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Abstract

Apelin is a vasoactive peptide and is an endogenous ligand for APJ receptors, which are widely 

expressed in blood vessels, heart, and cardiovascular regulatory regions of the brain. A growing 

body of evidence now demonstrates a regulatory role for the apelin/APJ receptor system in 

cardiovascular physiology and pathophysiology, thus making it a potential target for 

cardiovascular drug discovery and development. Indeed, ongoing studies are investigating the 

potential benefits of apelin and apelin-mimetics for disorders such as heart failure and pulmonary 

arterial hypertension. Apelin causes relaxation of isolated arteries, and systemic administration of 

apelin typically results in a reduction in systolic and diastolic blood pressure and an increase in 

blood flow. Nonetheless, vasopressor responses and contraction of vascular smooth muscle in 

response to apelin have also been observed under certain conditions. The goal of the current 

review is to summarize major findings regarding the apelin/APJ receptor system in blood vessels, 

with an emphasis on regulation of vascular tone, and to identify areas of investigation that may 

provide guidance for the development of novel therapeutic agents that target this system.
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1. Introduction

Apelin and its receptor, APJ, are widely expressed throughout the cardiovascular system 

(Kleinz & Davenport, 2004; Kleinz, et al., 2005). This expression pattern has prompted 

considerable interest in the roles of apelin and APJ receptors in cardiovascular health and 

disease (Kalea & Batlle, 2010). Indeed, several clinical trials are evaluating the potential 

benefits of apelin and novel APJ receptor agonists in treating various cardiovascular 

disorders. A growing body of knowledge continues to shed new light on the apelinergic 

system, including the discovery of novel endogenous APJ receptor ligands (e.g. Elabela/
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Toddler) (Chng, et al., 2013; Pauli, et al., 2014), synthetic analogs (e.g. E339-3D6, ML-233, 

MM07) (Brame, et al., 2015; Iturrioz, et al., 2010; Khan, et al., 2010) and receptor 

antagonists (e.g. F13A, ML221) (Lee, et al., 2005; Maloney, et al., 2012). With regard to the 

apelinergic system in blood vessels, there are several features involved in apelin-APJ 

signaling that make it a potential, but challenging target for drug discovery: (1) apelin has 

multiple effects on vasomotor tone (Salcedo, et al., 2007; Maguire, et al., 2009; Mughal, et 

al., 2018), (2) APJ receptors are expressed in the intimal and medial layers of the blood 

vessel wall, and possibly on cells in the adventitia as well (Kleinz, et al., 2005; Pope, et al., 

2012; Mughal, et al., 2018), (3) APJ receptors are associated with multiple G-protein 

subunits (Hashimoto, et al., 2006; Kang, et al., 2013; Szokodi, et al., 2002), and (4) apelin 

may act via central nervous system mechanisms to regulate peripheral vascular function 

(Kagiyama, et al., 2005; Zhang, et al., 2009). The present review summarizes the current 

state of knowledge regarding the vascular effects of apelin, with an emphasis on the 

regulation of vasomotor tone, as well as novel pharmacologic agents that interact with APJ 

receptors in blood vessels.

2. Apelin

Discovered in 1998, apelin was initially identified as the sole endogenous ligand for the APJ 

receptor (Tatemoto, et al., 1998). Apelin-77 (pre-pro-apelin) is the precursor for various 

pharmacologically active apelin isoforms (e.g. apelin-12, -13, -17 and -36), and it shares 75–

95% sequence homology among various species including rat, mice and human (Lee, et al., 

2000). N-terminal residues of apelin-77 are post-translationally modified by endopeptidase 

to form pro-apelin-55, which is further cleaved to apelin-36, -17, -13 and -12. Each of these 

fragments has a conserved C-terminal region, which is essential for APJ receptor binding 

and functional activity (Pitkin, et al., 2010a). Post-translational modification of the N-

terminal residue of apelin-13 with cyclized glutamine forms [Pyr]-apelin-13, which evades 

enzymatic degradation and results in a longer biological duration of action (Zhen, et al., 

2013). The different apelin isoforms (i.e. apelin-12, -13, -17 and -36) have variable potency, 

but apelin-13 and [Pyr]-apelin-13 are identified as the more predominant and potent 

isoforms in the cardiovascular system (Tatemoto, et al., 1998; Maguire, et al., 2009). More 

recently, another endogenous APJ receptor-activating peptide, known as Elabela/Toddler 

(referred to as Elabela) and encoded by the APELA gene, has been discovered (Chng, et al., 

2013; Pauli, et al., 2014).

