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Mechanistic/mammalian target of rapamycin (mTOR), an atypical serine/threonine kinase of the phosphoinositide 3-kinase-
(PI3K-) related kinase family, elicits a vital role in diverse cellular processes, including cellular growth, proliferation, survival,
protein synthesis, autophagy, and metabolism. In the cardiovascular system, the mTOR signaling pathway integrates both
intracellular and extracellular signals and serves as a central regulator of both physiological and pathological processes.
MicroRNAs (miRs), a class of short noncoding RNA, are an emerging intricate posttranscriptional modulator of critical gene
expression for the development and maintenance of homeostasis across a wide array of tissues, including the cardiovascular
system. Over the last decade, numerous studies have revealed an interplay between miRNAs and the mTOR signaling circuit in
the different cardiovascular pathophysiology, like myocardial infarction, hypertrophy, fibrosis, heart failure, arrhythmia,
inflammation, and atherosclerosis. In this review, we provide a comprehensive state of the current knowledge regarding the
mechanisms of interactions between the mTOR signaling pathway and miRs. We have also highlighted the latest advances on
mTOR-targeted therapy in clinical trials and the new perspective therapeutic strategies with mTOR-targeting miRs in
cardiovascular diseases.

1. Introduction

Cardiovascular disease (CVD) is one of the leading cause of
mortality and morbidity in the world and is a global pan-
demic threat to human health [1, 2]. Coronary artery diseases
(CAD) such as ischemia reperfusion injury (I/R) and acute
myocardial infarction (AMI) are the primary forms of CVD
that account for the majority of the deaths. Apart from this,
additional comorbid factors like diabetes [3, 4], obesity [5],
inflammation [6], and atherosclerosis [7] escalate the com-
plication associated with heart disease and increase the inci-
dence of death. The underlying mechanisms involved in
cardiovascular complication are complex and multifactorial.
The existence of several metabolic perturbations in diseases
like diabetes and inflammation further pose a tough chal-
lenge in understanding the mechanism and pathology of
CVD. These obstacles largely impede our goal to develop
an effective treatment against progression of CVD and its
prevention. However, current therapies for heart diseases

have been substantially improved using integrated genome-
based evidences and molecular clues. Our recent understand-
ing of genomics and the regulation of gene expression by
noncoding RNAs (ncRNA) during both normal and patho-
logical conditions encourage us in exploring the novel thera-
pies for heart disease with a unique perspective.

In the cardiovascular system, the mechanistic target of
rapamycin (mTOR) pathway regulates both physiological
and pathological processes in the heart [8]. mTOR is an
evolutionarily conserved signaling pathway found in vari-
ous species including yeast [9, 10], Caenorhabditis elegans
[11, 12], drosophila [13, 14], and mammals [15–18]. mTOR
is a master regulator of cell metabolism and plays a central
role in integrating various signaling network [19]. mTOR
participates in the fundamental aspect of cell function and
is therefore indispensable for cellular life. It governs several
key cellular processes such as nutrient sensing [20–22], pro-
tein synthesis [23, 24], cell proliferation [14], and apoptosis
[25, 26]. mTOR is also actively involved in the epigenetic
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regulation of gene expression and control process like aging
[27] and autophagy [28]. However, aberrant regulation of
mTOR is known to play a significant role in various mala-
dies including cancer [29], diabetes [30], aging [31], and car-
diovascular diseases [32]. mTOR plays an important role in
normal cardiac development [33–36] and during cardiac
pathophysiologic condition [37, 38].

Recent studies have demonstrated that mTOR signaling
pathway is profoundly influenced by small noncoding
RNAs, and an interplay between these two molecules define
a synergistic regulation of gene expression [39–41]. The
unique combination and cross talk between mTOR and
miRs have opened up research interest from a distinct per-
spective and to revisit mTOR signaling in the light of miR.
The intention of this review article is to highlight our recent
understanding on mTOR pathway in cardiovascular system
and its coordinated interaction with miRs to fine-tune the
regulation of gene expression under both normal and path-
ological conditions.

1.1. Structure, Mechanism, and Function of mTOR
Complexes. The mTOR macromolecular complex is a ser-
ine/threonine protein kinase of 289 kDa that belongs to
phosphatidylinositol-3-kinase (PI3K) family of proteins and
governs several cellular processes including protein synthesis
and metabolic regulation [42]. Hall and colleagues first
identified target of rapamycin 1 (TOR1) and TOR2 in yeast
Saccharomyces cerevisiae [43, 44], which was subsequently

characterized in mammalian cells and hence called mTOR
[42, 45, 46]. Discovered in the year 1970 for its antifungal
property [47], rapamycin played a bigger role in elucidating
the cellular function of mTOR [42, 48]. The mTOR consists
of two major distinct complexes termed as mTORC1 and
mTORC2 (Figure 1) and have different sensitivity towards
its inhibitor rapamycin [49]. mTORC1 and mTORC2 are
similarly large, weighing in at ~1.2 and ~1.4MDa, respec-
tively [50]. The central core catalytic subunit, mTOR, is com-
mon to both complexes and characterized by their own
unique subunits. TOR proteins contain ∼2500 amino acids
and comprise several distinct domains [51], including 32 tan-
dem HEAT (huntingtin, elongation factor 3, protein phos-
phatase 2A, and Tor1) repeats towards their N-termini,
followed by FAT (FRAP, ATM, and TRRAP) domain consist
of multiple antiparallel α-helical features, termed tetratrico-
peptide repeats (TPRs) [51].

mTORC1 consist of five components (1) mTOR (mam-
malian target of rapamycin), the central catalytic subunit, (2)
raptor (regulatory-associated protein of mTOR) [52, 53],
(3) mLST8 or GβL (mammalian lethal with Sec13 protein 8)
[54, 55]. (4) PRAS40 (proline-rich AKT substrate 40 kDa)
[56–58], and (5) Deptor (DEP-domain-containing mTOR-
interacting protein) [59, 60]. The cryoelectron microscopy
structure of human mTORC1 revealed that mTORC1 main-
tains an obligate dimer with an overall rhomboid shape and
a central cavity by interlocking mTOR-raptor interactions
[61]. The principal interaction between raptor and mTOR
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Figure 1: Schematic representation of various subunits of mTORC1 andmTORC2 complex and its upstream signaling regulators and cellular
function. The mammalian target of rapamycin (mTOR); insulin growth factor (IGF); adenosine monophosphate activated protein kinase
(AMPK); eukaryotic translation initiation factor 4E- (eIF4E-) binding protein 1 (4EBP1); proline-rich AKT substrate 40 (PRAS40);
tuberous sclerosis protein ½ (TSC1/2); Ras homolog enriched in brain (Rheb); phosphoinositide 3 kinase (PI3K); Unc-51 like autophagy
activating kinase (ULK); ribosomal protein S6 kinase beta-1 (S6K1); forkhead box O transcription factor (FOXO); serum/glucocorticoid-
regulated kinase 1 (SGK1); peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α).
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consists of an α-solenoid stack formed between the horn
and bridge domains of mTOR and the raptor armadillo
domain [62].

The precise function of all mTOR-interacting proteins in
mTORC1 complex remains to be understood. It was shown
that rapamycin forms complex with FKBP12 and interacts
with mTOR subunit and inhibits mTORC1 activity [53, 63,
64]. Experimental evidences also suggest that raptor might
affect mTORC1 activity by regulating assembly of the com-
plex and by recruiting substrates for mTOR [11, 21, 60].
The role of mLST8 in mTORC1 function is partially under-
stood. Studies using raptor-, rictor-, or mLST8-deficient
mice demonstrate that mLST8 is required for mTORC1
activity and is necessary to maintain the rictor-mTOR, but
not the raptor-mTOR, interaction [55]. The interaction
among different proteins in mTORC1 complexes is crucial
and determines its active state. For example, the subunits of
mTORC1, PRAS40 and Deptor, are known to interact with
each other and docked to the core complex, resulting in the
inhibition of mTORC1. PRAS40 and Deptor are phosphory-
lated by mTORC1, which blocks their interaction leading to
the activation of mTORC1 [56–59].

