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Abstract

The pathogenesis of pediatric inflammatory bowel disease (IBD) is only partially understood. 

Strong evidence implicates a strong genetic component including high monozygotic twin 

concordance and familial disease phenotype concordance rates. Genome-wide association studies 

have identified associations between >160 genetic loci and the risk for developing IBD. The roles 

of implicated genes are largely immune-mediated, although other functions include cellular 

migration, oxidative stress, and carbohydrate metabolism. Additionally, growing literature 

describes monogenic causes of IBD that frequently present as infantile or very early-onset IBD. 

The interplay between IBD risk single nucleotide polymorphisms and rare genetic variants has yet 

to be determined. Studying patients with very early-onset IBD may elicit genetic factors that could 

be applied to broader populations of IBD. This review describes what is known about the genetic 

causes of very early-onset IBD and genetic strategies that may unravel more of the genetic causes 

of IBD.
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Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the 

gastrointestinal tract that can present at any age.1 IBD encompasses 2 disease entities, 

ulcerative colitis (UC) in which the inflammation is limited to the large intestine and 

Crohn’s disease (CD) where the inflammatory pattern typically involves the small and/or 

large intestine but can affect any segment of the gastrointestinal tract. The initial evidence 

supporting a genetic cause for IBD is provided by the high concordance rates for CD in 

monozygotic twins and the increased risk of children with parents who suffer from IBD.2–7 

However, despite decades of inquiry with advancing technology, the currently known genetic 

factors contribute only 20% to 25% of disease heritability; an understanding of the 

underlying genetic trigger(s) remains elusive.8,9

Children constitute a significant proportion of patients with IBD, with pediatric-onset IBD 

comprising 25% of IBD population in the United States.10,11 In contrast to adult-onset 

presentations, children with UC are likely to present with pancolitis, whereas children with 

CD more frequently present with ileocolonic disease and only rarely present as isolated ileal 

disease.12–15 Those children diagnosed with CD in the first 8 years of life usually present 

with isolated colonic inflammation (rather than ileitis or ileocolitis).15–18 Due to the frequent 

colonic presentation of very young patients with CD, a higher percentage of these patients 

may be inaccurately classified as UC during the initial evaluation.19 Children with IBD are 

more likely to receive corticosteroids, be initiated on immunomodulators, and require 

surgery in the first year after diagnosis than adults with IBD.13,20,21

Concomitant with the growing interest in studying pediatric-onset IBD, subclassifications of 

pediatric populations that reflect inherent distinctions in phenotypic and genotypic patterns 

have been developed. The Montreal Classification for IBD categorized all pediatric patients 

(diagnosed at <17 yr of age) in a single group.22 The subsequent Paris Modification divided 

pediatric-onset IBD into 2 groups: A1a (diagnosed <10 yr of age) and A1b (diagnosed 

between 10 and 17 yr of age), although these new pediatric categories may not reflect 

intrinsically different disease processes.23 As mentioned above, a notable phenotypic 

difference in very young patients with CD is the predominantly colonic involvement, 

contrasting with the increasing occurrence of ileal involvement starting at 8 years of age.
16–18,24 In addition, specific serologic patterns (CBir1 positivity in patients with otherwise 

negative serology) are associated with children diagnosed with CD <8 years of age.25 The 

fundamental differences between older A1a subjects and younger A1b may be quite small, 

and the disease present in many of these patients may behave similar to that of adult-onset 

IBD. Therefore, better classification schemes reflecting differences in pathophysiology and 

genetics are desirable.

