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Abstract: Culex tritaeniorhynchus is an important vector that transmits a variety of human and animal
diseases. Japanese encephalitis (JE), an endemic disease in the Asia-Pacific region, is primarily
transmitted by Cx. tritaeniorhynchus. Insufficient monitoring of vector mosquitoes has led to a poor
understanding of the distribution of Cx. tritaeniorhynchus in China. To delineate the habitat of
Cx. tritaeniorhynchus and any host and environmental factors that affect its distribution, we used
a maximum entropy modeling method to predict its distribution in China. Our models provided
high resolution predictions on the potential distribution of Cx. tritaeniorhynchus. The predicted
suitable habitats of the JE vector were correlated with areas of high JE incidence in parts of China.
Factors driving the distribution of Cx. tritaeniorhynchus in China were also revealed by our models.
Furthermore, human population density and the maximum NDVI were the most important predictors
in our models. Bioclimate factors and elevation also significantly impacted the distribution of
Cx. tritaeniorhynchus. Our findings may serve as a reference for vector and disease control.

Keywords: Culex tritaeniorhynchus; Japanese encephalitis; host; environmental factors; maximum
entropy model; mosquito-borne zoonosis

1. Introduction

Japanese encephalitis (JE) is a mosquito-borne zoonosis caused by infection with Japanese
encephalitis virus (JEV). JEV is a member of the genus Flavivirus, family Flaviviridae [1]. JE usually
manifests as mild central nervous symptoms, primarily in children and adolescents [2,3]. A small
number of cases cause serious viral encephalitis and the disease has a mortality rate of approximately
20% to 40% [4,5]. Permanent neuropsychiatric sequelae may occur in up to 50% of JE survivors with
encephalitis symptoms [6]. JE is prevalent in most parts of Asia and the Western Pacific, and has been
estimated to result in approximately 67,900 cases annually [7]. JEV also causes reproductive losses and
encephalitis in animals, such as swine, equine and cattle [8,9]. Unlike other animal hosts, swine play
an important role in the spread of JEV as the major amplifying host [10].

All provinces of China, except Xinjiang and Qinghai, have reported cases of JE. Since 1951, JE has
been included on the list of notifiable infectious diseases class B in China. The first confirmed JE case
in China was in 1949, and the highest morbidity (20.92/100,000) occurred in 1971 [11]. A national
vaccination program against JE was implemented in the 1970s [12]. The attenuated vaccine SA 14-14-2
developed in China is now widely used in JE-endemic countries [13].

In Asia, the principle vector of JE is Culex tritaeniorhynchus [14]. Cx. tritaeniorhynchus is a mosquito
species that is widespread in Asia, the Mediterranean and Afrotropical region [15]. In addition to JE,
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Cx. tritaeniorhynchus also has the ability to transmit some other human and animal viral diseases such
as Rift Valley fever, West Nile fever, Dengue fever and Tembusu virus infection [16–19]. It is widely
accepted that Cx. tritaeniorhynchus prefers low lying water bodies with abundant plants, so paddy
fields are a major habitat of the larvae [20,21]. As the area for rice planting has expanded in the last
40 years, Cx. tritaeniorhynchus has gained a broader habitat in countries and regions with developed
levels of agriculture [22,23]. According to FAO Statistical databases, China has the second biggest rice
planting area (30,449,860 hectares in 2016) in the world and is facing a growing public health threat.

In recent years, ecological niche modeling techniques have demonstrated their outstanding
ability to predict the spatial distribution of various species and epidemic diseases, such as snails in
South Africa, Toxoplasma gondii oocysts in China, Bacillus anthracis in Zimbabwe and plague in the
U.S [24–27]. This modeling relies on high quality and high resolution information about environmental
layers for the research area, which can help to provide good predictions with limited occurrence data.

The factors that influence the distribution of Cx. tritaeniorhynchus in China remain unclear. In this
study, we applied a maximum entropy (Maxent) niche modelling method to predict the potential
suitable habitats of Cx. tritaeniorhynchus in China. By modeling the spatial distribution of this insect
vector, we can identify the main areas under threat of JE proliferation and other vector-borne diseases.
It is also possible to understand the specific role of environmental factors that drive the distribution of
the JE vector in China.

