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Abstract

Drug delivery to the inner ear is an ideal method to treat a wide variety of otologic conditions. A 

broad range of potential applications is just beginning to be explored. New approaches combine 

principles of inner ear pharmacokinetics with emerging technologies of drug delivery including 

novel delivery systems, drug-device combinations, and new categories of drugs. Strategies include 

cell-specific targeting, manipulation of gene expression, local activation following systemic 

delivery, and use of stem cells, viral vectors, and gene editing systems. Translation of these 

therapies to the clinic remains challenging given the potential risks of intracochlear and 

intralabyrinthine trauma, our limited understanding of the etiologies of particular inner ear 

disorders, and paucity of accurate diagnostic tools at the cellular level. This review provides an 

overview of future methods, delivery systems, disease targets, and clinical considerations required 

for translation to clinical medicine.

1. Introduction

The delivery of reagents to accomplish inner ear therapy has been utilized for decades in the 

clinical environment, particularly with transtympanic injections delivered to the middle ear 

space to facilitate diffusion across the round window membrane into the cochlea. With the 

advent of the cochlear implant, intracochlear access has been frequently performed in 

humans via round window or basal turn cochleostomy. In animal models such as the guinea 

pig that provide easier access to various portions of the inner ear, additional routes of 

delivery have been explored, including a comparison of round window injections versus 

placement of drug-delivering materials on the surface of the round window membrane, 

intracochlear injections to the base, apex, or deep into the scala tympani, and 

intralabyrinthine injections to the semicircular canal or vestibule (Salt et al., 2009). In 

developing new inner ear therapies, the potential effect of the location of delivery on drug 

efficacy must be balanced against the risks of delivery to that location. In this review, 

additional potential methods of delivery will be discussed including scala media delivery, 

systemic delivery with local activation, and methods to mitigate risks of intracochlear and 
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intralabyrinthine access by using automated systems such as robotic surgery and micro-

infusion pumps.

Current reagents for inner ear therapy in the clinic primarily consist of pharmaceuticals such 

as aminoglycosides and steroids. However, in the laboratory where future therapies are being 

developed, many other reagents have been explored, including neurotrophins, small 

molecule drugs, small interfering RNA (siRNA), gene editing reagents, and viral vectors. 

The proposed treatments have been aimed at a wide variety of targets in the inner ear such as 

epithelial cells, neurons, glia, connective tissue, infectious pathogens, and immune-

mediating cells. Many of these reagents await translation to the clinic, and are discussed in 

further detail below.

2. Future methods of delivery

2.1 Alternative routes of delivery

Much of the experimental work on inner ear drug delivery has been carried out in animal 

models. Each species has its own anatomical features, posing unique drug delivery 

possibilities and challenges. The inner ear of humans is larger than that of rodents 

commonly used in research, making some aspects of approach and injection easier. 

However, rodents such as guinea pigs and chinchillas have a much more accessible cochlea 

because the otic capsule protrudes into the middle ear space and is easily visualized when 

the middle ear is accessed.

Reagents placed into endolymph in the scala media are in direct contact with the luminal 

surfaces of the epithelial cells lining the cochlear duct including hair cells, supporting cells, 

and marginal cells of the stria vascularis. Several laboratories have obtained data in animal 

models demonstrating that adenovirus viral vectors injected into perilymph do not express 

reporter genes in the epithelium of the cochlear duct (Excoffon et al., 2006; Ishimoto et al., 

2002; Venail et al., 2007). In contrast, when injected into the scala media, robust gene 

expression is seen in supporting cells of the mature ear (Atkinson et al., 2014; Ishimoto et 

al., 2002; Kawamoto et al., 2003a; Sheffield et al., 2011; Venail et al., 2007).

Supporting cells are endogenous cells that can transdifferentiate into new hair cells 

following depletion of the original hair cells, a process that occurs spontaneously in the 

hearing sensory epithelium of all vertebrates other than mammals (Brignull et al., 2009), and 

can be induced to transdifferentiate by manipulating gene expression in the living 

mammalian cochlea (Atkinson et al., 2014; Kawamoto et al., 2003a; Mizutari et al., 2013). 

This potential to manipulate gene expression in supporting cells is currently the most 

important rationale for injecting into the scala media, but access to the scala media in the 

human ear is difficult with current technology. Implementation and optimization of robotic 

surgery using personalized cochlear anatomic maps may make scala media injection feasible 

in the future.