Perhaps a more distinct population are patients with very early-onset IBD (VEO-IBD) who 

have disease onset in the first 6 years of life, which constitute 4% to 10% of pediatric IBD.
16,26 By nature of their earlier diagnosis, patients with VEO-IBD will likely have longer 
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exposure to immunosuppressive medications, more surgical interventions over their lifetime, 

and possibly an overall more complicated disease course. Limited series of infantile-onset 

IBD suggest that they often have severe presentations, and the courses are complicated by 

serious infections raising concerns of immunodeficiency.27 However, recent evidence shows 

that patients with VEO-IBD do not seem to have a more aggressive phenotype compared 

with adolescent onset IBD.28 Similarly, although patients with VEO-IBD are more likely to 

have a family history of IBD, and there exists a growing literature of individual cases with 

Mendelian IBD, it is unclear whether the genetic influences in this population as a whole are 

unique.29,30 In this regard, further studies are needed to determine whether the natural 

history and genetic susceptibility in patients with VEO-IBD is distinct from the more 

common presentation of IBD in older children. We believe that these patients may offer the 

unique opportunity to determine the role of genetic susceptibility in a context where chronic 

environmental influences may be less important, and at the very least, develop a better 

framework for studying this complex disease. This review will describe the overall pattern of 

genetics in VEO-IBD (in the context of pediatric IBD overall) and highlight some of the 

rapidly expanding areas of study.

COMMON POLYMORPHISMS ASSOCIATED WITH IBD RISK

Early work to identify genetic causes of IBD largely focused on genetic linkage analyses. 

Initially, genetic risk was found in major histocompatibility complex Class II molecules with 

both UC (DR2, DR9, and DRB1*0103) and CD (DR7, DRB3*0301, and DQ4).31–34 

Linkage studies requiring large pedigrees enriched for IBD led to the discovery of the CD 

risk loci of IBD1 and IBD5.35,36 NOD2, a key pattern recognition receptor in innate immune 

and epithelial cells, that recognizes microbial products was ultimately implicated at the 

IBD1 locus, illustrating a pivotal role of the crosstalk between intestinal microbiota and the 

innate immune system in IBD pathogenesis.37–39 Three single nucleotide polymorphisms 

(SNPs) in NOD2 are linked to the majority of risk seen with the IBD1 locus (with a variety 

of other SNPs being less commonly reported), and increased risk has been demonstrated in 

both heterozygotes and homozygotes for these NOD2 SNPs.40–42 Such linkage studies 

facilitated the discovery of high-impact CD variants whose significance has remained in the 

genome-wide association era.

Genome-wide association studies (GWAS) have rapidly expanded our knowledge of the role 

of common genetic variants in complex genetic disease pathogenesis. Currently, over 160 

loci have been associated with IBD with most loci contributing to both CD and UC risk; 

however, some variants are unique to CD- or UC-specific risk (Tables 1 and 2).43,44,52 

GWAS have identified SNPs associated with IBD risk that are in loci of genes involved in 

many immune-related pathways such as autophagy (ATG16L1, IRGM, LRRK2), adaptive 

immunity (IL2, IL12B, IL23R), and immunoregulation (STAT3, TYK2, IL10).43,44,53,57–59 

Additionally, these studies have highlighted risk associated with other relevant pathways 

including the maintenance of epithelial integrity (MUC19, CDH1), antigen presentation 

(ERAP2, DENND1B), and endoplasmic reticular stress (CPEB4, ORMDL3).
46–49,51,52,54–56,60 Furthermore, deep resequencing of risk loci (e.g., NOD2, CARD9, 

IL23R) have identified additional and perhaps more functionally significant variants 

independent of the original SNPs found by GWAS.61,62
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Not only have GWAS of adult IBD reaffirmed the risk of NOD2 with CD, but they have 

identified specific clinical phenotypic presentations that are associated with NOD2 SNP 

carriers (ileal involvement and surgical resection).53,63,64 GWAS have identified additional 

genetic factors for colonic involvement of CD (ZPBP) and ileocolonic involvement of CD 