2. Methods

2.1. Mosquito Presence Data

The Cx. tritaeniorhynchus larvae and adult collections in China, used in our research, were obtained
by literature retrieval. Literatures which provided sufficient information on collection locations to
confirm coordinates were adopted. The records were taken from the period between 1970 and 2015.
Detailed sampling time and literature sources are given in Table S1. Google Earth software was used
to acquire the coordinates of mosquito collection points in the provided locations, when coordinates
were not given in the literature. To match the resolution (1 km × 1 km) of environmental layers used
in this study, presence records within 1 km2 were considered as one point.

2.2. Environmental Variables and Data Processing

We obtained twenty-seven environmental variable layers in total, including bioclimate data,
elevation data, vegetation index and host population densities (Table 1). Bioclimate variables were
downloaded from the WorldClim dataset. Nineteen variables that reflect temperature and precipitation
conditions for 1970–2000 were the latest available data. Elevation data was obtained from the NASA’s
Shuttle Radar Topography Mission (SRTM) Digital Elevation Data. In addition to altitude, slope and
aspect were also considered as geographical factors affecting mosquito habitats [28]. Slope represents
the flow velocity and runoff rate of surface and subsurface water, which affects the abundance of surface
water and the soil moisture content [29]. Aspect affects the exposure to sunlight, which has a direct
effect on the growth of plants [30]. Slope and aspect layers were extracted from the digital elevation
model (DEM) using ArcGIS 10.2 (ESRI Inc., Redlands, CA, USA). We considered the Normalized
Difference Vegetation Index (NDVI) as a predictor that reflects vegetation coverage. The NDVI value
has been widely accepted as an important predictor for the presence of mosquitoes. It has been
referenced in mosquito predictive studies, such as identifying mosquito clusters in urban areas and
predicting the peak production of mosquitoes in rice fields [31,32]. The maximum, average and
minimum NDVI were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) images
captured by satellite Terra. Human population density data for China was provided by the Chinese
Academy of Sciences. Pig density data for China was obtained from the Livestock Geo-Wiki [33].
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Table 1. Variables used in the modeling.