2.2 Systemic delivery with local activation

For ease of delivery, it would be optimal if a therapeutic reagent could be given systemically, 

reach the ear at the same concentration as other organs, and yet act in the ear only. Dedicated 
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research effort is needed to advance delivery technology in this direction, as currently this 

option has not yet been developed. For instance, ear-specific activation following systemic 

delivery could conceivably be achieved by harnessing features specific to the ear to activate 

or induce release of the active ingredients of therapeutic molecules. One specific ear feature 

is the unique chemical composition of endolymph characterized by high concentration of 

potassium and 80 mV positive direct current potential, which is not found elsewhere in the 

body. Should medicinal chemistry succeed in designing a compound that becomes active 

when immersed in such a fluid, it should be possible to accomplish ear-specific activation. 

Another feature of the ear is its ability to receive high intensity acoustic energy. With 

amplification provided by the ossicles in the middle ear, it is possible to vibrate the inner ear 

fluids at a specific frequency with high intensity acoustic signal, potentially leading to the 

activation of reagents designed for activation by such a physical phenomenon. Advances in 

the design of bioactive molecules may accomplish these tasks and provide ear-specific 

therapy following systemic administration. Such reagents are not currently available to our 

knowledge, but could be developed using advanced medicinal chemistry and related fields of 

research.

Specific delivery methods also will be needed to improve outcomes of cochlear implants. 

Cochlear implants are very successful and useful, but some of their features could still be 

improved. The two most important limitations are low speech intelligibility in noisy 

environments, and lack of music appreciation (Kohlberg et al., 2014; Zeitler et al., 2008). 

These limitations are partly due to the current spread of each electrode, resulting in 

relatively low signal quality (Caldwell et al., 2017). One way to address these limitations is 

to increase the number of stimulating channels via use of light instead of electric stimulation 

with optogenetics, whereby light-sensitive channel proteins are inserted into the auditory 

nerve and photons are converted to trigger a neural impulse. Unlike electrical fields that 

spread in all directions, light can be directed and even focused. Therefore, light stimulation 

can gain a significantly increased number of independent stimulating sites with high spatial 

resolution.

The field of optogenetics uses channelrhodopsins which are green algae photoconverting 

proteins, and other similar proteins (Cho et al., 2016). The channels would need to be 

expressed in spiral ganglion neurons (SGNs), which could be accomplished by insertion 

with a viral vector. Preliminary data show the feasibility of optical stimulation of the 

auditory nerve in the deafened rodent cochlea genetically modified to express a 

channelrhodopsin (Moser, 2015; Richter et al., 2013). Future enhancement in gene 

transfection technology and improvement in the design of more efficient light sources and 

sound-to-light algorithms will likely improve optogenetic technology, leading to enhanced 

outcomes of cochlear implantation. It appears that optical stimulation has the potential to 

target well-defined SGN populations, which would allow a much higher number of 

independent stimulation channels (Hernandez et al., 2014). While this optogenetic 

technology holds promise for creating an improved cochlear implant of the future, improved 

delivery methods for inserting the channelrhodopsins or other transgenes into SGNs and 

assuring long term gene expression will be necessary prior to transition into clinical settings.
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3. Future drug delivery and targeting systems

3.1 Cell-specific targeting via gene expression

Manipulation of gene expression can be used to accomplish several potential goals through 

up- or down-regulation of expression. The goals of such manipulations include protection, 

repair, and regeneration of specific cell types and functions. In all cases it is necessary to 

verify that potential side effects, listed in a later section of this review, would not be greater 

than the potential benefit. Once the therapeutic reagent is in the inner ear, it is necessary to 

target its expression or activity to a specific type of cells. If the delivery shuttle is a viral 

vector, specificity can be accomplished by tropism of the virus to a specific cell type, and/or 

by using cell-specific promoters to drive expression. Small interfering RNA (siRNA) 

reagents are also useful for blocking expression of specific genes to accomplish therapeutic 

goals related to dominant negative mutations (Maeda et al., 2005), or to manipulate 

pathways for enhancing hair cell regeneration (Jung et al., 2013). siRNA reagents currently 

lack some of the specificity of viruses, but the ability to deliver these reagents using a virus 

may partly resolve this limitation.

The condition of cells in the inner ear also needs to be considered when designing therapies. 