(JAK2, IL23R).65 Variation in genes involved in autophagy (IRGM, ITLN1, and ATG16L1) 

has been associated with ileal-predominant CD (as well as upper gastrointestinal tract 

involvement).66,67 Patients with CD who have a higher genetic burden (of the 140 SNPs 

associated with CD) have an earlier age of onset and are more likely to have ileal 

involvement.68

A complimentary approach to classic GWAS strategies are pathway/network analyses, which 

have led to a better understanding of the pathogenesis of type 2 diabetes, obesity, pancreatic 

and bladder cancer, psoriasis, lymphoma, and Behҫget’s disease.69–74 These methods often 

rely on assignment of SNPs to a specific gene and specific tissue expression pattern 

information — tasks not always possible— and can benefit from some knowledge of gene 

function.75,76 Pathway and network analyses using data from adult-onset IBD GWAS have 

confirmed the involvement of known immune-mediated signaling pathways (IL-12, 

interferons) and antigen presentation but have also highlighted novel immune (activation of 

IL-9 and IL-2Rβ), and non-immune pathways (lipid metabolism).43,77,78 In addition, 

approaches agnostic to gene function have identified broader Nod2-focused IBD causal 

subnetworks that involve genes enriched in anti-inflammatory macrophages.43

GWAS and pathway/network analyses of adult-onset IBD have further emphasized that the 

pathophysiology of IBD likely results from either innate and/or adaptive immune defects 

although most SNPs detected in IBD GWAS have relatively modest effect sizes (with the 

exceptions of NOD2 and IL23R).52 However, identified variants may have stronger effects 

on specific IBD subsets (as discussed above for particular disease locations) and for 

pediatric-onset IBD. Regarding pediatric IBD pathogenesis, studies of adult cohorts may 

have overlooked some of the key genetic factors in pediatric IBD simply because younger 

patients were not included in initial GWAS. Furthermore, given that it is sometimes difficult 

to associate an SNP with a particular gene, the mechanistic explanation of the identified 

disease risk can be difficult to ascertain.

PEDIATRIC PERSPECTIVE OF IBD GENETICS

The SNPs identified initially by GWAS in adult IBD were based on cohorts with patients 

that have been drawn from both young and older adult patients with IBD. Multiple studies 

have demonstrated that many adult-onset CD SNPs (including IL23R, NOD2, and LRRK2) 

play a role in pediatric-onset CD, although these cohorts predominantly included teenage-

onset (A1b) CD.45,79 Initial GWAS that included only pediatric-onset IBD replicated 

associations with 8 of 17 adult-onset UC SNPs (including IL-10).45,50 However, the results 

from GWAS of adult IBD may not be easily extrapolated to represent the risk in 

significantly younger subjects because they were largely missing from these studies.

In addition to replicating SNPs associated with adult-onset IBD, pediatric IBD GWAS 

identified novel SNPs not found in initial adult-onset IBD GWAS. Imielinski et al45 reported 
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associations between pediatric CD and SNPs in the interleukin 27 (IL-27), ZMIZ1, and 

MTMR3 loci as well as an association of the CAPN10 locus with pediatric UC. IL-27 

induces type 1 regulatory T cells and suppresses TH17 cells, and the IL27 risk SNP results in 

a 7-fold reduction of IL-27 production from lymphoblastoid cells.45,80 Kugathasan et al50 

identified TNFRSF6B and PSMG1 loci as SNPs that confer risk for pediatric IBD. 

TNFRSF6B encodes DCR3, which is a soluble receptor that modulates the differentiation of 

dendritic cells and T cells and alters cellular sensitivity to FasL-induced death, whereas 

PSMG1 is critical in the formation of the 20S proteasome.81–84 Subsequently, the IL-27, 
MTMR3, TNFRSF6B, PSMG1, and CAPN10 associations were detected in the large-scale 

metaanalyses of adult CD and UC.43,44,52 Interestingly, a ZMIZ1 SNP (rs1250550) had a 

protective effect in pediatric CD, whereas this SNP and others within the region were found 

to confer increased risk for adult-onset CD.45,52 These data indicate that many SNPs 

perceived to be pediatric-specific were ultimately found in the large-scale meta-analyses of 

adult IBD studies, although the effect sizes for some of these SNPs is different than that of 

their adult IBD counterparts.43,44,52 Similarly, GWAS-based pathway/network analyses that 

have included pediatric cohorts have identified pathways (e.g., IL-12/IL-23 signaling) in 