Variable Description Date Resolution Source

Bio1 Annual mean temperature 1970–2000 30 arc sec WorldClim a

Bio2 Mean diurnal range 1970–2000 30 arc sec WorldClim a

Bio3 Isothermality 1970–2000 30 arc sec WorldClim a

Bio4 Temperature seasonality 1970–2000 30 arc sec WorldClim a

Bio5 Maximum temperature of the warmest month 1970–2000 30 arc sec WorldClim a

Bio6 Minimum temperature of the coldest month 1970–2000 30 arc sec WorldClim a

Bio7 Temperature annual range 1970–2000 30 arc sec WorldClim a

Bio8 Mean temperature of the wettest quarter 1970–2000 30 arc sec WorldClim a

Bio9 Mean temperature of the driest quarter 1970–2000 30 arc sec WorldClim a

Bio10 Mean temperature of the warmest quarter 1970–2000 30 arc sec WorldClim a

Bio11 Mean temperature of the coldest quarter 1970–2000 30 arc sec WorldClim a

Bio12 Annual precipitation 1970–2000 30 arc sec WorldClim a

Bio13 Precipitation of the wettest month 1970–2000 30 arc sec WorldClim a

Bio14 Precipitation of the driest month 1970–2000 30 arc sec WorldClim a

Bio15 Precipitation seasonality 1970–2000 30 arc sec WorldClim a

Bio16 Precipitation of the wettest quarter 1970–2000 30 arc sec WorldClim a

Bio17 Precipitation of the driest quarter 1970–2000 30 arc sec WorldClim a

Bio18 Precipitation of the warmest quarter 1970–2000 30 arc sec WorldClim a

Bio19 Precipitation of the coldest quarter 1970–2000 30 arc sec WorldClim a

NDVIMAX Maximum NDVI 2010 250 m MODIS b

NDVIMIN Minimum NDVI 2010 250 m MODIS b

NDVIMEAN Average NDVI 2010 250 m MODIS b

Elevation Elevation above sea level 2017 250 m STRM c

Slope Slope 2017 250 m STRM c

Aspect Aspect ratio 2017 250 m STRM c

Human Human population density 2010 1 km CAS d

Pig Pig density 2006 1 km Geo-Wiki e

a WorldClim Global Climate database version 2, available at: http://worldclim.org/version2; b Moderate Resolution
Imaging Spectrometer (MODIS), available at: https://lpdaac.usgs.gov/; c Shuttle Radar Topography Mission
(SRTM) 250 m digital elevation data version 4.1, available at: http://srtm.csi.cgiar.org//; d Human population
density grid data of China, obtained from the Chinese Academy of Sciences (CAS); e Global Pig density grid data,
available at: http://www.livestock.geo-wiki.org.

All environmental layers were treated as follows: (1) resampled to the resolution of 1 km × 1 km;
(2) defined projection to GCS_WGS_1984; (3) clipped to the geographical area of China; (4) converted
to ASCII format. All operations above were accomplished in ArcGIS 10.2. A strong correlation
among bioclimate variables usually exists in the modeling, which may unjustifiably affect results [34].
The possible collinearity amongst the variables was investigated by calculating the variance inflation
factor (VIF), using the car package in R [35–37]. The principle we selected the variables was that the
VIF value is less than 10 [38].

2.3. Establishment of Maxent Models

Maxent 3.4.1 (http://biodiversityinformatics.amnh.org/open_source/maxent/) was used to
establish the distribution models of Cx. tritaeniorhynchus. Due to the lack of absence data,
a presence-only modeling approach was adopted in our study. Compared with other modeling
methods using presence-only data, Maxent showed outstanding predictive performance in species
niches and distribution modeling, even when the sample size was very small [39–41].

We initially hypothesized that host population densities (human and pigs) may be strong
predictors that may obscure the effect of other variables [42]. We ran the program with two different
combinations of layers. Layers including host population densities were used in the first round of
modeling, and layers excluding host population densities were used for the second round of modeling.
We set the random test percentage as 25%, meaning that 75% of the points would be used for training
and 25% for testing [43,44]. And we ran Maxent with 10 cross-validation replicates [45].

Sampling bias is a general problem in the modeling of species distribution [46]. Sampling locations
are usually conveniently accessed and these locations do not reflect the real distribution of the target
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species. In the default setting, background points are randomly selected by Maxent software in the
entire research area. In order to counteract this effect in our models, we selected background points
with the same spatial bias as the presence points [47]. Based on presence points, a surface of sampling
intensity was created using the Gaussian kernel density estimator tool in ArcGIS [48,49]. This bias file
was input into Maxent, and the software weighted the bias file to create 10,000 background points.

2.4. Model Evaluation and Interpretation

Model accuracy can be evaluated by area under the curve (AUC). The receiver operating
characteristic curve (ROC) was generated by the Maxent software. A completely random prediction
leads to an AUC value of 0.5. If the AUC value is more than 0.5, it means that the prediction is better
than random. The closer the AUC value is to 1, the better the prediction performance will be.

A jackknife test, built in Maxent software, was selected to assess the importance of each variable
in the model [50]. The jackknife test is to drop each variable in turn in each run, and then use only
each variable in turn in each run. Whether the training gain decreased when the variable was dropped
or increased when used alone, this variable can be thought as containing information that no other
variables have. This shows the importance of each variable to the model. We can also refer to the
“Percent contribution” given by Maxent to judge the relative contribution of each variable to the model.
Response curves provided by Maxent represent different models, which were created by using only
the corresponding variable. Each curve shows the trend of predictive suitability as the variable varies.
This can be interpreted as the specific impact of variables on predictive suitability.

3. Results

3.1. Selection of Variables

By adopting a one-by-one elimination method, variables with VIF > 10 were removed out of the
final model. Six variables (Bio 3, Bio 5, Bio 11, Bio 14, Bio 15 and Bio 18) were selected from nineteen
bioclimate variables.