Relatively, much less is known about the regulation of
mTORC2 compared tomTORC1. Essentially, mTORC2 con-
tains six different proteins, many of which are components of
mTORC1: (1) mTOR; (2) rictor (rapamycin-insensitive com-
panion of mTOR), unique to mTORC2; (3) mammalian
stress-activated protein kinase-interacting protein (mSIN1)
[65]; (4) protein observed with Rictor-1 (Protor-1); (5)
mLST8; and (6) Deptor, an important interacting protein
in mTORC1. mTORC2 contains its unique subunit rictor,
which is insensitive to rapamycin. This is due to the fact that
rapamycin when forms a complex with FKBP12 subunit, it
does not bind to mTORC2 and losses it ability to block its
activity [66–68]. The N-terminal region of rictor is composed
of helical repeat clusters, which binds to mTOR as well as
makes multiple contacts with mSin1. The FRB domain of
mTOR also shows multiple cross-links with mSin1 and
C-terminal regions of rictor. Rictor and mSin1 together
generate a steric hindrance to inhibit binding of FKBP12-
rapamycin to mTOR, revealing the mechanism for rapamy-
cin insensitivity of mTORC2 [50, 69].

Recent evidences suggest that rapamycin inhibits
mTORC1 at low concentration, and a prolonged chronic
inhibition leads to inactivation of mTORC2 [70, 71]. More-
over, interaction between rictor and mSIN1 is essential for
their own stability and to form the mTORC2 complex, since
the deletion of SIN1 blocked the phosphorylation of AKT at
serine 473 residue leading to the disruption of rictor-mTOR
[72]. Deptor is common to both mTORC1 and C2 and acts
as an endogenous inhibitor of mTORC2 [59]. mLST8 is also
shown to be a crucial element in the mTORC2 complex
formation since the ablation of this protein destabilize
mTORC2. Interestingly, several of the subunits in mTORC1
and 2 are common to each other but they interact in an exclu-
sive mechanism that characterize the individual complex.
Even though they are unique in many aspects, mTORC1
and mTORC2 phosphorylate entirely different substrates
and consequently have distinct function [55].

Several external stimuli such as nutrient, insulin, growth
factors, leptin, and stress signals regulate mTOR complexes.
However, mTORC1 and C2 respond to these factors differ-
ently and have exclusive downstream effects. The primary
effector pathway of mTORC1 is through activation of ribo-
somal proteins S6 kinase 1 and 2 (S6K1/2) by phosphorylat-
ing their hydrophobic motif (HM), on Thr389 and Thr 388,
respectively, which promotes mRNA biogenesis as well as
translational initiation and elongation of protein synthesis.
Other substrates of mTORC1 includes 4E- (eIF4E-) binding
protein1 and (4EBP1), which are also involved in the activa-
tion of gene expression and protein translation. mTORC1
complex is also very sensitive to nutrients, particularly amino
acids and glucose level. Deprivation of amino acids especially
leucine results in rapid dephosphorylation of S6K1 and
4EBP1 and results in the inactivation of mTORC1 [13, 20].
The energy status of the cell is also sensed by mTORC1
through AMP-activated protein kinase (AMPK). AMPK is
phosphorylated in response to low cellular energy status
indicated by the high AMP/ATP ratio. The activated AMPK
in turn inhibits cell growth via TSC2-dependent suppression
of mTORC1 activity and blocks the phosphorylation of S6K1
and 4EBP1mediated by mTORC1 [22, 73, 74]. Apart from its
role in protein synthesis, mTORC1 is also involved in
catabolic processes such as apoptosis and autophagy. Under
starvation, mTORC1 phosphorylates ULK1 (Unc-51-like
autophagy activating kinase), thereby preventing its activa-
tion by AMPK, an important activator of autophagy [75, 76].

mTORC2 is widely recognized to play an important role
in cell proliferation and response to growth factors such as
insulin. Unlike mTORC1, which acts through various down-
stream effectors, mTORC2 mainly acts through insulin/PI3K
pathway via phosphorylation of AKT at serine 473, Thr 308,
and Thr 450 residues upon stimulation by insulin [77, 78].
Recent evidence also suggest that mTORC2 can phosphory-
late AKT at S377/T479 residues in the C-terminal end and
can regulate apoptosis [79]. The mTORC2 subunit mSin1
contains a phosphoinositide-binding PH domain that is
critical for the insulin-dependent regulation of mTORC2
activity [65, 80, 81]. Insulin binding to its tyrosine kinase
receptor activates IRS and recruits activated PI3K. [82]
The PI3-PDK pathway phosphorylates AKT in a mTORC2-
dependent manner [83]. mTORC2 phosphorylates several
protein kinases including PKA, B, C, G, SGK1 (serum/gluco-
corticoid-induced kinase 1), and Rho1 (GDP-GTP exchange
protein-2), resulting in their stabilization and activation
[84–90]. Rictor enables mTORC2 to directly phosphorylate
AKT at its Ser473 and facilitates Thr308 phosphorylation
by PDK1 (phosphoinositide-dependent kinase 1) as part
of the insulin-signaling cascade [91].

Interestingly, there is a cross talk between mTORC1 and
mTORC2 and they are functionally interconnected. Appar-
ently, mTORC1 inhibits mTORC2 through phosphorylation
of rictor and mTORC2 regulates mTORC1 through phos-
phorylation of AKT, which controls both the activity and
abundance of AKT [92]. Rictor subunit of mTORC2 complex
can be phosphorylated by S6K1, a downstream effector of
mTORC1, and this phosphorylation negatively regulates the
mTORC2-dependent phosphorylation of AKT-S473 [93].
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In contrast, upon stimulation with growth factors, mTORC2
activates AKT, which in turn enhances mTORC1 activity
through the inactivation of TSC1/2 (tuberous sclerosis com-
plex). The TSC2 is inactivated by AKT-dependent phosphor-
ylation, which destabilizes TSC2 and disrupts its interaction
with TSC1 [94, 95].

1.2. MicroRNA Biogenesis and Mode of Action. MicroRNAs
(miRs) are small noncoding RNAs consisting of approxi-
mately 22 nucleotide in size and function as gene suppressors
[96, 97]. They bind to the 3′ untranslated region (UTR) of
mRNA and regulate their expression via either degradation
of mRNA transcript or interfere in the translation process
[98, 99]. The regulation of gene expression mediated by
miR has now been widely recognized as a major molecular
mechanism employed by cells to control various function
and signaling pathway [100–103], including AKT, AMPK,
JNK, and TGF-β [104–114].

miRs are encoded across genomic locations including
introns and intergenic. Once synthesized and matured
through several steps these miRs bind to the complementary
3′UTR of their target mRNA and either degrade or silence
them [115–117]. miRs undergo a series of maturation pro-
cess before they develop into a mature miR (Figure 2). They
are initially synthesized from their respective genomic region
by the enzyme RNA polymerase II into a hairpin structure of
approximately ~400–500 bps nucleotide into a primary
miR transcript [118, 119]. They are further cleaved by the
enzyme Drosha into a 70 nt length nucleotide, named pre-

miR [120, 121]. The pre-miR then binds with the protein
exportin-5 which transports them out of the nucleus for fur-
ther trimming [122]. Once in the cytoplasm, they undergo
further cleavage by the enzyme ribonuclease III (RNase III)
and dicer in to a 22 nt mature miR [123–125]. The mature
miR, depending on the complementary nucleotide sequence
of its seed region (2–7) at its 5′ end, forms complex with its
target mRNA. The double stranded miR-mRNA complex
induces the RNA-induced silencing complex (RISC) and tar-
gets them for degradation or gene suppression [126–128]. A
near perfect match between the seed region (~8nt) of miR
and mRNA leads to a complete degradation of the mRNA,
while a partial complementarity results in the suppression
of the gene expression [129–133]. miRs are transcribed either
as an individual miRNA (e.g., miR-1) or as a family of clus-
ters (e.g., miR-17~92) [134]. The coding region for miRNA
can arise from either strand of the DNA and can have multi-
ple mRNA targets [135–137].