Apelin has potent vascular effects but it is highly prone to proteolytic degradation, thereby 

limiting its duration of action (Japp, et al., 2008). Studies have shown that angiotensin 

converting enzyme type-2 (ACE-2), a zinc-containing carboxy monopeptidase, is partially 

responsible for apelin metabolism (Vickers, et al., 2002; Wang, et al., 2016; Yang, et al., 

2017a). [Pyr]-apelin-13 is more susceptible to ACE-2 degradation than is apelin-17, and 

results in metabolites, i.e. [Pyr]-apelin-12 and apelin-16, respectively, that have reduced 

functional activity (Wang, et al., 2016). Another recent report showed that ACE-2 

metabolizes [Pyr1]-apelin-13 to biologically active [Pyr1]-apelin-13 (1–12), suggesting a 

beneficial effect of increased ACE-2 expression during cardiovascular diseases (Yang, et al., 

2017a). The metalloprotease, neprilysin, has also been shown to be involved in the 

degradation of apelin. Neprilysin, by truncating the RPRL (Arg2- Leu5) region of apelin, 
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forms a peptide that is devoid of the ability to activate APJ receptors (McKinnie, et al., 

2016).

The apelin gene is located on band q25–26.1 of chromosome X and is expressed in vascular 

endothelial cells of both conduit and resistant arteries (Kawamata, et al., 2001; Medhurst, et 

al., 2003; Pitkin, et al., 2010b; Pope, et al., 2012). Kleinz et al. reported that the apelin gene 

is localized to endothelial cells, but not to vascular smooth muscle cells or adipocytes in 

human saphenous vein, and coronary, pulmonary, and mammary arteries; however, intrarenal 

arterial endothelial cells lack apelin-like immunoreactivity (Kleinz & Davenport, 2004). It is 

worth noting that although the apelin peptide is usually absent in vascular smooth muscle 

cells, it is expressed in smooth muscle cell positive atherosclerotic plaques (Pitkin, et al., 

2010b). Moreover, atherosclerotic plaque apelin is co-localized with APJ receptors, 

suggesting the possibility of apelin-APJ signaling in coronary atherosclerosis.

Regulation of apelin gene expression and secretion of apelin from intracellular sources in the 

blood vessel wall (e.g. adipocytes, endothelial cells) is complex. Numerous factors and 

conditions increase apelin gene expression, including cytokines (tumor necrosis factor-

alpha) (Daviaud, et al., 2006), lipopolysaccharides (Han, et al., 2008), hypoxia (Eyries, et 

al., 2008; Glassford, et al., 2007), dehydration (Reaux-Le Goazigo, et al., 2004), and insulin 

(Boucher, et al., 2005). In humans, hyperinsulinemia up-regulates apelin gene expression in 

adipose tissue and increases apelin release via phosphoinositide 3-kinase (PI3K) and protein 

kinase C (PKC)-dependent pathways (Castan-Laurell, et al., 2008). Hypoxia increases apelin 

gene expression in cultured human pulmonary arterial endothelial and smooth muscle cells 

via hypoxia inducible factor–1α (HIF-1α) dependent mechanism (Eyries, et al., 2008). 

Activation of α-retinoic acid receptors by all-trans retinoic acid increases apelin gene 

expression in HUVEC cells and in carotid arteries from balloon-injured rats (Shi, et al., 

2017). Although these studies provide insight into several key pathways involved in apelin 

regulation, the association between apelin gene expression and release of apelin into the 

circulation and/or surrounding tissues remains poorly understood. Moreover, although 

administration of exogenous apelin has beneficial effects on cardiovascular diseases (Japp, et 

al., 2008; Tatemoto, et al., 2001), our knowledge of the role of endogenous apelin, as well as 

the stimuli for apelin release, in cardiovascular health and disease is limited.