3.2. Cx. tritaeniorhynchus Habitat Suitability

A total of 173 Cx. tritaeniorhynchus collection points were counted in our models (Figure 1).
The distribution prediction maps for Cx. tritaeniorhynchus are shown in Figures 2 and 3.

We found that both models predicted similar geographical areas as having a medium to high
probability for the presence of Cx. tritaeniorhynchus. In central China, southern Shaanxi and Shanxi
showed high habitat suitability of Cx. tritaeniorhynchus. In eastern China, extensive areas in Henan and
Anhui, and southeast Shandong showed high probabilities of Cx. tritaeniorhynchus presence, as well as
the Yangtze River Delta area. In the southwest of China, Sichuan, Chongqing, Yunnan and Guizhou
provinces were the most likely areas for the presence of Cx. tritaeniorhynchus. Southern Guangxi and
Guangdong, and coastal areas of Hainan, Fujian and Taiwan can also be regarded as suitable habitats.
It should be noted that both models gave a high prediction for a limited border area in southeast
Tibet. The two models showed some disagreements concerning the central and eastern region of
China. The model including host population densities gave a prediction of medium probability for
eastern Gansu, northern Shaanxi, eastern Hubei and Hunan, whereas the “Without Host” model gave
these areas a higher probability. The prediction of “Without Host” model for southeast Shandong,
northern Jiangsu and Jiangxi was broader and higher than that of the “Host” model. In general,
the “Host” model provided a prediction of more conservative in extent and lower suitability of
Cx. tritaeniorhynchus habitats in China.
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Figure 1. Cx. tritaeniorhynchus existence records. Cx. tritaeniorhynchus existence records in China
collected by literature retrieval.

Figure 2. Distribution prediction map of Cx. tritaeniorhynchus based on the “Host” model. Prediction of
habitat suitability of Cx. tritaeniorhynchus by using layers including human population density and pig
density (the “Host” model, n = 14).
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Figure 3. Distribution prediction map of Cx. tritaeniorhynchus based on the “Without Host” model.
Prediction of habitat suitability of Cx. tritaeniorhynchus by using layers excluding human population
density and pig density (the “Without Host” model, n = 12).

3.3. Model Evaluation

The model evaluation indicators are shown in Table 2. Both models showed good performance.
The model including host population densities gave higher training AUC and test AUC. Compared to
the “Host” model, the “Without Host” model predicted a significantly broader exposed area,
but a slightly larger exposed population. This indicated that more sparsely populated area was
predicted as suitable habitat by the “Without Host” model. Sensitivity equals specificity threshold
was applied to generate binary models and calculate test omission rate [41,47,51,52]. Binary models
representing suitable/unsuitable were shown in Supplementary File S1.

Table 2. Model evaluation indicators.

Model Variables Training
AUC

Test
AUC

Standard
Deviation Threshold Test

Omission Rate
Exposed Area
(Million km2)

Exposed Population
(Million)

Host 14 0.967 0.950 0.012 0.169 0.174 1.237 670.165
Without Host 12 0.957 0.942 0.026 0.196 0.174 1.523 681.775

3.4. Importance and Contribution of Variables

According to the jackknife test (Figures 4 and 5), it was obvious that human population density
shows the greatest importance to the “Host” model. The increase in training gain when population
density was used alone and the reduction when it was discarded were both the largest. In addition to
population density, Bio 5, Bio 11, Bio 14, Bio 18, NDVI max, pig density and elevation also showed
significant importance to the prediction.
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Figure 4. Results of the jackknife test for the “Host” model. A longer blue bar indicates a greater
importance of that variable when it was used alone. A shorter green bar indicates a greater reduction
in training gain when that variable was omitted.

Figure 5. Results of the jackknife test for the “Without Host” model. A longer blue bar indicates
a greater importance of that variable when it was used alone. A shorter green bar indicates a greater
reduction in training gain when that variable was omitted.