2. mTOR in Cardiovascular Diseases

The role of mTOR in cancer and aging is well recognized and
documented with numerous scientific publications [35, 138–
144]. However, their role in cardiovascular system is still in
the early stages and yet to be elucidated. mTOR plays an
important role in the normal development of cardiovascular
system and is crucial during pathophysiological conditions
[35, 145–150]. Nevertheless, studies have revealed a novel
role for mTOR in CVDs like ischemia reperfusion (I/R)
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injury [151–153], heart failure [154–156], and its associated
risk factors including diabetes [146, 157, 158] and aging
[31, 159, 160]. Recent research findings also indicate that
the components involved in mTOR pathway are regulated
by miRs in cancer and other diseases [39, 40, 161, 162]. A
comprehensive role of miRs regulating mTOR signaling in
cardiovascular diseases is depicted in Figure 3.

2.1. miRNA-Dependent Regulation of mTOR in Ischemia
Reperfusion Injury. Oxidative stress induced by ROS genera-
tion is a major mechanism of cell injury during myocardial I/
R injury [163]. Deprivation of oxygen during I/R stress acti-
vates mTORC1 [146, 151, 158, 164] and controls several
downstream kinases and leads to cellular effects such as apo-
ptosis [165], autophagy [166, 167], and proliferation [22].
Accumulating evidences point out several different miRs
are involved in the modulation of mTOR signaling via target-
ing mTOR-interacting partners [40, 168–171].

mTOR mediates cardiomyocyte response during ische-
mia and is an important determinant of cell survival [172,
173]. Inhibition of mTORC1 was shown to be beneficial for
the survival of cardiomyocytes via induction of autophagy
[174]. Sciarretta et al. demonstrated that selective and direct
mTORC1 activation is detrimental during acute cardiac

energy deprivation, whereas both pharmacological and
genetic mTORC1 inhibition are protective [175]. Pretreat-
ment with rapamycin, the mTOR inhibitor, reduced myocar-
dial infarct size after I/R injury by attenuating necrosis and
apoptosis in cardiomyocytes [158, 176]. Reperfusion ther-
apy with rapamycin also attenuated myocardial infarction
and apoptosis by activation of PI3K and ERK [177]. Acti-
vation of autophagy prevents unwanted expenditure of cel-
lular energy to damaged cells, especially mitochondria,
which results in an increased ROS generation [174, 178].
Cardiac-specific overexpression of Rheb leads to the inhi-
bition of Atg7, a key effector protein in the autophagy cas-
cade, and enhances cardiomyocyte cell death through
activation of Rheb/mTORC1 signaling pathway [175]. Inter-
estingly, mTOR inhibition with rapamycin promotes the
survival of oxygen-deprived cardiomyocytes through activa-
tion of autophagy via inhibition of Ras homolog enriched
in brain (Rheb) protein [175]. These results indicate that
Rheb is a main regulator of mTORC1 during cardiomyo-
cyte energy stress, and Rheb/mTORC1 inhibition promotes
cell survival through activation of autophagy [175]. More-
over, obesity and metabolic syndrome, which are character-
ized by increased myocardial susceptibility to ischemic
injury and cardiovascular mortality, are associated with
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inadvertent activation of the Rheb/mTORC1 pathway and
reduction of autophagy [175, 179–181]. Mice with high
fat diet- (HFD-) induced obesity and metabolic syndrome
exhibit deregulated cardiac activation of Rheb/mTORC1
and inhibition of cardiac autophagy, which lead to increased
ischemic injury [175]. Rapamycin treatment before prolong
ischemia (3 hours) increases autophagy and significantly
reduces the myocardial infarction of both HFD-treated
mice [175].

Autophagy is a delicate process that involves a closely-
knit transcriptional and epigenetic regulation through miRs
[182, 183]. Overexpression of microRNA-99a (miR-99a)
through intramyocardial delivery improved cardiac function
after MI stress and prevented cell death via enhancing
autophagy in mTOR/P70/S6K-dependent signaling pathway
[184]. Notably, overexpression of miR-99a in the border
zone of infarct area prevented cell apoptosis, but increased
autophagy via inhibiting mTOR/P70/S6K [184]. Further-
more, the expression level of miR-99a was reduced in neo-
natal mice ventricular myocytes (NMVMs) subjected to
hypoxia. Similarly, intramyocardial delivery of lenti-miR-
99a in mice showed a significant improvement in both left
ventricular (LV) function and cell survival post four weeks
of MI compared to sham groups [184]. Even though the
study illustrated that miR-99a is cardioprotective through
decreasing mTOR activity, it did not show a direct target
of miR-99a. However, further evidence from the same group
also showed that fibroblast growth factor receptor 3 (FGFR3)
to be a direct target of miR-99a and hinted a possible role
for FGFR-mTOR pathway in MI-induced hypertrophy
[185]. Interestingly, multiple findings established a link
between miR-99a and FGFR in cell proliferation via mTOR
signaling [186–188].

Prevention of the loss of cardiomyocyte during I/R injury
is the primary focal point and strategic approach to avoid car-
diac dysfunction post-MI, which can potentially be achieved
by regulating apoptosis and autophagy [189]. Experiments
using primary neonatal culturedmouse cardiomyocytes iden-
tified a direct link between miR-28 and PDK1, an immediate
upstream regulator of mTOR in the PI3K pathway [190].
Inductionofoxidative stress in cardiomyocyteusinghydrogen
peroxide elevated the expression of miR-28 and increased
apoptosis-mediated cell death [190]. Interestingly, overex-
pression of miR-28 downregulated p-AKT, p-p70, and p-
mTOR suggesting a direct interference of mTOR signaling
by miR-28 [190]. Mechanistically, PDK1 was found to be a
direct target of miR-28 and target-binding assay using lucifer-
ase activity andPDKprotein expression after transfectionwith
miR-28 confirmed the prediction [190]. Similarly, miR-223
has been reported to play an important role in cell survival by
regulation of autophagy and apoptosis [191]. The miR-223
was upregulated in the border zone of infarct area in rats sub-
jected to LAD occlusion [191]. Moreover, overexpression of
miR-223 protected H9c2 cells and neonatal rat cardiomyo-
cytes (NRCMs) against hypoxia-induced apoptosis by directly
targeting PARP-1 [191]. Decisively, this study showed that
H9c2 andNRCMs cells treatedwithmiR-223mimic increased
p-AKT and p-mTOR expression under hypoxic conditions
and the protective effect of miR-223 was abolished upon

treatment with miR-223 inhibitor [191]. Although, earlier
study by van Rooij et al. reported an upregulation of miR-
223 in human failing heart tissues [192], but did not explore
on the mechanism. The same study showed that miR-29
family are downregulated in the region of the fibrotic scar
after MI.