Patients with cardiovascular disorders typically have lower plasma apelin levels than 

matched healthy controls. For example, plasma apelin levels are reduced in patients with 

coronary artery disease (CAD), and among CAD patients with unstable angina or acute 

myocardial infraction there is a further reduction in apelin levels as compared with 

asymptomatic CAD patients (Kadoglou, et al., 2010). Similarly, plasma apelin levels are 

reduced in patients with stable angina, essential hypertension and acute coronary syndrome 

(Li, et al., 2008b; Gupta, et al., 2016). In patients with heart failure, apelin levels vary 

depending on the stage and severity of the disease, as plasma apelin levels are elevated in 

early stage heart failure, but significantly reduced in patients with severe disease as 

compared to healthy controls (Chen, et al., 2003). Moreover, the concentration of apelin in 

myocardial tissue is reduced in patients with heart failure (Chandrasekaran, et al., 2010). In 

contrast to cardiovascular diseases, apelin levels are elevated during metabolic disorders. 

During obesity, plasma apelin levels are significantly higher than those observed in subjects 
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with normal weight (Boucher, et al., 2005), and are further increased in patients with morbid 

obesity (Heinonen, et al., 2005). Similarly, plasma apelin levels are increased in patients 

with diabetes (Castan-Laurell, et al., 2011; Habchi, et al., 2014). It is not yet known whether 

these changes in apelin levels during cardiovascular and metabolic disorders are associated 

with protective or compensatory roles of the apelinergic system. For example, in some 

human and animal studies administration of apelin is shown to restore decreased cardiac 

function, consistent with a beneficial therapeutic effect of apelin (Koguchi, et al., 2012; 

Nagano, et al., 2013).

In 2013, a second endogenous ligand for APJ receptors was discovered. Elabela has a 32 

amino acid sequence but does not share sequence homology with apelin (Chng, et al., 2013; 

Pauli, et al., 2014); however, the affinity of the peptide for APJ receptors is similar to that of 

apelin (Perjes, et al., 2016; O’Carroll, et al., 2017). Nonetheless, evidence suggests that the 

peptides may not bind in the same way to the orthostatic binding site. Structure-activity 

relationship studies reveal that the C-terminal moiety (Arg28, Val29, Pro30, Phe31, and 

Pro32) and His26 residues of Elabela are most important for receptor binding and signaling 

(Murza, et al., 2016). This contrasts markedly with apelin-13, in which the key 

pharmacophores (Arg2, Pro3, Arg4, Leu5) are primarily located at the N-terminal. Elabela 

was initially identified as an embryonic APJ receptor regulator, but recent studies suggest its 

role in adult tissues as well (Perjes, et al., 2016; Yang, et al., 2017b). Similar to apelin, 

Elabela is also expressed in vascular endothelial cells (Perjes, et al., 2016; O’Carroll, et al., 

2017). An understanding of the functional role of Elabela in the vascular system is still 

emerging but recent evidence suggests that Elabela can compensate for down-regulated 

functions of apelin during various cardiovascular diseases. Administration of exogenous 

Elabela improves right ventricular systolic pressure and hypertrophy, as well as pulmonary 

vascular remodeling, in a rat model of pulmonary hypertension in which apelin signaling is 

downregulated (Yang, et al., 2017b). Infusion of Elabela, which was associated with an 

increase in cardiac output and reduced systemic vascular resistance, improves cardiovascular 

function and survival in a cecal ligation puncture model of sepsis (Coquerel, et al., 2017). 

On the other hand, reduced levels of Elabela may lead to cardiovascular abnormalities, 

inasmuch as pregnant Elabela knockout mice display preeclampsia-like symptoms and 

defective placental angiogenesis (Ho, et al., 2017).

3. APJ Receptor

The APJ receptor is a G-protein coupled receptor located on chromosome 11 and composed 

of an intron-less gene (APLNR), which is conserved in many species including human, 

monkey, chimpanzee, mouse and rat (Pitkin, et al., 2010a). APJ receptors were first 

discovered in 1993 during a search for vasopressin receptors (O’Dowd, et al., 1993). 