Deaf ears or ears with partial pathology such as incomplete or localized hair cell loss may 

not necessarily respond to the presence of viruses in the same way as normal ears. 

Experimental animal models will need to be used to characterize and optimize delivery 

vehicles, cell specificity and side effects, along with efficacy and outcomes for addressing 

different stages of pathology.

Recent advances in understanding epigenetic changes in chromatin in general (Teschendorff 

et al., 2017) and in the inner ear (Doetzlhofer et al., 2017; Layman et al., 2014) increase and 

enhance the arsenal of possibilities for therapy, as seen by recent data on the protective 

effects of chromatin remodeling (Chen et al., 2009; Chen et al., 2016; He et al., 2015). 

Future ability to reverse epigenetic modifications could enhance the responsiveness of cells 

to exogenous reagents by revealing desirable binding sites on the chromatin. Such 

approaches could benefit attempts to induce regeneration or to correct mutations using 

phenotypic rescue approaches.

3.2 Increasing viral vector specificity

In many cases, viral vectors are the most efficient gene transfer shuttles, and their cell-

specific uptake can be tailored to some extent (Heilbronn et al., 2010). A variety of viral 

vectors have been used in animal models for inner ear therapy. These include adeno-

associated virus (AAV), bovine adeno-associated virus, lentivirus, adenovirus, and others, as 

recently reviewed (Lustig et al., 2012; Sacheli et al., 2013). Several aspects of viral gene 

transfer need further study to advance their translation to clinical applicability. One major 

task is to establish whether data obtained using rodent animal models translates to the 

human ear. Moving experimentation to primates will be an important step in this process. 

Even as studies in primates advance toward human applications, experiments in rodents and 

other animals will remain useful for first-line assessments of novel gene transfer methods.
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The longevity and turnover of target cells also needs to be considered in further detail. For 

instance, a study evaluating the overexpression of neurotrophic factors for enhancing spiral 

ganglion survival and sprouting revealed that neurotrophin levels declined weeks after AAV 

injection (Budenz et al., 2015), possibly due to death of mesothelial cells infected by the 

virus. Targeting cell populations with low turnover may enhance long-term gene expression 

when it is needed, particularly for maintaining specific cell populations or for gene 

replacement therapy in cases of genetic deafness.

The immune response to the vector is another important aspect of viral-mediated gene 

delivery. Animals in the laboratory are usually specific pathogen free, namely, they have not 

been previously exposed to viruses, unlike most humans who are the targets for viral 

therapy. For safe therapy, most viruses used as gene delivery vectors in the laboratory must 

be engineered to reduce the severity of the immune response they elicit. AAV vectors may 

represent an exception due to their theoretically less severe immune response, as they appear 

to be well tolerated in the visual system (Simonelli et al., 2010) and are likely to also be 

successful in the human therapy in the ear and other organs (Kay, 2015).

AAV vectors injected into the perilymph of animal models lead to gene expression in 

epithelial cells of the cochlear duct, and transfected cells are usually hair cells (Konishi et 

al., 2008; Lalwani et al., 1996; Shibata et al., 2009; Stone et al., 2005). Therefore, hair cell-

specific therapies are feasible, especially for curing genetic diseases involving hair cell 

mutations, as has been recently shown in several mouse models (Akil et al., 2012; Askew et 

al., 2015; Isgrig et al., 2017). One limitation of using AAV vectors for therapy is that their 

small size limits the genes that can be delivered, but the technology for enhancing the gene 

load in AAV vectors is rapidly developing, as discussed below. Another area requiring 

further development is the treatment of adult ears. In most of studies cited above, the virus 

was injected into immature ears; future experiments will need to extend the feasibility of 

these treatments to mature ears.

3.3 Sequential drug delivery

For some therapeutic goals, it may be necessary to sequentially deliver reagents at different 

time points. Attempts to induce hair cell regeneration or to implant stem cells and guide 

their differentiation may require more than one administration of therapeutics. Partial, 

inefficient regeneration of hair cells has been accomplished with the use of a single agent, as 

shown in experiments with DAPT, a gamma-secretase inhibitor leading to Notch pathway 

inhibition (Mizutari et al., 2013), and Math1 gene transfer via adenovirus, leading to Atoh1 
overexpression (Kawamoto et al., 2003a). It is very likely that combination therapies 

utilizing more than one reagent with sequential administration will be required to enhance 

efficacy. To accomplish this, a cannula could be placed in the cochlea and connected to an 

external pump or injectable reservoir, which would facilitate reloading of reagents. 