pediatric IBD that have also been identified in adult.43,85

GWAS assume that common yet complex diseases are the result of “common” 

polymorphisms. It is notable that 113 of the 163 IBD SNPs are also found to enhance risk 

for other autoimmune diseases (including lupus, rheumatoid arthritis, and ankylosing 

spondylitis), suggesting a partially shared pathogenesis.43 Early GWAS were powered to 

identify disease risk associated with SNPs with a minor allele frequency of >5%.86 Recent 

meta-analyses of GWAS data (benefiting from larger samples sizes) have lowered the 

detection threshold to ~1%. Patients with disease caused by highly penetrant, loss-of-

function rare variants (with minor allele frequency <1%) are likely overlooked by current 

GWAS strategies. SNPs found by GWAS to be associated with IBD risk alone are unlikely 

to be independently causative given the high prevalence of these SNPs in nondiseased 

individuals.44,52 Additionally, although these SNPs are associated with risk for IBD, these 

specific SNPs may not be specifically responsible for the risk but rather they may be in 

strong linkage disequilibrium with the responsible genetic variant.

Moreover, the current collection of disease-associated SNPs can best explain 20% to 25% of 

the heritability of IBD.8,9 The applicability of GWAS is also a product of the study 

population. GWAS that involve largely adult populations of patients with IBD may overlook 

key regulators of pediatric IBD pathogenesis due to the absence of pediatric patients in their 

study cohorts. Because GWAS of pediatric IBD include predominantly adolescent-aged 

subjects, the applicability to patients with VEO-IBD may be limited. The study of these 

unique patients would be better served by a more focused approach that would be an 

important complement to GWAS.

LESSONS FROM PRIMARY IMMUNODEFICIENCY

Although many patients with IBD exhibit a proinflammatory state, the genetics underlying 

this immune dysregulation are highly variable which creates substantial obstacles to 

studying the immune physiology. Patients with primary immunodeficiency syndromes offer 
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an alternative starting point by examining gastrointestinal pathophysiology in patients with 

well-defined and more uniform immune defects to observe the downstream defects. Chronic 

granulomatous disease (CGD), Wiskott—Aldrich syndrome (WAS), Immune dysregulation-

Polyendocrinopathy-Enteropathy-X-linked syndrome, glycogen storage disease Type 1b, 

NEMO deficiency, and Hermansky—Pudlak syndrome all may show varying degrees of 

gastrointestinal symptoms.87–91 Studying well-defined immune syndromes associated with 

gastrointestinal inflammation can act as an important complement for studying a complex 

genetically mediated disease such as IBD.30

WAS is an X-linked condition that is characterized by the classic triad of recurrent 

infections, thrombocytopenia, and eczema due to defective Wiskott-Aldrich Syndrome 

protein (WASp) expression.91 Mice deficient in WASp develop severe TH2-predominant 

colitis in part due to defective regulatory T-cell (Treg) function and aberrant antigen 

presenting cell function.92–94 However, less than 10% of patients with WAS develop 

intestinal inflammation.95 Disease severity correlates with the degree of WASp dysfunction, 

as patients who possess mutations that result in full-length WASp with only altered amino 

acid sequences can develop a thrombocytopenia syndrome (X-linked thrombocytopenia) 

without eczema or recurrent infections, whereas mutations leading to truncated WASp often 

lead to classic WAS.96 Whether the incomplete penetrance of gastrointestinal symptoms in 

patients with WAS is due to the severity of the WASp defect, mutations in other immune-

mediated genes in those patients, or a dysregulated intestinal microbiome has yet to be 

elucidated.