Phosphatase and tensin homology deleted from chromo-
some 10 (PTEN) are an important determinant for the acti-
vation of AKT through PI3 kinase-mTOR pathway. It
enhances cardiomyocyte cell death and increases cardiac dys-
function during MI and I/R injury [193–196]. Genetic abla-
tion or pharmacological inhibition of PTEN has been
shown to be cardioprotective against MI and vascular remod-
eling [196, 197]. Our laboratory demonstrated that miR-21
had a powerful cardio protective effect against I/R injury
[198–200]. miR-21 expression is induced in the border zone
of the infarcted hearts, but it is significantly decreased in the
infarcted area [181, 192]. Overexpression of miR-21 protects
against I/R injury by reducing myocardial infarct size and
apoptosis, by its target genes, PTEN, and programmed cell
death 4 (PDCD4) [201–203]. Recent studies suggest that
the therapeutic effects seen with miR-21 may be mediated
through PTEN/AKT/mTOR signaling pathway [204]. It
was observed that miR-21 expression was downregulated,
and autophagy was remarkably increased in H9c2 cells dur-
ing H/R injury. Simultaneously, increased apoptosis after
H/R injury was associated with reduction of Bcl2-Bax ratio.
Such an effect was abolished by overexpression of miR-21
with a miR-21 precursor, which also inhibited autophagic
activity and decreased apoptosis accompanied by the activa-
tion of the AKT/mTOR pathway [204]. Thus, it appears that
miR-21 plays an active role in disrupting the PTEN-AKT-
mTOR pathway. Similar result was also observed in cardiac
stem cells, where miR-21 reduced hydrogen peroxide-
(H2O2-) induced apoptosis, as evidenced by the downregula-
tion of caspase-3 and Bax and upregulation of the antiapop-
totic Bcl-2 [205]. Overexpression of miR-21 suppressed the
expression of PTEN, a direct target of miR-21, with simulta-
neous increased in the phosphorylation state of AKT. More-
over, the antiapoptotic effect of miR-21 was abolished in cells
treated with miR-21 inhibitor and PI3 inhibitor, LY294002,
suggesting an involvement of PTEN/PI3K/AKT signaling
in miR-21-mediated antiapoptotic effect [205]. Although
miR-21 has been considered to promote cellular prolifera-
tion, invasion, and migration in various types of tumors
[206, 207], rapamycin treatment induced the expression of
miR-21 in human umbilical vein endothelial cells (HUVECs)
but attenuated endothelial cell proliferation and migration
[208]. RhoB, an important partner in AKT-mTOR pathway,
is a direct target of miR-21, and silencing of RhoB impairs
endothelial cell migration and tubulogenesis, thus providing
a possible mechanism formiR-21 to inhibit angiogenesis after
rapamycin treatment [208, 209]. However, raptor knock-
down, but not rictor silencing, upregulates miR-21 expres-
sion, and inhibition of miR-21 blunted the antiproliferative
and antimigration effects of rapamycin treatment [208].

Interestingly, miR-21 was shown to be upregulated with
rapamycin treatment in angiomyolipoma-derived cells iso-
lated from patient with lymphangioleiomyomatosis (LAM)
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[210]. Conceptually, LAM is induced by mutation in the
tuberous sclerosis complex genes (TSC1 or TSC2) [211] and
results in hyperactivation of mTOR signaling, which is char-
acterized by proliferation of smooth muscle-like cells and
leads to the malfunction of the lungs. The study demon-
strated that 19 miRNAs were differently regulated by rapa-
mycin, and miR-21 was shown to be robustly upregulated
in TSC2-deficient 621–101 cells (Renal angiomyolipoma
cells). This study also suggested that rapamycin-mediated
upregulation of miR-21 is independent of AKT signaling,
but rather dependent onmTOR. More importantly, the study
also demonstrated that rapamycin potentiates the Drosha-
mediated posttranscriptional processing of pri-miR-21 to
pre-miR-21. Moreover, rapamycin was clinically shown to
improve pulmonary function in LAM patients. Surprisingly,
a recent another study demonstrated a significant upregula-
tion of miR-21 in Tsc2-deficient cells compared to wild
type controls, which was further induced by rapamycin
[212]. Experimental evidences suggest that miR-21 induced
proliferation, tumor growth, and offered resistance to apo-
ptosis in TSC2-deficient cells. Moreover, data analysis of
RNA Seq implicated that miR-21 promoted mitochondrial
adaptation and homeostasis in Tsc-2-deficient cells. Inhibi-
tion of miR-21 using LNA reduced the tumor size and mito-
chondrial function. In addition, rapamycin cotreatment with
miR-21 inhibition more efficiently reduced tumorigenic
growth of Tsc2-deficient cells in vivo xenograftmodel. Impor-
tantly, this study showed that rapamycin increasedmitochon-
drial content and polarization, and these effects of rapamycin
were miR-21-dependent. The study also proposed that the
unexpected upregulation of miR-21 in TSC2-deficient cells
was partly due tomiR-21 regulation ofmTOR in a noncanon-
ical pathway via either STAT3 or Rheb [212]. Recently,
mTORC1was also reported to regulate themiRNAbiogenesis
pathway itself [213]. Extensive expression analysis of 752miRs
in TSC2-deficient cells, treated with Torin1 (inhibitor of both
mTORC1 andC2), demonstrated an upregulation ofmajority
of miRs in consistent with the increased activity of micropro-
cessor (themultiprotein complex that includes Drosha (a type
III RNAse) and DGCR8) in TSC2-deficient cells. Micropro-
cessor activity is regulated in part by GSK3β, which is phos-
phorylated at S9 and subsequently inhibited by mTORC2 via
AKT. Inhibition of mTORC1 impaired the microprocessor
activity through regulation of Drosha and GSK3β-dependent
pathways via mTORC2 [213].

Numerous studies reported that miR-21 is involved in a
variety of disorders and is highly upregulated during cardiac
remodeling [201, 214–216]. However, genetic deletion of
miR-21 or acute inhibition of miR-21 did not alter the path-
ological responses of the heart to pressure overload or other
stresses, which suggests that miR-21 is not required for car-
diac hypertrophy, fibrosis, or loss of contractile function in
response to acute or chronic injury in mice [217]. However,
the precise role of miR-21 regulating mTOR signaling in car-
diovascular system is still not well evolved, and the effect of
miR-21 on proliferative cells like endothelial, smooth mus-
cle cell, and nonproliferative cells like cardiomyocytes may
be different. However, several reports in cancer biology
strongly suggest an active role for miR-21 in regulating

mTOR signaling largely through PTEN/PI3K/AKT path-
way [218–222].

Angiogenesis is an important process that restores blood
supply to the infarct area post-MI and I/R injury and improves
cardiac function [223, 224]. In this context, miR-100 was
reported to be an antiangiogenic miR and functioned through
repressing mTOR signaling after induction of hind-limb
ischemia in mice [162]. miR-100 modulated proliferation,
tube formation, and sprouting activity of endothelial cells
and migration of vascular smooth muscle cells and func-
tions as an endogenous repressor of mTOR. Inhibition of
miR-100 by specific antagomirs stimulated angiogenesis
with functional improvement of perfusion after femoral
artery occlusion in mice. Moreover, the stimulatory effect
of antagomir therapy was abolished by simultaneous rapa-
mycin treatment, demonstrating that the angiogenic effect
of miR-100 inhibition in hind-limb ischemia was depen-
dent on its target gene mTOR [162]. Nevertheless, this
study did not address the specific role of mTORC1 or
C2 in blocking the angiogenic response and did not use
a long-term treatment with rapamycin [162].

In tumor glioma, miR-128 is downregulated and acts
as a tumor suppressor by directly targeting p70S6K1 [225].
Overexpression of miR-128 attenuated cell proliferation,
tumor growth, and angiogenesis by suppressing p70S6K1
and its downstream signaling molecules such as HIF-1 and
VEGF expression. Similarly, the expression of miR-145 is
downregulated in colon and ovarian cancer, and overexpres-
sion of miR-145 inhibits tumor growth and angiogenesis by
targeting p70S6K1 and suppressing its downstream angio-
genic factors HIF-1 and VEGF [226]. Another miR, miR-
497 is downregulated in breast, cervical, head-and-neck,
colorectal, and prostate cancers, and overexpression of
miR-497 sensitizes the resistant ovarian tumor to cisplatin
treatment by targeting mTOR and p70S6K1 [227]. Among
the three miRs previously reported to target p70S6k1, only
miR-128-3p is downregulated in human cardiomyocytes
during H/R by Tongxinluo (TXL, a traditional Chinese med-
icine, widely used to treat cardiovascular and cerebrovascular
diseases). Interestingly, TXL restored p70S6K1 but had no
effects on miR-145-5p and miR-497-5p [228]. Inhibition of
miR-128-3p activated mTOR via increasing the phosphory-
lation and abundance of p70s6k1.

