Skip to main content
. 2018 Aug 6;8(3):26. doi: 10.3390/jpm8030026

Table 4.

Baseline logistic regression model and generalized regression elastic net models on the prediction of colorectal cancer from gene-metabolite interaction, with one interaction term.

Logistic Regression Original Model Generalized Regression Elastic Net Model
AICc Validation Leave-One-Out Validation
Parameters Estimate p (X2) Estimate p (X2) Estimate p (X2)
(Intercept) −5.6 0.93 0.4 0.78 1.1 0.45
MMA * Gene mutations −42 0.68 −30 <0.0001 −11 <0.0001
Homocysteine −15 0.77 −12 <0.0001 −5.7 <0.0001
Methyl-folate 14 0.69 9.1 <0.0001 3.4 0.0019
Gene mutations 14 0.86 11 <0.0001 4.0 0.0188
Vegetable intake 28 0.62 17 <0.0001 5.6 0.0005
Age −14 0.63 −8.7 <0.0001 −2.9 0.0024
MMA −0.4 0.996 −1.7 0.28 0 1.0
Misclassification Rate 0.2 0.03 0.04
AICc 27 26
Area under the curve 1.0 0.998 0.997

MMA: Methylmalonic acid; *: Interaction; –: Not available; AICc: Akaike’s information criterion with corrections: AUC: Area under the curve.