CGD is an immunodeficiency syndrome due to a defective oxidative burst from the NADPH 

oxidase complex.97 The NADPH oxidative complex consists of 5 proteins: one gene on the 

X chromosome (gp91phox) and 4 autosomal genes (p47phox, p67phox, p22phox, and p40phox).
90,98 X-linked CGD is more common than all forms of autosomal CGD combined and 

presents at a significantly younger age than autosomal CGD.98–100 These patients develop 

recurrent infections from Staphylococcus aureus, Serratia marcescens, Burkholderia cepacia, 
Nocardia, and Aspergillus due to defective intracellular killing by phagocytes.90,101 Nearly 

50% of patients with CGD have gastrointestinal and hepatic complications, among these 

symptoms include colitis and gastrointestinal granulomas that resembles CD.102,103 

Gastrointestinal symptoms occur more commonly in X-linked CGD and in autosomal 

recessive forms of CGD that have concomitant variants in myeloperoxidase and FcRγIIIb 

genes.100,104,105 Even in a well-defined immunodeficiency, genetic heterogeneity seems to 

modulate gastrointestinal presentations.

In a similar manner, genes involved in well-defined immunodeficiency syndromes may also 

contribute to states of immune dysregulation such as IBD. Patients with CD have long been 

described to display defects in oxidative burst, and GWAS have identified an SNP in the 

NCF4 locus (p40phox) that associates with the risk for ileal CD.106–108 Taking a candidate 

gene approach, Muise et al109 recently showed that mutations in NCF2 (p67phox) are 

associated with VEO-IBD. More recently, additional genetic variants in NADPH oxidase 

genes have been shown to associate with VEO-IBD.110 These well-described syndromes 

described above are only but a few of the large list of immunodeficiency syndromes with 

both intestinal and extraintes-tinal manifestations.30 An equally important pool of 
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knowledge can be gained from studying immunodeficiency syndromes with more 

gastrointestinal predominant symptoms.

IL-10 and genes downstream of IL-10 signaling have consistently been demonstrated by 

GWAS (e.g., Tyk2; Stat3) to be associated with IBD risk.43,44,52 Much stronger evidence for 

the involvement of defective IL-10 signaling comes from the analysis of infantile-onset IBD 

patients.111 Linkage studies (as well as targeted sequencing of IL-10R genes) in patients 

with VEO-IBD have identified homozygous mutations that lead to colitis and variable 

phenotypes of folliculitis and occasionally deepsited bacterial infections and polyarthritis.
112–117 Patients with IL-10 defects have a similar phenotype.118 These patients uniformly 

have aggressive IBD with significant perianal involvement (whose luminal disease is largely 

limited to the colon) that is recalcitrant to immunosuppressive agents and surgery, requiring 

allogeneic stem cell transplantation for control of the disease.112–115,117,118 Interestingly, 

patients with mutations in IL10RA and IL10RB are also prone to develop intestinal diffuse 

large B-cell lymphomas, potentially caused by aberrant antitumor T-cell responses.119

IL-10R genes may not have been identified in pediatric IBD GWAS cohorts due to the 

primarily adolescent nature of pediatric GWAS cohorts or due to the limited coverage of 

SNPs in these genes. Extending from these initial studies in infantile-onset IBD, we recently 

completed a candidate gene analysis in children with VEO-IBD, identifying an association 

between IL-10RA SNPs and very early-onset UC.113 The expanding role of defective IL-10 

signaling and the oxidative burst pathway in IBD pathogenesis illustrate the ongoing value 

that candidate gene analysis and linkage studies will have in studying IBD pathophysiology 

to pursue rare variants that elude GWAS detection.

NEW DIRECTIONS IN STUDYING EARLY-ONSET IBD

Significant progress in understanding the genetics of VEO-IBD has been made by studying 

families with high degrees of consanguinity. The evolving description of infantile-onset IBD 

patients with defective IL-10 signaling and the discovery of an IBD-like condition in 

patients with mutations in ADAM17 demonstrate the benefits of SNP-homozygosity 

mapping and linkage analysis.112,116,118,120 This allows for mutation discovery in 

consanguineous families given the high likelihood that a rare homozygous variant is present 

in these patients. However, these strategies may also overlook subjects who possess 

compound heterozygous mutations and dominant mutations with variable penetrance.