The percent contribution of each variable in the two models are shown in Table 3. Bio 5, Bio11,
Bio 14, Bio 18, NDVI max and elevation were regarded as variables with greater contributions in both
models. In the “Host” model, human population density had the greatest relative contribution with
66.20%, whereas pig density was 0.41%. Maximum NDVI had the highest contribution (35.28%) in the
“Without Host” model, followed by Bio 14 (32.21%).
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Table 3. The percent contribution of each variable in two models.

Variables Contribution in
“Host” Model

Contribution in
“Without Host” Model

Rank in
“Host” Model

Rank in
“Without Host” Model

Bio 03 1.33 0.47 7 10
Bio 05 0.61 0.84 8 8
Bio 11 4.53 3.56 4 5
Bio 14 10.58 32.21 2 2
Bio 15 0.48 0.55 10 9
Bio 18 2.83 12.85 5 3

NDVI MAX 10.31 35.28 3 1
NDVI MEAN 0.47 2.61 11 6

NDVI MIN 0.10 0.09 14 12
Elevation 1.42 9.82 6 4

Slope 0.17 1.39 13 7
Aspect 0.57 0.33 9 11

Human density 66.20 1
Pig density 0.41 12

3.5. Response Curves of Variables

According to their contribution and importance to the model, response curves of representative
variables are shown in Figure 6.

Figure 6. Response curves for representative variables.

4. Discussion

The two models in our study gave similar predictions of the distribution of the JE vector
Cx. tritaeniorhynchus in China. The highly suitable habitats were mainly in the southwestern, central,
eastern, and coastal areas of China. This coincides with the spatial distribution of JE in China.
Since the 21st century, the southwestern region has experienced the most serious JE epidemics in
China. According to the China CDC, the average incidence of JE in Guizhou (2.36/100,000), Chongqing
(1.28/100,000), Sichuan (1.02/100,000), and Yunnan (0.91/100,000) ranked in the top four in China,
far above the national average (0.37/100,000). Shaanxi (0.61/100,000), Henan (0.52/100,000) and Anhui
(0.40/100,000) also had a high incidence of JE, ranking fifth to seventh. In recent years, due to advanced
economic levels and higher immunization coverage in the coastal areas of China, the incidence of JE
has been relatively low. In the 1970s, areas such as Shandong, Jiangsu, Zhejiang, Guangdong and
Guangxi were once the most serious epidemic areas of JE in China [53]. There are certainly abundant
vectors in areas that experience JE epidemics, which shows that our predictions are relatively accurate.

The predictions were also supported by reports of JE epidemics and the isolation of JEV in
recent years. Human JE cases were obtained from literature reports and ProMED mail (http://www.
promedmail.org/) [2,5,54–59]. The reported locations were mostly located in the high-risk areas
predicted by our models (Table S2). In addition, there were several reports of JEV infection in pigs.
JEV infections in swine were reported in Jiangsu (2008–2009), Shanxi (2009) and Sichuan (2012), places

http://www.promedmail.org/
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that were also predicted as high suitability habitats [60–62]. However, due to the limited numbers of JE
cases obtained, this is not sufficient for demonstrating the predictive power of the model. Furthermore,
some additional mosquito species within the genus Culex and Aedes can also transmit JEV in some
regions [63–65]. Therefore, some of the observed JE cases may not be due to Cx. tritaeniorhynchus solely.
More detailed information on JE cases and future mosquito surveys for suspected high-risk areas are
required to make a thorough validation of our model’s predictive accuracy.

The “Host” model was more conservative whereas the “Without Host” model predicted a more
extensive distribution of high-risk areas. Unsurprisingly, human activities led to such a difference.
Habitat suitability may be affected by human interventions. According to the response curve,
the habitat suitability rose sharply with the increase of population density (Figure 6). The most
obvious impact of human activities on the distribution of mosquitoes is that mosquitoes have an
abundant food source (blood) in densely populated areas. Furthermore, manmade structures not
only provide shelter for humans, but also provide mosquitoes with a suitable living environment.
As expected, the density of pigs also has an impact on the distribution of Cx. tritaeniorhynchus, but was
not found to be as high as that of human influence.

