Skip to main content
. 2018 Sep 6;15(9):1941. doi: 10.3390/ijerph15091941
Algorithm 1 for data decomposition
1: procedure xt.
2:    for 1lNE do
3:       ytlxt+εl, yi=0,tlytl
4:       Max_locallocalmaximayi,tl, Min_locallocalminimayi,tl
5:       y¯i,tl apply endpoint condition method to yi,tl
6:       h¯max,i,tl upper envelop of y¯i,tl; h¯max,i,tl lower envelop of y¯i,tl
7:       m¯i,tlh¯max,i,tl+h¯min,i,tl2, r¯i,tly¯i,tlm¯i,tl
8:       while y¯i,tl is a constant or trend do
9:       if r¯i,tl satisfies the two conditions of IMFs, do
10:          r¯i,tl is the i-th IMFi,t
11:          ii+1
12:          y¯i,tl=y¯i1,tlr¯i1,tl
13:       else
14:          y¯i,tl=r¯i,tl
15:       end if
16:       Max_locallocalmaximayi,tl, Min_locallocalminimayi,tl
17:       h¯max,i,tl upper envelop of y¯i,tl; h¯max,i,tl lower envelop of y¯i,tl
18:       m¯i,tlh¯max,i,tl+h¯min,i,tl2
19:    end while
20: end for
21: end procedure IMFi,t and r¯i,t