Implanted mini-osmotic pumps may also serve an important purpose for future applications 

requiring continued or sequential administration of therapeutics.

Manipulation of membranous barriers may enhance penetration and access of therapeutics. 

Viral vectors placed on the round window membrane do not readily diffuse into perilymph, 

however partial digestion of the round window membrane facilitates AAV transfection of 
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inner hair cells in an animal model (Wang et al., 2012). Once viral vectors are in perilymph, 

their access to different cell types, especially those lining the scala media, may still be 

restricted. Molecules that transiently enhance the permeability of internal cochlear 

membranes such as Reissner’s membrane may be useful for enhancing spread of vectors 

from the perilymph to target cells in other areas. This could be accomplished by use of 

sodium hyaluronate (Healon) (Shibata et al., 2012) or by reagents that transiently open 

adherens junctions (Park et al., 2014).

3.4 Drug-device combination therapy

Combining an implantable device with simultaneous single application drug delivery is a 

strategy that is already used clinically (Bento et al., 2016). Access to the cochlea is required 

for placement of cochlear implants, which concurrently provides an opportunity for 

additional drug delivery or other procedures directly to the cochlea. Healon and 

dexamethasone are examples of reagents placed along with the cochlear implant electrode. 

Implants eluting dexamethasone have been tested in animals and found to be effective in 

reducing fibrosis and impedance as compared to controls (Wilk et al., 2016). As such, these 

implants are likely to be transitioning to clinical trials in the near future for longer-term 

secretion into perilymph. Future treatments may include other reagents that can enhance the 

biological substrate of the ear that receives the implant. The main goals would be to enhance 

preservation of SGNs and to induce sprouting of neurons to an area closer to the electrodes. 

Experiments in animals show efficacy of treatment with neurotrophins, but variability in 

outcomes is a limitation (Pfingst et al., 2017; Pfingst et al., 2015; Ramekers et al., 2015; 

Wise et al., 2010; Wise et al., 2011). Use of viruses for overexpression may also have to 

await further improvement in vector technology. Further, a better understanding of the site of 

depolarization elicited by electrical stimulation will help to determine the importance of 

neurite sprouting in the direction of the cochlear implant electrode. Preliminary results on 

the improvement of several objective measurable parameters in guinea pigs provide rationale 

for proceeding with this approach (Pfingst et al., 2017).

Recent data on combining cochlear implantation with plasmid-based transgene expression of 

neurotrophins provides a potentially useful non-viral method for gene delivery (Pinyon et 

al., 2014). In these studies, the implant electrode was used for delivering electroporation 

current, facilitating uptake of naked DNA by cochlear cells and leading to neurotrophin 

overexpression.

In the more distant future, it is feasible that patients will be able to self-regulate therapy into 

the ear. When efficacious and safe treatments for tinnitus, Ménière’s disease, and other 

diseases are available through diffusible reagents, it is conceivable that delivery of 

therapeutic reagents via a patient-controlled, permanently implanted mini-osmotic pump or 

other controllable reservoir may become a reality. Therapeutics in such a device could be 

aimed at changing cochlear fluid pressure, the level of the endocochlear potential, the extent 

of outer hair cell motility, thresholds of neuronal firing, or the concentration of potassium in 

the scala media.
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4. Future targets of inner ear therapy

With the advancement of technology to improve the process of drug delivery to the inner ear 

as well as the ability to target specific cell types, the prospect of treating the underlying 

causes of otologic and neurotologic diseases becomes more realistic. Several emerging 

techniques in molecular biology, particularly within the realm of personalized medicine for 

genetic disorders and neoplasms, can potentially be applied to the inner ear. Here, we review 

some of these techniques and discuss their application to otologic disease.

4.1 Genetic hearing loss

Approximately half of all cases of congenital hearing loss are genetic. Of these, 

approximately 37% are due to sporadic causes and 63% due to inherited causes (Marazita et 

al., 1993). The majority of non-syndromic hearing loss is autosomal recessive, 

approximately 75 to 80%; most of the remaining 20 to 25% are autosomal dominant, and 1 

to 1.5% are X-linked or mitochondrial (Chang, 2015; Kenneson et al., 2002). Mutations in 

GJB2 and SLC26A4 are responsible for the majority of autosomal recessive cases, but no 

single gene has been associated with the majority of autosomal dominant cases.