PI3K/AKT/mTOR pathway has been shown to be sup-
pressed by miR-139 in I/R injury in H9c2 cell line [229].
The overexpression of SOX8, a target of miR-139, allevi-
ates hypoxia-induced cell injury via activation of PI3K/
AKT/mTOR and MAPK pathway [229]. Recently, several
miR profiling studies revealed that miR-494 was downreg-
ulated in human failing hearts as well as ischemic/hyper-
trophic hearts of animals [230–232]. The cardiac-specific
overexpression of miR-494 in mice protected hearts against
I/R-triggered injury; conversely, knockdown of endogenous
miR-494 by antagomir sensitized hearts to I/R-induced
injury [233]. The overexpression of miR-494 suppressed the
levels of proapoptotic proteins (PTEN, ROCK1, and CaM-
KIIδ) after I/R injury, which also induced AKT signaling in
concert, a critical survival pathway in the myocardium medi-
ated through mTORC2 activation [233]. Also, the inhibition
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of miR-494 using antagomir elevated the level of PTEN while
simultaneously suppressing the level of pAKT (S473) after
I/R injury [233].

Apart from the intracellular regulation of mTOR path-
way by miRs, miRs packed in exosomes can affect cardiac
function. Based on the miRNA array data, remote ischemic
preconditioning (rIPC) altered the myocardial expression of
miR-144 in mice [234]. Initially, it was shown that rIPC
increased the myocardial expression of miR-144, whereas I/
R injury alone significantly reduced the level of miR-144.
Intriguingly, the exosomes isolated from tissue samples of
rIPC hearts were rich with the expression of miR-144 upon
rIPC. Moreover, intravenous administration of miR-144 via
tail vein injection induced early and delayed cardioprotection
in Langendorff isolated perfused model of I/R injury [234].
This study also showed that miR-144 directly targeted mTOR
as evident with the decreased p-mTOR and increased
autophagy signaling upon miR-144 administration. More
precisely p-AKT (S473), a marker for mTORC2 activation,
was increased in the heart upon miR-144 injection in mice
[234]. These finding suggest that miR-144 acts via suppress-
ing mTORC1 while simultaneously activating mTORC2
complex [234]. In silico analysis of miRNA-target mRNA
prediction algorithm (TargetScan 6.0) revealed two specific
miR-144 binding sites in the mTOR 3′UTR region with per-
fect Watson–Crick matches at miRNA positions 1–7 and
2–8 [235]. The interaction of miR-144 and mTOR and its
clinical significance have been evaluated in human cancer
biology. Specifically, the downregulation of miR-144 leads
to poor prognosis of cancer patients via activation of the
mTOR signaling pathway [235].

2.2. Regulation of mTOR through miRNA in Diabetes and
Obesity. Diabetes is a major risk factor for CVD and is
characterized by elevated blood glucose, insulin resistance/
deficiency, and metabolic abnormalities [236, 237]. Since
mTOR is sensitive to nutrient, excessive glucose level in the
blood stream activates mTOR [146, 151, 158, 238]. Pro-
longed activation of mTORC1 induces insulin resistance in
adipose tissue through the S6K1-mediated inhibition of insu-
lin signaling that disrupts the recruitment and activation of
PI3K via phosphorylation of insulin receptor substrate-1
(IRS-1) [239, 240]. Similar aberrant mechanism in cardiovas-
cular tissues, in conditions like diabetic and obesity, leads to
cardiac abnormalities through S6K1-IRS-1 [241] and its
effector kinases like MAPK [242], AMPK [241], and glycogen
synthase kinase-3β (GSK3β) [148, 243, 244]. Several miR-
NAs were identified to play a role in diabetes by regulat-
ing insulin signaling and glucose metabolism [238, 245];
[246, 247]. Some of the prominent miRs that regulate mTOR
pathway are miR-133a, miR-100, miR-221, miR-483-3p,
miR-133a, miR-503, miR-214, microRNA-99a, miR-143,
miR-126, and miR-181a-5p.

Inhibition of Let-7 family of miR was shown to be benefi-
cial and promoted cardiac function against I/R injury in dia-
betic rats [248]. I/R injury in diabetic rat significantly
increased let-7 miR as well as infarct size, while antagomir
let-7-treated diabetic group offered protection against I/R
[248]. Moreover, the myocardial expression of IGF1 and

GLUT4 as well as p-AKT (S473) were significantly lower with
activationofmTORindiabetic group.Notably, blockingof let-
7 expressionor treatmentwith rapamycin effectively increased
AKT phosphorylation at S473 residue, while simultaneously
blocked mTOR phosphorylation [248]. IGF plays an impor-
tant role in glucose metabolism and in the development of
insulin resistance, which are crucial events in diabetic cardio-
myopathy. miR-1 has been shown to directly targeted IGF-1
[249] and regulated PI3-AKT pathway [250]. In support
of this notion, it was shown that miR-1 increased during dia-
betic cardiomyopathy, which led cardiomyocyte apoptosis
through targeting Pim-1 (proviral integration site for Molo-
ney murine leukemia virus-1) [251]. Inhibition of miR-1-
dependent downregulation of Pim-1 using miR-1 antagomir
resulted in the elevation of phosphorylated AKT and abroga-
tion of diabetic-induced cardiac apoptosis [251]. Similarly,
miR-320 is also identified to directly target IGF-1 and VEGF
and impairs angiogenesis in myocardial microvascular endo-
thelial cells (MMVEC) isolated from Goto-Kakizaki (GK)
diabetic rats [252]. Published studies also demonstrated that
miR-99a suppressed the expression of IGF-1 and inactivated
mTOR in vascular smooth muscle cells (VSMC) [253]. The
hyperinsulin-mediated proliferation and migration of VSMC
were reversed by overexpression of miR-99 or inhibition of
mTOR. Moreover, overexpression of miR-99a reduced AKT
and ERK1/2 activity while suppressing p70S6K, a down-
stream target of mTORC1 [253].

miR-133a is one of the predominantly expressed miRs in
the cardiac tissue, which plays a protective role against path-
ological remodeling by inhibiting cardiac hypertrophy and
cardiac fibrosis in diabetes [254, 255]. Studies in the murine
model show that diabetes attenuates miR-133a in hearts
[256, 257]. Additionally, a diabetic heart failure (DHF)
patient population study showed that the attenuation in the
level of miR-133a in diabetic hearts was associated with the
exacerbation of autophagy and hypertrophy and suppression
of mTOR [258]. In contrast, another interesting study con-
ducted to evaluate the cardiac dysfunction in the offspring
of maternal diet-induced obesity revealed a role for miR-
133a in cardiac hypertrophy [259]. The results showed that
the level of miR-133 is significantly increased in ventricular
tissue of the Mat-Ob group and cardiac hypertrophy in the
offspring [259]. Most notably, AKT1-Ser473 phosphoryla-
tion as well as levels of phospho-ERK1/2, phospho-mTOR,
and phospho-p38MAPK were significantly elevated in the
Mat-Ob group [259], suggesting an active role of mTOR in
the development of cardiac hypertrophy upon diet-induced
maternal obesity [259].

Elevated levels of fatty acids and glucose observed in
obesity and diabetes mellitus (DM) contribute to systematic
inflammation [260, 261]. Blood miRNAs signatures in
patients with diabetes with/without obesity revealed a signifi-
cant reduction of circulating miR-100 in obese normoglyce-
mic subjects and subjects with T2D compared to healthy and
lean individuals [262]. Visceral adipose miR-100 was also
lower in obese patients with T2D compared to those without.
Reduced miR-100 levels were associated with adverse meta-
bolic indices,whichmay lead to thedifferentiationof fat tissues
and subsequent lipid accumulation, potentially contributing
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to increased obesity. miR-100 led to the differentiation of
adipocytes by modulating its direct target IGFR (insulin
growth factor receptor), mTOR, and vLDLR signaling.