Whole exome sequencing (WES) has a developing role in the study of VEO-IBD and other 

rare disease processes.121 The exome includes all coding regions that comprise 

approximately 1% to 2% of the human genome.122 By using next generation sequencing, 

WES allows for the identification of coding variants across the exome and can play a vital 

role in gene discovery as most Mendelian disorders appear to result from genetic variation in 

the exome.123 This technology is becoming rapidly more accessible as the cost for 

sequencing an individual’s entire exome decreases. Limiting factors for WES are the ability 

to analyze (and store) the large amount of data generated by these sequencing efforts.124 

Typically, individuals of European ancestry possess roughly 20,000 exomic variants 

(whereas the total in those of African ancestry averages closer to 24,000 variants), but only 
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~2% result in altered protein structure.125 Utilization of the enormity of these data is 

facilitated by limiting the analysis to those variants that are novel and alter amino acid 

sequence.124

Initially, WES was shown as an effective tool in the study of rare, Mendelian diseases.124 

One only needs DNA samples from the probands and multiple first degree relatives to search 

for the causative genetic mutation. Studies using WES in Coffin–Siris syndrome, Miller 

syndrome, and mandibulofacial dysostosis with microcephaly have identified a number of 

genes not previously thought to be relevant to the underlying disease.126–128 More recently, 

applications of WES in common diseases (such as Alzheimer’s disease, multiple sclerosis, 

and familial dyslipidemia) have identified genetic variants not found by GWAS.129–132

The introduction of WES to the arena of IBD research led to the description of a 

hemizygous mutation in X-linked inhibitor of apoptosis protein gene (XIAP) in an infant 

with aggressive colitis.133 XIAP is an intracellular protein that interacts with caspases, 

NOD2, and NFκB and is expressed in all hematopoietic cells.134 Patients with XIAP 

deficiency classically develop an x-linked lymphoproli-ferative syndrome and 

hemophagocytic lymphohistiocytosis.135,136 Although XIAP-deficient patients had 

previously been described to have gastrointestinal manifestations, this report was the first of 

several to report a primary Crohn’s-like phenotype.133,137 Further analysis of the role that 

XIAP plays in pediatric IBD have shown that patients with XIAP deficiency can present 

with pediatric CD.138,139

The promise of WES includes the ability to identify causative mutations in genes that are not 

a priori judged to be involved in disease pathogenesis. WES has identified a homozygous 

PIK3R1 mutation in a patient with defective B-cell development and a homozygous 

mutation in LRBA in a patient with a common variable immunodeficiency, both of whom 

had colitis.140–142 Most recently, patients presenting with recurrent intestinal atresia, 

combined immunodeficiency, and enterocolitis have been described due to mutations in 

TTC7A.143–146 Much of the interest in WES has focused on its use in consanguineous 

families with extremely rare diseases, but WES has also been useful in identifying 

compound heterozygous mutations (e.g., IL10RA) in nonconsanguineous families.147

Although one obvious use of WES can be to ascertain the causative gene in extreme cases, it 

can also be applied to understand more common disease risk. More recently, WES was used 

in a cohort of patients with adult-onset CD to identify a novel risk SNP in NDP52 and to 

clarify that the risk for UC and CD seen at the 6q21 locus is due to genetic variation in 

PRDM1.148 Additionally, WES in 8 patients with pediatric-onset CD identified nonsynony-

mous variants (mostly in the heterozygote state) in genes involved in IBD pathogenesis but 

did not identify a clear causative mutation in any of the patients.149 Although the potential 

yield of studying patients with VEO-IBD from consanguineous families may be the highest 

for gene discovery, there remains utility in studying patients apart from this very select 

population. The ability to study a multitude of genes simultaneously and the ability to 

identify compound heterozygotes in a particular disease make WES a rapidly developing 

field. However, WES does not address the ability of regulatory regions in the human genome 

to modulate disease.
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An extension to WES, whole genome sequencing (WGS), offers the ability to obtain genetic 

information at every locus throughout the human genome. WGS has already displayed great 

benefit in identifying causative mutations in various cancers (multiple myeloma, melanoma, 

and hepatocellular carcinoma) and rare Mendelian disorders such as metachondromatosis, as 

well as a recent prenatal diagnosis of CHARGE syndrome.150–154 The application of WGS 

technology to more complex genetic diseases has been largely limited to individual subject 

analysis due to a multitude of reasons.155 As WGS captures more data, it also carries a 

higher cost of sequencing and a greater burden of data analysis and storage. The ability of 

both WES and WGS to detect variants is dependent on the coverage of the sequence 

amplifiers used by each platform which also continues to improve. The current cost 

differential of WES and WGS may limit large-scale studies from using WGS, but 

accessibility to each of these technologies will increase as the cost of both continues to fall.