Current strategies for curing genetic disease include use of embryonic or somatic stem cells, 

gene transfer, gene editing, and RNA modification (O’Connor et al., 2006). With increased 

efficiency of sequencing techniques, as well as the use of preimplantation genetic diagnosis, 

the correction of underlying genetic mutations to allow for normal protein production will 

become possible. Gene therapy can in principle involve insertion of a transgene or editing of 

the existing mutated gene. For the latter case, one emerging area of research involves using 

the CRISPR-Cas gene editing system to modify gene mutations (Gao et al., 2018; Liang et 

al., 2015; Ma et al., 2017); however, there are still challenges to overcome to ensure that the 

correct gene is reliably altered without producing off-target mutations or mosaic cell 

populations within the embryo (Ledford, 2017).

Fetal gene therapy is another area likely to see development in the near future. Fetal gene 

therapy will be extremely important for phenotypic rescue in cases where post-natal 

treatment is too late because the affected gene is required for development and/or because 

the affected cells die prenatally. Many of the transfer experiments conducted on mice 

carrying a mutant gene are performed on neonatal animals (Akil et al., 2012; Askew et al., 

2015; Isgrig et al., 2017; Yu et al., 2014); the equivalent human developmental stage is 

earlier than mid-gestation. The feasibility of modulating gene transfer at even earlier time 

points during development has been demonstrated by injections into the mouse otocyst 

(Bedrosian et al., 2006; Brigande et al., 2009; Depreux et al., 2016; Gubbels et al., 2008). 

The ability of in utero gene therapy to prevent hearing loss in an affected individual (Miwa 

et al., 2013) provides a strong motivation for continued research in this area.

In addition to the need for further research and development regarding the above techniques, 

genetic therapies face regulatory, economic, societal, and political barriers given the ethical 

issues surrounding gene modification of embryos (O’Connor et al., 2006). These must be 

addressed prior to broader implementation.
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4.2 Neoplasms of the temporal bone and lateral cranial base

Neoplasms of the external, middle, and inner ear, as well as the lateral cranial base, can alter 

or impair hearing and balance and pose other health risks. These tumors are typically treated 

with a combination of surgical resection, radiotherapy, stereotactic radiosurgery, and 

chemotherapy. Many benign and malignant neoplastic pathologies can present in this area, 

including cutaneous squamous cell carcinomas and basal cell carcinomas of the external ear, 

and squamous cell carcinomas, adenocarcinomas, and endolymphatic sac tumors in the 

middle and inner ear (Devaney et al., 2005). Vestibular schwannomas represent the majority 

of tumors arising within the cerebellopontine angle, and both sporadic and 

neurofibromatosis type 2 (NF2) cases have been linked to mutations in merlin (also known 

as schwannomin) (Sughrue et al., 2011). A better understanding of the molecular biology of 

vestibular schwannomas, both in the epidemiology of NF2 gene mutations and function of 

the merlin protein, will assist in the development of targeted therapies to help limit 

morbidity and address residual disease (Sughrue et al., 2011). Some of these treatments will 

necessitate specific delivery methods to facilitate targeted therapy.

In the field of cancer biology in general, significant advances have been made to 

individualize treatment based on the biology of a patient’s particular tumor, with the goal of 

targeting cancer cells while sparing the patient from side effects that affect normal cells. 

Immunotherapy and suicide gene therapy are two approaches that can be used to target 

cancer cells. In the field of immunotherapy, two main approaches have been studied: 

therapeutic monoclonal antibodies that prevent cancer cells from evading the immune 

response, and adoptive cell transfer-based immunotherapy to genetically engineer T-cells to 

attack specific tumor-associated antigens (Khalil et al., 2016; Restifo et al., 2012; Topalian 

et al., 2016). The Federal Drug Administration has recently approved monoclonal antibodies 

that target the immune checkpoints of cytotoxic T-lymphocyte associated antigen 4 and 

programmed cell death protein 1, with promising results in the treatment of advanced-stage 

melanoma and non-small-cell lung cancer (Khalil et al., 2016; Topalian et al., 2016). Suicide 

gene therapy is another approach that targets cancer cells. Vehicles such as viral vectors, 

liposomes, or nanoparticles can transport suicide-inducing genes to specific cell types via 

recognition of receptors expressed on cancer cells (Zarogoulidis et al., 2013). Once delivered 

to the cell, there are many potential mechanisms of action including silencing gene 

expression, expression of intracellular antibodies blocking vital cellular pathways, and 

expression of caspases and deoxyribonucleases. One advantage of these targeted therapies is 

that they inherently reduce the risk of side effects, allowing systemic administration of 

higher doses than might otherwise be used, but efficiency may further be improved by local 

delivery. These therapies have not yet been tested specifically for neoplasms of the inner ear 

or lateral skull base, but the general strategies appear to be applicable to a broad spectrum of 

tumors.