A recent study characterized the function of the
endothelial-enriched miR-100 during vascular inflammation
and atherogenesis [263]. It was reported thatmiR-100 directly
repressed several components of mTORC1-signaling,
including mTOR and raptor, which led to the stimulation of
endothelial autophagy and diminished activity of the pro-
inflammatory transcription factor NF-κB. In a low-density
lipoprotein receptor-deficient atherosclerotic mouse model,
inhibition of miR-100 enhanced atherosclerotic plaque for-
mation and a higher macrophage content of the plaque,
whereas miR-100 mimic attenuated atherogenesis in the
aortic root and in the abdominal aorta. Moreover, miR-100
mimic suppressed mTOR and the transcription factor
SREBP-2, which subsequently controlled lipid metabolism
in hepatocytes. mTOR inhibition with rapamycin showed
anti-inflammatory effects through decreasing the expression
of E-Selectin, intracellular adhesion molecule 1 (ICAM-1),
and vascular cell adhesionmolecule-1 (VCAM-1) in response
to endothelial cell activationwithTNF-α. In addition, rapamy-
cin abolished the effects of miR-100 inhibition with TNF-α on
endothelial adhesionmolecule protein expression, confirming
the essential role of intact mTOR signaling in the anti-
inflammatory effects of miR-100 [263].

Vascular remodeling and cardiac hypertrophy is one of
the adverse effect of diabetes and results in end-stage heart
failure [264, 265]. To address this phenomenon, cardiac
hypertrophy was induced by angiotensin II (Ang II) treat-
ment in diabetic OVE26 mice, and the role of miR-221 on
autophagy was investigated [266]. The results demonstrated
that Ang II treatment increased the phosphorylation of c-
Jun, JNK, mTOR, and miR-221, while decreasing the level
of p27, a direct target of miR-221 and regulator of p-mTOR
[266]. Direct downregulation of p27 by miR-221 led to
mTOR activation and diminished cardiac autophagy of dia-
betic OVE26 and/or Ang II-treated mice, resulting in cardiac
hypertrophy [266].

mTOR plays a contrasting role in type I DM, where there
is an insufficient insulin secretion due to deficient pancreatic
β-cells. In gestational diabetes mellitus (GDM), it was shown
that knockdown of miR-503 enhanced insulin secretion of
pancreatic β-cells, promoted cell proliferation, and protected
cells from apoptosis [267]. mTOR has been identified as a
direct target of miR-503, and suppression of miR-503
improves insulin secretion and pancreatic β-cells prolifera-
tion [267]. The regulation of mTOR pathway by miR is also
evident in renal cortex of type 1 diabetic mice [268]. Eleva-
tion of miR-214 under high glucose conditions decreased
the levels of its target PTEN and increased AKT activity
(p-S473) and led to phosphorylation of its substrates gly-
cogen synthase kinase-3β and phosphorylation of PRAS40.
In contrast, antimiR-214 blocked the phosphorylation of
both AKT and PRAS40 and attenuated renal cell hypertro-
phy, suggesting that inactivation of both mTORC1 and C2
is beneficial [268]. Consistent with this finding, studies using
placental tissue from women with GDM demonstrated a
robust activation of both mTORC1 and C2 as evident with

the increased phosphorylation of AKT (S473), (4EBP1),
and p70 S6 kinase (S6K) [269]. Data also showed that
miR-143 was significantly high using placental tissue and
trophoblast cells, and it impaired mitochondrial respiration
via targeting hexokinase (HK), a rate-limiting enzyme in
glycolysis [269]. Similarly, miR-99a has been shown to be
involved in insulin-dependent glucose consumption in
human liver cells (HLL7702) via directly targeting mTOR
[270]. Cells treated with insulin suppressed the level of
miR-99a while increasing glucose consumption and activa-
tion of mTOR. In contrast, the overexpression of miR-99a
or rapamycin treatment reversed insulin-mediated glucose
utilization [270].

2.3. Interaction of mTOR and miRNA in Vascular
Remodeling and Hypertrophy. Given the role of mTOR in
regulating protein synthesis through S6K [271] and cell cycle
control [272, 273], it is well established that mTOR play a key
role in cardiac hypertrophy [274–276]. In fact, several reports
support this notion as mTOR inhibitors have antihyper-
trophic property [277–279]. Due to its antiproliferative
properties, mTOR inhibitors have also been approved as
anticancer drugs [280–282]. Intriguingly, the identification
of miRNAs as novel emerging regulators of mTOR signaling
has provided new insights into a multitude of biological
processes, especially in tissue remodeling and hypertro-
phy, which has been appreciated by the scientific commu-
nity in cardiac physiology [103, 169, 185]. Hypertrophic
stimuli such as phenylephrine [283], angiotensin II (Ang II)
[37, 284, 285], and endothelin-1 [286] are known to activate
mTORC1 in the heart and result in robust vascular remodel-
ing leading to heart failure [274]. However, mTORC2 is
essential for the preservation of cardiac function and attenu-
ation of pressure overload-induced cardiac hypertrophy
[287]. It is increasingly apparent that mTOR [156, 283] and
miR [216, 254] have a critical role in the development of
cardiac hypertrophy and it is becoming important to
understand the mechanism by which these two major reg-
ulators communicate with each other.

Cardiomyocyte-specific miR-199a overexpression inhib-
ited autophagy and induced cardiac hypertrophy via target-
ing glycogen synthase kinase 3β (GSK3β) involving mTOR
signaling [39]. The mTOR signaling was activated in miR-
199a transgenic hearts [39]. In addition, treatment with
rapamycin blocked the activation of p-mTOR and p-S6 in
miR-199 transgenic mice and attenuated hypertrophy with
induction of autophagy [39]. Data also indicated that miR-
761 expression was reduced during Ang II-induced prolifer-
ation of VSMCs, and exogenous miR-761 delivery effectively
inhibited the Ang II-induced VSMC proliferation. [288].
Experimental evidence showed that miR-761 directly targets
mTOR and reduced its abundance [288]. Similarly, miR-99a
was shown to negatively regulate hypertrophy throughmTOR
signaling pathway [185]. Interestingly, mice displayed an
increase in mTOR activity starting at first week through 8
weeks following TAC- (transverse aortic constriction-)
induced cardiac hypertrophy [185]. Overexpression of miR-
99a suppressed mTOR and attenuated cardiac hypertrophy
and cell death in TACmouse model. Overexpression of miR-
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99a attenuated cardiac hypertrophy in TACmice and cellular
hypertrophy incardiomyocytes subjected toAng IIor isopren-
aline (ISO) through suppression of expressionofmTOR[185].

In contrast, it has been shown that cardiac-specific over-
expression of miR-222 induced pathological cardiac remod-
eling and heart failure in mice [289]. Transgenic mice with
cardiac-specific expression of miR-222 (Tg-miR-222 mice)
developed severe cardiac fibrosis and apoptosis, which led
pathological cardiac remodeling and heart failure. The
autophagy was inhibited in the hearts of Tg-miR-222 mice
with activation of mTOR, but the expression of p27 was
downregulated in the hearts of Tg-miR-222 mice [289]. It
was suggested that miR-222 induced autophagy through acti-
vation of both mTORC1 and C2 complexes as shown with a
substantial increase in both p-mTOR and p-S6 (Ser240/244)
in transgenic Tg-miR-222 mice [289]. In the context of these
findings, Su et al. also reported a role for p27-mTOR in the
development of cardiac hypertrophy [290]. Cardiac-specific
overexpression of miR-221, driven by the α-myosin heavy
chain, resulted in hypertrophic hearts at 4 weeks of age with
increased expression levels of ANP and BNP [290]. More-
over, miR-221 also inhibited autophagy, as demonstrated
by downregulation of LC3-1/LC3-II ratio and an increase in
p62 expression level [290]. Further, miR-221 overexpression
in H9C2 cells and in primary cardiomyocytes showed
decreased autophagosome formation as demonstrated with
low number of EGFP-LC3 puncta [290]. More importantly,
phosphorylation levels of mTOR and its substrates
phospho-mTOR (S2448), phospho-4EBP1 (T37/46), and
phospho-S6 (S235/236) levels were all significantly increased
in Tg-miR-221 hearts at 4 weeks of age compared with those
in the nontransgenic controls [290]. Conversely, silencing
miR-221 in H9C2 cells and cardiomyocytes decreased the
levels of phospho-mTOR, phospho-S6K, and phospho-S6,
thereby establishing a link between miR-221 and mTOR sig-
naling in the induction of cardiac hypertrophy [290]. Simi-
larly, miR-365 was shown to promote cardiac hypertrophy
through inhibition of autophagy by suppressing S-phase
kinase-associated protein 2 (SPK2), an important activator
of autophagy [291]. Conceptually, it was demonstrated that
Spk2 induces autophagy through inhibition of mTORC1
and reverses adverse effect of cardiac hypertrophy [291].
Notably, Ang II treatment of cardiomyocytes increased the
phosphorylation of the mTORC1 downstream effectors S6K
and 4EBP1 and decreased the level of Spk2. Inhibition of
mTOR activation, using rapamycin, completely abolished
the Ang II-mediated inhibition of autophagy via miR-365-
Spk2-dependent mechanism [291].

