Table 4.
Baseline logistic regression model and generalized regression elastic net models on the prediction of colorectal cancer from gene-metabolite interaction, with one interaction term.
Logistic Regression Original Model | Generalized Regression Elastic Net Model | |||||
---|---|---|---|---|---|---|
AICc Validation | Leave-One-Out Validation | |||||
Parameters | Estimate | p (X2) | Estimate | p (X2) | Estimate | p (X2) |
(Intercept) | −5.6 | 0.93 | 0.4 | 0.78 | 1.1 | 0.45 |
MMA * Gene mutations | −42 | 0.68 | −30 | <0.0001 | −11 | <0.0001 |
Homocysteine | −15 | 0.77 | −12 | <0.0001 | −5.7 | <0.0001 |
Methyl-folate | 14 | 0.69 | 9.1 | <0.0001 | 3.4 | 0.0019 |
Gene mutations | 14 | 0.86 | 11 | <0.0001 | 4.0 | 0.0188 |
Vegetable intake | 28 | 0.62 | 17 | <0.0001 | 5.6 | 0.0005 |
Age | −14 | 0.63 | −8.7 | <0.0001 | −2.9 | 0.0024 |
MMA | −0.4 | 0.996 | −1.7 | 0.28 | 0 | 1.0 |
Misclassification Rate | 0.2 | – | 0.03 | – | 0.04 | – |
AICc | 27 | – | 26 | – | – | – |
Area under the curve | 1.0 | – | 0.998 | – | 0.997 | – |
MMA: Methylmalonic acid; *: Interaction; –: Not available; AICc: Akaike’s information criterion with corrections: AUC: Area under the curve.