4.3 Diseases with no clear etiology

There are many otologic and neurotologic disorders with limited pharmaceutical treatment 

options. Some of these include Ménière’s disease, sudden sensorineural hearing loss, 

autoimmune inner ear disease, and acute-onset idiopathic facial nerve paralysis. A better 

understanding of the etiology and/or pathologic processes that drive these diseases is needed 
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to develop targeted therapies. However, because these disorders are localized to the ear, it is 

feasible that therapy for these conditions will involve one or more of the local delivery 

methods described above, which will also reduce the risk of systemic side effects. Currently, 

high-dose oral corticosteroids are frequently prescribed to treat sudden sensorineural hearing 

loss, Ménière’s disease, autoimmune inner ear disease, and facial nerve paralysis, but these 

drugs can impose many unwanted systemic side effects including weight gain, hypertension, 

hyperglycemia, osteoporosis, immunosuppression, and adrenal suppression. Furthermore, 

systemic therapy is not consistently effective, as is the case with oral corticosteroid therapy. 

Transtympanic drug delivery has to some extent mitigated systemic toxicities, but its 

efficacy is also inconsistent. Once appropriate therapeutic targets can be determined, optimal 

delivery methods can be determined.

4.4 Diagnostic limitations and solutions

Diagnostic tools for assessing the condition of the cochlea in humans are limited at present, 

thereby preventing further development and optimization of therapies. Otoacoustic 

emissions can disclose if outer hair cell motility is driving the active cochlea normally or 

not, but in the case of negative results, it is not possible to distinguish whether outer hair 

cells are absent or dysfunctional. Increased auditory brainstem response thresholds cannot 

distinguish between absence or dysfunction of the auditory nerve. Tests to evaluate the 

condition of the stria vascularis have not yet been developed. Thus, without the ability to 

ascertain the presence and functionality of hair cells, neurons, or other cells within the 

cochlea, effective reparative or regenerative therapies will be difficult to develop.

Precision medicine, a constantly evolving and improving medical entity, will likely 

contribute to improved diagnosis and more personalized treatment that is based on the 

patient’s genetic and genomic profiles, in addition to their symptoms. Tools like the 

OtoSCOPE at the University of Iowa (Sloan-Heggen et al., 2016; Taylor et al., 2013) provide 

improved diagnosis for identification of mutations involved in hereditary hearing loss. 

OtoSCOPE now provides comprehensive genetic testing for all genes implicated in non-

syndromic hearing loss, some syndromic hearing loss, and Usher mutations. To advance 

future therapies, additional information will be needed to diagnose the condition of ears with 

hearing loss due to aging, ototoxicity, acoustic trauma, infections, inflammation, and 

combinations of these causes. Improved diagnostics will provide much needed detail about 

the condition of the cochlear tissue as well as providing enhanced guidance for increasing 

accuracy of delivery and minimizing side effects. Without improved diagnostic tools, it will 

be difficult to select and implement future therapies for specific ears.

5. Translation of inner ear drug delivery to clinical application

5.1 Access to the inner ear in humans

We provide here a brief summary of current methods used for inner ear drug delivery, 

leading to a discussion of risks and potential side effects, and future technological advances 

that could reduce or eliminate these risks. As discussed previously, there are two principal 

approaches currently employed to access the inner ear for local drug delivery. The first is 

transtympanic delivery, which is typically performed in an in-office setting using topical 
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anesthesia to the tympanic membrane (TM). Typically, 0.5–1 milliliter of drug solution is 

delivered through a small diameter needle through the posterior aspect of the TM to fill the 

middle ear space, and the solution is allowed to bathe the round window membrane for a 

period of time by optimizing patient positioning to avoid drug loss through the Eustachian 

tube. With this method, side effects of delivery are minimized and higher doses of anesthesia 

are avoided, allowing this procedure to be done on the same day as a clinic visit.