Bioclimate variables played an important role in the modeling. The curve of Bio 5
(maximum temperature of the warmest month) rose first and then dropped, and the peak was at 32.5 ◦C.
This shows that mosquitoes are benefited from higher temperatures, however, excessive temperatures
have a negative effect on their survival. In another study, the upper limit of the suitable temperature
for JE vectors was considered to be 34.5 ◦C in India [66]. At higher temperatures, mosquito bites
become inactive and the mortality rate increases [67]. Bio 11 (mean temperature of the coldest month)
represents the resistance of Cx. tritaeniorhynchus to low temperatures. Although there is evidence that
adult Cx. tritaeniorhynchus can overwinter [68], their activity and number in winter were significantly
lower. Only 10 female Cx. tritaeniorhynchus were collected from January to April in 2008 in a park in
Tokyo, while 14,069 females were collected from April to November in 2007 [69]. The cold winter in
northeast China is challenging for the mosquito survival and activity. Bio 14 (precipitation of the driest
month) showed the adaptability of mosquitoes to drought. It is known that adequate precipitation is
strictly required by Cx. tritaeniorhynchus eggs to maintain activity and hatch [70]. However, Xinjiang is
a typically arid and semiarid province in China [71]. Two vast deserts, the Taklimakan Desert and
Gurbantunggut Desert, are located in Xinjiang and occupy most of Xinjiang. The lack of precipitation
makes the survival of mosquitoes difficult and this explains why there have never been JE cases in
Xinjiang. Bio 18 (precipitation of the warmest quarter) demonstrated that summers with abundant
rainfall promote the reproduction of mosquitoes.

The maximum NDVI was the most powerful predictor in the “Without Host” model.
Vegetation coverage helps to avoid high temperatures and rapid evaporation of surface water caused by
direct exposure to strong sunlight. Blood is sucked by female mosquitoes for reproduction, while both
males and females obtain energy by feeding on sugar [72]. Mosquitoes get sugar supplements mainly
from fruits and nectar [73]. Therefore, vegetation coverage provides not only suitable resting places,
but also a sufficient source of sugar for mosquitoes. However, according to the response curve,
when the NDVI value was too high (0.55), the suitability began to decline. As observed in a previous
study, lush rice led to a dramatic decrease in the number of mosquito larvae [74]. Vegetation that is too
dense will limit the sunlight received and cause temperatures to be too low.

Elevation was also considered to be an important factor that affects the distribution of
Cx. tritaeniorhynchus in both models. The response curve dropped rapidly as elevation rose.
Low temperatures and thin air at high altitudes lead to sparse blood meal hosts and plants [75].
Low lying terrain is also beneficial for the accumulation of water. In a mosquito survey in Yunnan
province, the number of Cx. tritaeniorhynchus decreased rapidly with elevation, and at an altitude of
more than 3000 m no mosquitoes were captured [76]. The high predictive suitability of low altitude
regions was reflected in two typical basins in our models, the Sichuan Basin and the Ordos Basin.
In fact, the incidence of JE in these two areas is indeed high. On the contrary, Qinghai (free of JE) and
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Tibet (few JE cases) benefit from the existence of the Qinghai-Tibet Plateau, the highest plateau in
the world.

Two areas require particular attention. A small border area in southeast Tibet was predicted
to have a high habitat suitability. In this area, JEV isolates were reported in 2009, indicating that
local vector and virus surveillance is an important requirement [77]. The surrounding area of the
Taklimakan Desert in southern Xinjiang and the border areas of northern Xinjiang have the possibility
of establishing habitat for Cx. tritaeniorhynchus.

