Skip to main content
. 2018;19(7):1747–1752. doi: 10.22034/APJCP.2018.19.7.1747

Table 1.

Systematic Review of Diagnostic Test Accuracy of Different Machine Learning Algorithms for Breast Cancer Risk Calculation

First Author, Year Size of Dataset (n) Dataset   Machine Learning Algorithms Accuracy (%) NOS
Chang et al., 2003 250 Primary data (pathologically proved breast tumors) Super Vector Machine 85.6 7
Polat and Gunes, 2007 683 Wisconsin breast cancer dataset Super Vector Machine 95.89 7
Akay, 2009 683 Wisconsin breast cancer dataset Super Vector Machine 99.51 7
Ayer et al., 2010 62,219 Wisconsin state cancer reporting system Artificial Neural Networks 96.5 8
Dramicanin et al., 2012 42 Primary data (breast tissue specimens) Super Vector Machine 64.29 6
Subramanian et al., 2014 40 Primary data (mammographic image) a. Super Vector Machine
b. Artificial Neural Networks
c. Decision Tree
d. Naive Bayes
a. 62.5
b. 75
c. 67.5
d. 75
6
Mert et al., 2015 569 Wisconsin diagnostic breast cancer dataset a. K-Nearest Neighbor
b. Artificial Neural Networks
c. Radial Basis Function Neural Network
d. Super Vector Machine
a. 93.14
b. 97.53
c. 87.17
d. 95.25
7
Milosevic et al., 2015 300 The Mini Mammographic Database a. Super Vector Machine
b. K-Nearest Neighbor
c. Naive Bayes
a. 83.7
b. 54.3
c. 77.3
7
Sun et al., 2015 340 Primary data (digital mammograms) Super Vector Machine 72.9 7
Asri et al., 2016 699 Wisconsin breast cancer dataset a. Support Vector Machine
b. Decision Tree
c. Naive Bayes
d. K-Nearest Neighbors
a. 97.13
b. 95.13
c. 95.99
d. 95.27
8
Heidari et al., 2018 500 Primary data (full-field digital mammography) Super Vector Machine 60.8 7

NOS, Newcastle–Ottawa Quality Assessment Scale