The second method is intracochlear delivery, which is a more involved approach most likely 

to be done in an operating room under a general or IV sedative anesthetic. After anesthesia 

has been established, the TM is elevated to access the middle ear space and lateral face of 

the otic capsule, similar to what is done in a transcanal stapedotomy procedure for 

otosclerosis. Canalplasty to facilitate additional bone removal from the canal may be 

required to provide visualization of the otic capsule. This approach would afford access for 

injecting the drug solution directly into the inner ear through the round window membrane, 

through the stapes footplate, or potentially through a basal turn cochleostomy. Much smaller 

volumes of drug solution would be needed for intracochlear delivery than with 

transtympanic injection. Injection of the drug solution could be performed directly into the 

cochlear fluids through one of the sites above, or by utilizing a round window membrane 

microperforator device to enhance drug entry to the cochlea, as effectively demonstrated in 

laboratory animals (Kelso et al., 2015). After returning the TM to a normal position, the 

patient would then be discharged home the same day or after a one-night hospital stay 

depending on the short-term side effects of the procedure.

Other approaches to the inner ear could be entertained such as a mastoidectomy approach 

through a postauricular incision. This type of approach would afford access to various 

intracochlear locations for injection such as the semicircular canals, vestibule, round 

window, and different compartments of the cochlea; however, given the additional effort, 

time, and risk involved, this type of approach seems less likely to be utilized for inner ear 

drug delivery if one of the above two methods can provide adequate access for delivery.

Both the transtympanic and intracochlear approaches for inner ear drug delivery have short- 

and long-term risks, as with any procedure. Many of these risks would be common to the 

two procedures; however, an intracochlear approach would be expected to have more 

potential side effects. Below we discuss these risks and the management of potential 

complications.

5.2 Potential risks of inner ear drug delivery

Short-term risks include bleeding, infection, TM perforation, facial nerve weakness or 

paralysis, dysgeusia (taste change), perilymph fistula, vestibular manifestations such as 

vertigo or dizziness, pain, and ear fullness. Inner ear inflammation, serous labyrinthitis, or 

reparative granuloma (exaggeration of the normal reparative process) may also occur. 

Potential long-term risks include hearing loss, vestibulopathy, or leakage of drug into the 

cerebrospinal and subarachnoid spaces. Such leakage can result in contralateral ear side 

effects as well as meningitis or encephalitis. Some of these risks could be mitigated by 

careful pre-procedural clinical examination with otomicroscopy and/or preoperative imaging 

to ensure normal anatomy and lack of existing TM perforation or middle ear inflammation. 
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The administration of periprocedural steroids may help minimize intracochlear trauma and 

subsequent inflammation, as has been the experience with other inner ear procedural 

manipulations such as cochlear implantation and stapedotomy procedures (Eastwood et al., 

2010; Honeder et al., 2015).

One common manifestation of adverse reaction of the cochlea to surgical manipulations is 

growth of connective tissue in the fluid spaces, also known as fibrosis (Fig. 1). Over many 

years of experimental procedures performed in our laboratory at Kresge Hearing Research 

Institute, we noted fibrosis in guinea pig ears following deafening, cochlear implant 

insertion, electrical stimulation, viral vector injection, and neurotrophin overexpression, 

alone, or in combination (Kang et al., 2010; Kawamoto et al., 2003b). The possibility that 

future methods performed on human ears may lead to similar fibrosis needs to be considered 

and addressed.

5.3 Future strategies to minimize risks

The short- and long-term risks associated with inner ear drug delivery may be further 

minimized by future technological or procedural developments. For example, optimization 

of drug delivery catheter design and size may help minimize intracochlear trauma and the 

size of the round window membrane/cochleostomy fenestration, which would reduce the 

risk of perilymph fistula. Similarly, the use of a minimally traumatic intracochlear catheter 

may allow for drug delivery to the more apical regions of the cochlear duct. In addition, a 

more potent biological effect could be obtained with the combination of a mini-osmotic 

pump for sustained delivery of the bioactive agent.