Recent studies have suggested that a long noncoding
RNA (lncRNA), myocardial infarction-associated transcript
(MIAT), plays a role in vascular remodeling and cardiac
hypertrophy [41]. In this study, the authors demonstrated a
three way link between MIAT, miR-93, and mTOR network.
The upregulation of MIAT was associated with the decrease
in miR-93 in Ang II-induced cardiac hypertrophy in rat
[41]. Furthermore, it was shown that MIAT positively regu-
lated TLR4 expression by acting as a sponge for miR-93
expression [41]. Overexpression of miR-93 attenuated
MIAT-induced increase of TLR4 level in cardiomyocytes

and attenuated Ang II-induced cardiac hypertrophy. In
contrast, MIAT knockdown or miR-93 overexpression led
to a significant inhibition on the protein levels of PI3K,
p-AKT, and p-mTOR and blunted Ang II-mediated car-
diac hypertrophy [41]. This study also suggested a strong
corelation between miR-93, TLR4, and mTOR signaling,
since overexpression of TLR4 enhanced the expression of
miR-93 and blocked the protection observed with p-
mTOR inhibition [41].

High fat diet (HFD) consumption for a prolonged time
induces cardiac hypertrophy [292], and mTOR being a
nutrition sensor plays an active role in mediating this
effect in the heart [293]. Microarray analyses of the heart
tissue of mice on HFD for 8 and 20 weeks identified a role
for miR-451 in the development of cardiac hypertrophy
[103]. Calcium-binding protein 39 (Cab39) is a direct tar-
get of miR-451 and an upstream kinase of AMP-activated
protein kinase (AMPK). Suppression of miR-451 protected
neonatal rat cardiacmyocytes against palmitate-induced lipo-
toxicity through a mechanism that involves Cab39 [103]. In
addition, cardiomyocyte-specific miR-451 knockout mice
were resistant to HFD-induced cardiac hypertrophy. Protein
levels of Cab39 and phosphorylated AMPK were increased,
and phosphorylatedmTOR and S6 phosphorylation were sig-
nificantly suppressed in cardiomyocyte of the HFD-fed miR-
451 cKO mice compared with control mouse hearts [103].
These findings elucidated an interesting aspect of AMPK-
miR-451 and mTOR cross talk in cardiac hypertrophy.

Angiogenesis is an important process that plays a det-
rimental role in post-MI, and its abnormal regulation leads
to cardiac hypertrophy [294]. mTOR and its downstream
target AKT have been involved in the control of angiogen-
esis process during I/R injury [295–298]. Placental growth
factor (P1GF), a member of vascular endothelial growth
factor (VEGF) family, has been shown to induce cardiac
angiogenesis and leads to hypertrophic heart [299]. Cardiac-
specific overexpression of P1GF induced cardiac angiogen-
esis with increased expression of miR-182 at 6 weeks onset
of angiogenesis process [299]. The study also found blunting
of miR-182 upregulation in PlGF-induced eNOS−/− mice,
suggesting that miR-182 acts through NO-independent
pathway to regulate angiogenesis [299]. Since NO exerts
its function throughAKT, it was further shown thatmTORC1
was involved in the induction of angiogenesis and cardiac
hypertrophy. Suppression of miR-182 using antimiR-182
decreased the phosphorylation of AKTSer473 and p70-
S6KThr389, thus indicating an important regulatory effect of
miR-182 on the AKT/mTORC1 pathway [299].

Endothelial cell dysfunction contributes to coronary vas-
cular tone and results in atherosclerosis by affecting various
growth factors, such as vascular endothelial growth factor,
fibroblast growth factors (FGFs), and platelet-derived growth
factors [300, 301]. PI3K/AKT/mTOR pathway plays a role in
endothelial function and in the development of atherosclero-
sis [302]. miR-126 has been shown to play a role in alleviating
oxidized low-density lipoprotein (ox-LDL) induced HUVEC
injury through suppression of AKT-mTOR pathway [303].
The overexpression of miR-126 reversed ox-LDL-induced
cell injury and apoptosis in HUVECs [303]. Conceptually,
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treatment of HUVECs with ox-LDL increased the phosphor-
ylation of mTOR through activation of PI3K and AKT, and
miR-126 mimics restored the impaired autophagic flux via
inhibition of PI3K/AKT/mTOR pathway [303].

A recent study by Bera et al. revealed a significant role of
miR-214 in the activation of mTORC1 that contributed to
high-glucose-induced mesangial and proximal tubular cell
hypertrophy and fibronectin expression [268]. miR-214
expression is increased in the renal cortex of type 1 diabetic
mice. High glucose treatment induced the expression of
miR-214 and decreased its target, PTEN, in mesangial
and proximal tubular epithelial cells [268]. Suppression of
PTEN subsequently increased the AKT-dependent mTORC1
activation to induce mesangial and proximal tubular cell
hypertrophy and fibronectin expression. Quenching of miR-
214 expression inhibited high-glucose-stimulated cell hyper-
trophy and expression of the matrix protein fibronectin. In
contrast, overexpression of miR-214 suppressed PTEN and
increased AKT activity similar to high glucose and led to
phosphorylation of two mTORC1 inhibitors, PRAS40 and
tuberin, which contributes to high-glucose-stimulatedmTORC1
activation [268].

Interestingly, a recent study demonstrated that overex-
pression of lncRNA Plscr4 alleviated pressure overload-
induced cardiac hypertrophy in mice and attenuated the
increased cell surface area of cultured neonatal mouse cardi-
omyocytes treated with Ang II [304]. The study identified
that Plscr4 elicits the antihypertrophic effects by repressing
the prohypertrophy gene miR-214. Mitofusin 2 (Mfn2),
which is located at the mitochondrial outer membrane, plays
a negative regulator of cardiac hypertrophy by modulating
mitochondrial fusion [305, 306]. Mfn2 is a direct target of
miR-214 in the hypertrophic heart [307]. The interaction
between Plscr4 and miR-214 attenuated the inhibitory effects
of miR-214 on Mfn2. The overexpression of Plscr4 rescued
the decreased expression of Mfn2 by sponging miR-214 in
response to hypertrophic stress and, therefore, resisted mito-
chondrial dysfunction to alleviate hypertrophic growth [307].
However, the exclusive interplay between lncRNA Plascr4
and mTOR in regulation mediated by miR-214 of cardiac
hypertrophy is yet to be identified.