CONCLUSIONS

A better understanding of the genetics of IBD will undoubtedly occur from a combination of 

genetic strategies. Despite the significant progress made during the GWAS era, it is 

estimated that the currently known risk alleles only explain ~20% to 25% of the heritability 

of CD.52 A substantial proportion of the remaining risk may be due to rare variants. The 

advent of WES (and WGS) allows for the identification of genes not previously known to be 

involved in IBD and subsequently allows further analysis in larger cohorts by traditional 

genotyping and sequencing strategies. Although some genetic variants may contribute only 

modestly to overall pediatric IBD, they may have stronger effects on distinct subtypes of 

IBD (such as VEO-IBD) and allow stratification of patients into subsets to allow for better 

tailoring of therapy. Furthermore, the pathways identified by GWAS can allow for a direct 

pathway analysis in a broader IBD cohort. This will ultimately result in identification of 

patients with fundamental defects of their immune system that may benefit from more 

aggressive alternative therapy (such as allogeneic hematopoietic stem cell therapy) rather 

than profound immunosuppression and repeated surgical intervention. Although the 

underlying genetics of IBD remain elusive, recent advances in this field prepare us for the 

beginning of a quickly expanding research landscape.
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TABLE 1.

Single Nucleotide Polymorphisms Associated with Ulcerative Colitis in GWAS

Adult-Onset UC SNPs Pediatric-Onset and Adult-Onset UC 
SNPs

ADCY343 GPR65/GALC43 PTGER443,44 CAPN10/GPR3543–45

ARPC2/IL-8RA/IL-8RB44,46 GPR183/GPR1843 REL/PUS1043,44 HLA-DQ/HLA-DR44–47

C1orf5343 HCK43 RELA43 ICOSLG43–45

C1orf10644 HNF4A/ADA43,48 RFTN2/PLCL143 IFNG/IL-2643–45,49

CALM343 IFIH143 RORC43 IL-1043–45

CARD944‘46 IBD5 locus43 SERINC344 IL-12B43–45

CARD11/GNA1243 IL-2/IL-21/EXOC343,44 SLC9A343 MST143–45

CCDC88B43 IL-2RA/IL-15RA43 SMAD343 NKX2-343,45

CCL13/CCL243 IL-7R44 SMAD743 ORMDL343–45

CCR6/RPS6KA243 IL-18RAP/IL-1R1/IL-1R243,44 SMURF143 OTUD3/PLA2G2E43,45,49

CD643 IL-23R43,44,47 SOCS1/LITAF43 PSMG143,50

CD4043 IL-2743 SPRED243 TNFRSF6B43,44,50

CD4843 IRF543,44 SPRY4/NDFIP143 ZMIZ1/ZPBP/IKZF143,45

CD22643 IRF843 STAT1/STAT443

CDH1/CDH348 IRGM43 STAT343

CEBPB43 ITGAL43 TAB143

CEBPG43 JAK243,44 TBD1/RPS6KB143

CISD1/IPMK43 JRKL/MAML243 TNFAIP343

CNTF/LPXN43 KIF21B43 TNFSF15/TNFSF843,44

CREM/CCNY43,44 LIF/OSM43 TNFRSF943

CRTC343 LOH12CR143,44 TNFRSF1443,44

CXCR543 MAP3K843 TNFRSF18/TNFRSF443

DAP43,44 MUC1943 TNNI2/LSP143,44

DLD/LAMB143,48,49,51 NFIL343 TRAF3IP243

DNMT3B43 NFKB1/MANBA43 TRIB143

DOK343 NXPE1/NXPE443 TSPAN14/C10orf5843

EPO43 PHACTR243 TUBD1/RPS6KB143

ERAP2/ERAP143,44 PRDM144 TYK243

FCGR2A/FCGR2B/FCGR3A43,51 PRKCB43 VDR43

FOSL2/BRE43 PRKCD/ITIH443 ZFP36L143

FOS/MLH343,44 ZFP9043,44

ZNF831/CTSZ43
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TABLE 2.

