu, K.W. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation.
Surf. Coat. Technol. 2003, 168, 249–258. [CrossRef]

98. Teh, T.H.; Berkani, A.; Mato, S.; Skeldon, P.; Thompson, G.E.; Habazaki, H.; Shimizu, K. Initial stages of
plasma electrolytic oxidation of titanium. Corros. Sci. 2003, 45, 2757–2768. [CrossRef]

http://dx.doi.org/10.1088/1742-6596/748/1/012019
http://dx.doi.org/10.1016/j.surfcoat.2016.09.071
http://dx.doi.org/10.3390/ma11040545
http://www.ncbi.nlm.nih.gov/pubmed/29614014
http://dx.doi.org/10.1016/j.apsusc.2017.02.170
http://dx.doi.org/10.1155/2016/7093071
http://dx.doi.org/10.1007/s11665-017-3108-6
http://dx.doi.org/10.1016/j.electacta.2016.03.069
http://dx.doi.org/10.1016/j.surfcoat.2018.03.013
http://dx.doi.org/10.1007/BF01077589
http://dx.doi.org/10.1016/j.msec.2016.10.073
http://www.ncbi.nlm.nih.gov/pubmed/28532001
http://dx.doi.org/10.1016/j.ijrmhm.2017.08.011
http://dx.doi.org/10.1016/S0167-577X(02)00606-7
http://dx.doi.org/10.1002/jbm.a.30177
http://www.ncbi.nlm.nih.gov/pubmed/15499638
http://dx.doi.org/10.1016/j.matlet.2004.09.045
http://dx.doi.org/10.1016/j.biomaterials.2003.09.103
http://www.ncbi.nlm.nih.gov/pubmed/15020106
http://dx.doi.org/10.1002/jbm.a.20063
http://www.ncbi.nlm.nih.gov/pubmed/14704981
http://dx.doi.org/10.1016/j.biomaterials.2003.09.048
http://www.ncbi.nlm.nih.gov/pubmed/14962565
http://dx.doi.org/10.1177/0885328206050518
http://www.ncbi.nlm.nih.gov/pubmed/16364961
http://dx.doi.org/10.1016/S0257-8972(03)00016-1
http://dx.doi.org/10.1016/S0010-938X(03)00101-X


Materials 2018, 11, 1680 18 of 20

99. Rudnev, V.S.; Vasilyeva, M.S.; Kondrikov, N.B.; Tyrina, L.M. Plasma-electrolytic formation, composition and
catalytic activity of manganese oxide containing structures on titanium. Appl. Surf. Sci. 2005, 252, 1211–1220.
[CrossRef]

100. Ryu, H.S.; Song, W.H.; Hong, S.H. Biomimetic apatite induction on Ca-containing titania. Curr. Appl. Phys.
2005, 5, 512–515. [CrossRef]

101. Chen, J.Z.; Shi, Y.L.; Wang, L.; Yan, F.Y.; Zhang, F.Y. Preparation and properties of hydroxyapatite-containing
titania coating by micro-arc oxidation. Mater. Lett. 2006, 60, 2538–2543. [CrossRef]

102. Matykina, E.; Montuori, M.; Gough, J.; Monfort, F.; Berkani, A.; Skeldon, P.; Thompson, G.E.; Habazaki, H.
Spark anodising of titanium for biomedical applications. Trans. IMF 2006, 84, 125–133. [CrossRef]

103. Han, I.H.; Choi, J.H.; Zhao, B.H.; Baik, H.K.; Lee, I.S. Effects of electrical wave form on pore size of micro-arc
oxidized TiO2 film. Key Eng. Mater. 2006, 309–311, 375–378. [CrossRef]

104. Shokouhfar, M.; Dehghanian, C.; Montazeri, M.; Baradaran, A. Preparation of ceramic coating on Ti substrate
by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II.
Appl. Surf. Sci. 2012, 258, 2416–2423. [CrossRef]

105. Zhu, L.; Ye, X.; Tang, G.; Zhao, N.; Gong, Y.; Zhao, Y.; Zhao, J.; Zhang, X. Corrosion test, cell behavior test,
and in vivo study of gradient TiO2 layers produced by compound electrochemical oxidation. J. Biomed.
Mater. Res. A 2006, 78, 515–522. [CrossRef] [PubMed]

106. Habazaki, H.; Onodera, T.; Fushimi, K.; Konno, H.; Toyotake, K. Spark anodizing of β-Ti alloy for
wear-resistant coating. Surf. Coat. Technol. 2007, 201, 8730–8737. [CrossRef]

107. Kim, M.S.; Ryu, J.J.; Sung, Y.M. One-step approach for nano-crystalline hydroxyapatite coating on titanium
via micro-arc oxidation. Electrochem. Commun. 2007, 9, 1886–1891. [CrossRef]
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