3. Therapeutic Potential of miRNA and mTOR
Inhibitors in CVD

Rapamycin, received the FDA approval in 1999, has been
successfully used as an effective immunosuppressant post-
organ transplantation to prevent allograft rejection [308].
The rapamycin-eluting coronary stent received first FDA
approval in 2003 for use in coronary-artery stents to prevent
restenosis [309–311]. Rapamycin is also used clinically for
some rare forms of cancer (pediatric and adult patients with
subependymal giant cell astrocytoma (SEGA), progressive
neuroendocrine tumors of pancreatic origin (PNET), and
SEGA associated with tuberous sclerosis (TS)) (http://www
.cancer.gov/cancertopics/druginfo/fda-everolimus) [312, 313].
Multiple clinical trials of rapamycin are currently under-
way for several other disease conditions including
lymphangioleiomyomatosis (LAM) [314], other metabolism

modulating interventions on the elderly (NCT02874924),
ALS (amyotrophic lateral sclerosis) (NCT03359538),
Sturge-Weber syndrome (SWS) (NCT03047980), and type
1 diabetes (NCT01060605; NCT00014911-both are com-
pleted) [315, 316].

Rapalogs, the modified form of rapamycin, are widely
considered in clinical trials for its anticancer property. In fact,
the National Cancer Institute has registered more than 200
clinical trials involving either rapamycin or modified
form of rapamycin both as monotherapy and as combi-
nation treatment cancer (NCT01698918; NCT00337376;
NCT00930930) [317–320]. Due to the successful out-
come of rapamycin in the clinical trials, several drugs analogs
of rapamycin with modified chemical structure such as sir-
olimus, temsirolimus (CCI-779), everolimus (RAD001), and
ridaforolimus (AP-23573) are being evaluated for enhanced
treatment of several diseases [321–323]. In 2009, everolimus
received approval from the FDA for HER2-negative breast
cancer (advanced HR+ BC) patients in combination with
exemestane after failure of a nonsteroidal aromatase inhibi-
tor (Afinitor: Highlights of Prescribing Information).
(http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/
022334s016lbl.pdf).

Current mTOR inhibitors available in the market are
not complex-specific and can either partially suppress
mTORC1 or completely block mTORC1 as well as C2.
Therefore, several pharmaceutical companies ventured to
develop second generation of mTOR inhibitor that can block
both mTORC1 and C2. These inhibitors are designed to
completely block the core catalytic activity of mTOR by act-
ing as an ATP-competitive agents to mTOR subunit. On the
contrary, diseases like cancer and cell cycle irregularities need
specific inhibition of mTORC1 without interfering the activ-
ity of mTORC2. Since mTORC1 is vital for basic cellular pro-
cess, it is indispensable, and its complete inhibition may lead
to unwanted side effects. To overcome these obstacles, scien-
tists are also in pursuit of developing inhibitor that target ric-
tor or raptor to silence either mTORC1 or C2. Although
mTOR inhibitors are promising drug for cancer treatment
and immunosuppressant, an unmet clinical trial is essential
for their therapeutic use in cardiovascular diseases. Sub-
stantially, evidences from laboratory models and preclini-
cal trials suggest that mTOR inhibition in the heart is
beneficial and prevents cell apoptosis [146, 158] and autoph-
agy [324–327]. Interestingly, inhibition of mTOR by rapamy-
cin or other rapalogs are shown to alter the expression pattern
of miRs in the cardiovascular system [162, 199, 208, 228].
Especially, alteration of miRs through mTOR inhibition that
changes the expression level of PTEN and other downstream
targets can offer new treatment strategies [328]. Many
miRNA-based therapies for cancer are in clinical trial and
have shown efficiency in reducing tumor malignancy [312].
Mimic of miR-34 are currently being tested in phase I clini-
cal trials (NCT01829971) for its anticancer properties [329].
It was demonstrated that low level of miR-34 is an indicator
of poor prognosis in osteosarcoma (OS) patients. Sirolimus
increases the sensitivity of human OS cells to anticancer
drugs in vitro by upregulating miR-34b and suppressing its
target p21-activated protein kinase 1 (PAK1) and ATP-
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binding cassette subfamily B member 1 (ABCB1) [329]. In
contrast, the miR-34 family (miR-34a, -34b, and -34c) is
upregulated in the heart in response to stress, including myo-
cardial infarction or pressure overload via TAC [330]. Diabe-
tes also increases the expression of miR-34a both in the heart
and in circulation [331]. miRNA Therapeutics Inc. is devel-
oping an LNA-modified antimiR against miR-34a, which
attenuates MI-induced remodeling and dysfunction, and also
improves cardiac function and increase angiogenesis with
activation of AKT in a model of pressure overload-induced
pathological hypertrophy and dysfunction [330]. Mechanis-
tically, miR-34 can directly target protein phosphatase PH
domain leucine-rich repeat protein phosphatase (PHLPP2),
a negative regulator of the PI3K/AKT/mTOR pathway.

Upregulation of miR-92a was shown to activate PI3K/
AKT/mTOR pathway and inhibit cell apoptosis induced by
chemotherapy in mantle cell lymphoma (MCL) cells [332].
Downregulation of miR-92a could inhibit the growth of
tumors in a xenograft MCLmousemodel [332]. Interestingly,
pharmaceutical company Miragen developed MRG-110, an
inhibitor ofmiR-92a, to enhance the revascularizationprocess
in ischemic heart disease. However, inhibition of angiogenesis
is the goal for cancer therapy, and it should be assumed that
miR-92a acts differently in cardiovascular system [333].

MGN-1374, a miR-15 inhibitor, is under the develop-
mental stage by miRagen Therapeutics for treating myocar-
dial infarction [334, 335]. Studies conducted in MDA-MB-
231 breast cancer cells demonstrated overexpression of
miR-15b/16 led to inhibition of cell proliferation causing
G1 cell cycle arrest as well as caspase-3-dependent apoptosis
by directly suppressing mRNA levels of RPS6KB1 and
mTOR [336]. In addition, miR-15 was shown to regulate
CD4+ regulatory T cells (Tregs) expression, which is essential
for preventing autoimmunity. Overexpression of miR-15b/
16 significantly enhanced the induction of Tregs in Dicer−/−

CD4+ T cells and suppressed the mTOR expression as evi-
dent with the decrease in phosphorylation of its downstream
target, ribosomal protein S6 [337].

Cardiac expression of miR-208 was upregulated upon
Ang II treatment and induced obesity through upregula-
tion of mTORC1 in Zucker obese (ZO) rats [338]. Whereas,
rapamycin treatment attenuated weight gain despite leptin
resistance by attenuating the expression of miR-208 and
increasing the expression of cardiac mediator complex sub-
unit 13 (MED13), a suppresser of obesity, in ZO rats [338].
In addition, therapeutic inhibition of miR-208 prevents
pathological cardiac remodeling, which coincides with a
significant improvement in survival and cardiac function
during heart disease [339]. MED13 is negatively regulated
by a heart-specific miR-208a [340]. In this context, MGN-
9103 (a LNA-modified antisense oligonucleotide against a
cardiac-specific miR-208LNA) is a novel potential thera-
peutic candidate developed by miRagen Therapeutics for
the treatment of obesity, diabetes, and metabolic syndrome
and to improve cardiac function and survival rates during
heart failure (http://drugprofiles.informa.com/drug_profiles/
18925-mgn-9103). These research findings and clinical trials
described above highlight the potential of miRNA-based
therapies with an emphasis on mTOR signaling. Although

several studies established a clear synergistic effect of
miRNA and mTOR in the treatment of cancer, there are
scarce reports of clinical trial in cardiovascular field. Never-
theless, conceptual treatments in laboratory models describ-
ing mTOR inhibition mediated miR changes and vice versa
are encouraging and may lead to novel treatments in cardio-
vascular diseases in the future.

4. Conclusion

The role of mTOR in controlling the cellular dynamics in
cardiovascular system provides confidence to consider
mTOR and its related kinases as targets for therapeutic inter-
vention. Most remarkably, changes in epigenetic signature of
miRs upon mTOR inhibition can lead to identify novel
miRNA-based treatment for cardiovascular diseases. More-
over, antagomir-based treatment options can specifically tar-
get individual mTOR complex and eliminate common side
effects seen with dual mTOR inhibitors. Further understand-
ing of the interfunctional relationship between mTORC1 and
C2 complexes and its association with miRNA is warranted
to develop an efficient miRNA-based therapeutics and diag-
nostics in cardiovascular system.
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