Our research is novel in our focus on modeling the distribution of Cx. tritaeniorhynchus for the
entire territory of China, with consideration for vegetation and host factors. A previous work mapped
the distribution of Cx. tritaeniorhynchus within JE risk areas [78]. However, Tibet, Xinjiang and Qinghai
province were not taken into consideration in this study. Human JE cases have been reported in
Tibet since 2006, according to the China CDC (http://www.Chinacdc.cn/en/). And JEV isolates
(from mosquitoes, pigs and humans) have been described in Tibet [77,79,80]. This demonstrated
that JEV is currently circulating in Tibet, so we think it is necessary to include Tibet in the modeling.
Xinjiang and Qinghai should also be considered to provide early warning of possible future JE invasion.
Our research also reveals the relationship between habitat preference of Cx. tritaeniorhynchus and
environmental factors. And the jackknife test and response curves are helpful to understand the
conditions that affect the survival of mosquitoes. Compared with the variables used in the previous
research (land surface temperature and tasselled cap wetness), we believe that the variables adopted in
our research (Bioclimate variables) can better reflect the climate seasonality and complexity, especially
for a country with a large territory like China, which crossed several climate zones. In addition,
the prediction of the previous model may not be accurate in some areas. For example, there were
records of Cx. tritaeniorhynchus in Hainan (Figure 1) but the previous prediction for Hainan was extreme
low. Sampling bias was also treated reasonably in our model. Based on these efforts, we obtained
a more reliable and precise prediction result for China and discovered potential habitats in Xinjiang and
Tibet. Furthermore, our study is unique in its purpose of exploring the effects of hosts and environment
on Cx. tritaeniorhynchus distribution. Host factors (densities of humans and pigs) were introduced
into our models. By establishing the “Host” model, we investigated the effects of the existence of
hosts on mosquitoes. Similarly, by establishing the “Without Host” model, we obtained the true
impact of environmental variables on the distribution of Cx. tritaeniorhynchus and defined all possible
suitable mosquito habitats for breeding, resting, and foraging activities. The results have important
significance for guiding the targeted prevention and control of JE in China. Immunization should be
promoted for susceptible human and livestock populations in the high-risk areas predicted by our
models. The “Without Host” model gave a broader range of suitable areas for the Cx. tritaeniorhynchus
survival, including areas that are sparsely populated at present. Possible future population migration
needs to take this into account. At the same time, Cx. tritaeniorhynchus was also proved to be the vector
for other zoonoses, such as Rift Valley fever, West Nile fever and Dengue fever. Pathogen surveillance
in vectors of these diseases is necessary, especially as RVF and WNV have not yet been reported in
China. These two exotic animal diseases have been listed in the Medium and Long-term State Strategy
of Animal Disease Prevention and Control of China.

A mark-release-recapture study has shown the ability of Cx. tritaeniorhynchus to disperse more
than 5 km, which may cause additional errors with predictions at the 1 km × 1 km resolution [81].
Due to many factors, it is difficult to completely randomize the experimental sampling sites. As with
other presence-only modeling approaches, sampling bias is an unavoidable problem. Although we
have performed a selection of background points to reduce the influence of sampling bias on the
prediction results, the predictions should be interpreted with caution and need to be corroborated by
mosquito surveys [40,82].

Our current research on the impact of environmental factors on mosquito distribution is limited,
as we only used data on overall climate and vegetation status. If more detailed data were to

http://www.Chinacdc.cn/en/
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be introduced in a further study, such as monthly meteorological data, there would be a deeper
understanding of the impact at different time-points.

5. Conclusions

In our current study, we modelled the spatial distribution of Cx. tritaeniorhynchus in China,
based on the Maxent niche modelling method. The central, eastern, southwestern and coastal area of
China were predicted to be suitable habitats for Cx. tritaeniorhynchus. The most powerful predictors
were human population density and maximum NDVI. Several bioclimate factors (Bio 5, Bio 11, Bio 14
and Bio 18) and elevation also had significant impacts on the distribution of Cx. tritaeniorhynchus.
Our research reveals the relationship between habitat preference of Cx. tritaeniorhynchus and
environmental factors. The results have important implications for the prevention and control of JE
and other vector-borne infectious diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/9/1848/
s1, Table S1: Literature Sources. Literature sources of mosquito collections, Table S2: Model predictions of reported
human JE cases, Supplementary File S1: Binary models representing suitable/unsuitable areas.
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