Another method to decrease the risk of intracochlear trauma and its downstream effects 

would be to curtail intracochlear pressure spikes upon infusion. Large intracochlear pressure 

spikes equivalent to a sound exposure of 115 dB have been demonstrated in studies of 

cochlear implant electrode insertion (Greene et al., 2016). Similar intracochlear pressure 

elevation could potentially be encountered with inner ear drug delivery. Robotic surgery is a 

promising method to minimize the risk of intracochlear trauma during cochleostomy, drug 

infusion, and device placement. Using preoperative high-resolution computed tomography 

for surgical planning and intraoperative navigation, the precise trajectory required for 

cochlear access can be planned by the surgeon, resulting in a minimally invasive surgical 

approach that minimizes trauma to the endosteal membrane and other cochlear tissues (Brett 

et al., 2007; Coulson et al., 2008; Majdani et al., 2009). In a comparison of manual versus 

robotic cochleostomy, there are significantly less intracochlear pressure disturbances using a 

robotic micro-drill (Assadi et al., 2013; Coulson et al., 2013; Dillon et al., 2016). A 

minimally traumatic cochleostomy can be achieved using an automatic or semi-automatic 

robotic drill, hand-guided robotic drill, or with laser (Brett et al., 2014; Hussong et al., 2008; 

Wimmer et al., 2014; Zhang et al., 2014). Robotic cochlear implant electrode insertion has 

also been validated in cadaveric models, demonstrating minimal insertion trauma and 

successful insertion in the majority of cases (McRackan et al., 2013; Schurzig et al., 2012; 

Venail et al., 2015). A robotic approach for cochlear implant insertion has already been 

tested in nine patients, with six radiographically confirmed insertions (Labadie et al., 2014). 

Unfortunately, one patient had permanent facial paralysis with this technique, which 
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highlights the need for further refinement of targeting strategies prior to safe application of a 

robotic approach in cochlear implant insertions and other otological procedures. Further 

studies are required to refine the technique and test its broader applicability to a larger 

number of patients. Similarly, a robotic-assisted method for drug infusion and device 

placement could help mitigate the potentially damaging effects of intracochlear trauma.

With the refinement and increased availability of higher magnet strength MRI scanners, it 

may become possible to perform high resolution imaging of the cochlea after drug delivery. 

When paired with contrast administration, this could potentially identify evolving inner ear 

inflammation after drug delivery to enable prompt treatment with steroids and/or other anti-

inflammatory medications, thereby reducing the risk of downstream adverse events.

In summary, there are numerous potential short- and long-term risks of inner ear drug 

delivery in clinical settings. Existing knowledge of how to minimize these risks, gained over 

decades of experience with stapedotomy and cochlear implantation, will be invaluable as 

novel inner ear biologics become a reality. In addition, novel technological developments in 

catheter design, micro-infusion pumps, robotic surgery, and high-resolution cochlear 

imaging may also provide alternative methods to ensure safety and optimize the efficacy of 

inner ear drug delivery in the future.

6. Conclusions

1. Inner ear delivery of a wider variety of reagents will provide a much broader 

range of treatment possibilities for otologic conditions.

2. There are several routes of delivery to the inner ear, most classically via a 

transtympanic or intracochlear approach, but many additional possibilities are 

being explored in animal models, including intralabyrinthine injections in 

various locations and direct injection into the scala media.

3. Many innovations in technology including optogenetics, cell-specific targeting, 

increased viral vector specificity, sequential drug-device combinations, gene 

editing, suicide gene therapy, and immunotherapy may be applied to the inner ear 

in the future.

4. Safer drug delivery may be accomplished with automated approaches such as 

robotic surgery and micro-infusion pumps, as well as with improved high-

resolution imaging modalities for the inner ear.

5. In order to maximize potential therapies for the inner ear, future studies are 

needed to better understand the etiology of inner ear disorders such as Ménière’s 

disease and sudden sensorineural hearing loss, and to improve diagnostics of the 

condition of the cochlear cells, with details about their presence and 

functionality.
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1. Inner ear delivery of a wider variety of reagents will provide a much broader 

range of treatment possibilities for otologic conditions.

2. Many innovations in may be applied to the inner ear in the future.

3. Safer drug delivery may benefit from automated approaches

4. In order to maximize potential therapies for the inner ear, future studies are 

needed to better understand the etiology of inner ear disorders such as 

Ménière’s disease and sudden sensorineural hearing loss, and to improve 

diagnostics of the condition of the cochlear cells, with details about their 

presence and functionality.
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Figure 1. 
Light micrographs of taken from the base of guinea pig cochleae that were implanted and 

stimulated without prior deafening (A) or following elimination of the hair cells (B). In both 

cases, fibrosis is seen in the scala tympani (with permission from JARO, Springer).
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