Single Nucleotide Polymorphisms Associated with Crohn’s Disease in GWAS

Adult-Onset CD SNPs Adult-Onset and Pediatric-Onset CD SNPs

ADAM3043 GPR3543 RIPK243 ATG16L143,45,50‘52–54

ADCY343 GPR65/GALC43‘52 RORC43 C11orf3045,52‘54

BACH252 GPR183/GPR1843 SLC22A4/IRF1/IL-352 C13orf3145‘52‘54

C1orf5343 GPX4/SBNO252 SMAD343,52 CCL2/CCL7/CCL1343,45,52

CARD943,52 HCK43 SMAD743 CCNY/CREM43,45,52,55

CCDC88B43 HMHA1/GPX443,52 SMURF143 FMO443,45

CCR643,52‘54‘55 IFIH143 SOCS1/LITAF43 HLA-DQA50,52

CD643 IBD5 locus43 SP14043,52 ICOSLG43,45,52,54,55

CD4043 IFNG43 SPRED243 IL-1043,45,52

CD4843 IFNGR2/IFNAR143 SPRY4/NDFIP143 IL-12B43,45,52,54,55

CD22643 IL-2/IL-2143 STAT1/STAT443 IL-18RAP/IL-1R1/IL-18R1/IL12RL243,45,52

CD244/ITNL152,54 IL-2RA/IL-15RA43,52 STAT343,52,54,55 IL-23R45,50,52,55

CDKAL152,54 IL-6ST/IL-31RA43 TAB143 IL-27/CD1943,45,52

CEBPB43 IRF843 TAGAP43,52 JAK243,45,52,54,55

CEBPG43 IRGM43,52,54,55 TBD1/RPS6KB143 LRRK2/MUC1943,45,52,54

CISD1/IPMK43 KIF21B/C1orf10643,55 THADA52 MST1/PFKB443,45,52–55

CNTF/LPXN43 LACC143 TNFAIP343 MTMR345,52

CPEB443,52 LGALS9/NOS243 TNFRSF18/TNFRSF4/FASLG43 NKX2-343,45,52–55

CREB5/JAZF143 LIF/OSM43 TNFRSF6B43 NOD243,45,52–54,56

CRTC343 LOH12CR143 TNFSF1152 ORMDL3/ZPBP/IKZF1/IKZF343,45,52,54,55

CXCR543 MAP3K7IP152 TNNI2/LSP143 PTGER443,45,52–54

DAP43 MAP3K843 TRAF3IP243 PTPN2243,45,52,54

DENND1B52 MUC1/SCAMP343,52 TRIB143 TNFSF15/TNFSF8/SLC46A243,45,52,55

DNMT3A/DNMT3B43,52 NDFIP152 TSPAN14/C10orf5843 ZMIZ145,52

DOK343 NFIL343 TUBD1/RPS6KB143 ZNF30045,52

EPO43 PHACTR243 TYK2/ICAM1/ICAM343,52 ZNF36543,45,52–54

ERAP2/ERAP143,52 PLCL152 UBE2D152 ZPBP45,52

FADS152 PRKCB43 UCN43

FCGR2A/FCGR2B/FCGR3A43 PRDM152 VAMP352

FOS/MLH343 PRDX5/ESRRA52 VDR43

FOSL2/BRE43 PTPN252–54 YDJC52

FUT2/RASIP143,52 RASGRP1/SPRED143 ZFP36L143,52

GCKR52 RBX1-EP30056 ZNF831/CTSZ43

REL43

RELA43
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