Immunocytochemical and autoradiographic studies have detected APJ receptors in 

endothelial and smooth muscle cells in numerous blood vessels, including human coronary, 

internal mammary, radial, and pulmonary arteries, human saphenous vein, and rat aorta, 

coronary, cerebral and pulmonary arteries (Katugampola, et al., 2001; Kleinz, et al., 2005; 

Pitkin, et al., 2010b; Mughal, et al., 2018).

Mughal and O’Rourke Page 4

Pharmacol Ther. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APJ receptors have a 380 amino acid sequence with a characteristic G-protein structure, 

including seven transmembrane domains and post-translation modification sites for 

phosphorylation, palmitoylation and glycosylation along with association sites for β-arrestin 

(O’Dowd, et al., 1993). APJ receptor signaling involves multiple G-protein subunits. Initial 

work suggested the involvement of pertussis toxin sensitive Gαi/o subunits that inhibit 

forskolin-induced cyclic adenosine monophosphate (cAMP) formation in CHO cells 

(Tatemoto, et al., 1998). This signaling pathway is also present in blood vessels, inasmuch as 

apelin inhibits large conductance, calcium-activated potassium (BKCa) channel currents in 

cerebral vascular smooth muscle cells in a pertussis toxin-sensitive manner (Modgil, et al., 

2013). Apelin was also found to increase Ca2+ mobilization in neuronal cells (Choe, et al., 

2000), suggesting the involvement of other G-protein subunits. Subsequent studies 

demonstrated that apelin-induced cardiac and smooth muscle contractile responses were 

attenuated by inhibitors of phospholipase C and PKC, suggesting a role for Gαq/11 subunits 

in APJ receptor signaling (Hashimoto, et al., 2006; Szokodi, et al., 2002). Moreover, apelin 

was shown to increase phosphorylation of myosin light chain (MLC) in vascular smooth 

muscle cells via activation of Gαq/11 subunits and a PKC-dependent mechanism 

(Hashimoto, et al., 2006). In addition, a functional role for Gα13 subunits has been identified 

in apelin-induced cytoplasmic translocation of histone deacetylase during cardiac and 

vascular development (Kang, et al., 2013).

Various G-protein subunits, e.g. Gαi/o, Gαq and βγ dimers, can activate PI3K/Akt signaling 

(Murga, et al., 1998), which is indeed involved in apelin-induced vascular responses. For 

example, apelin inhibits calcification of vascular smooth muscle cells via a PI3K/Akt 

signaling mechanism (Shan, et al., 2011). Similarly, apelin attenuates apoptosis in vascular 

smooth muscle cells by activating PI3K/Akt and extracellular signal-regulated kinase (ERK) 

signaling (Cui, et al., 2010; Tang, et al., 2007). Apelin also inhibits BKCa channel currents 

by activation of PI3K/Akt pathways (Modgil, et al., 2013). Apelin-induced PI3K/Akt 

signaling can increase phosphorylation of endothelial nitric oxide synthase (eNOS) to 

modulate aortic vascular tone (Zhong, et al., 2007b). Likewise, Elabela improves self-

renewal and regenerative ability of human progenitor stem cells via PI3K/Akt activation 

(Ho, et al., 2015). These latter actions of Elabela might be mediated by a cell surface 

receptor different from the APJ receptor in human embryonic stem cells (Ho, et al., 2015), 

suggesting the possible existence of another subtype or novel type of receptor; however, the 

bulk of evidence to date continues to support the view that the peptide is acting solely on the 

currently identified APJ receptor. Elabela also inhibits forskolin-induced cAMP formation 

by activating ERK1/2 signaling pathways in CHO cells (Wang, et al., 2015b).

In addition to these intracellular events, APJ receptors also have the ability to form homo- 

and heterodimers. APJ receptors are reported to hetero-dimerize with angiotensin (AT1) 

receptors (Siddiquee, et al., 2013), bradykinin (B1) receptors (Bai, et al., 2014b), neurotensin 

receptor-1 (NTSR1) (Bai, et al., 2014a) and κ-opioid receptors (KOR) (Li, et al., 2012). 

These receptors are involved in cardiovascular regulation and their ligands (apelin, des-

Arg(9)-bradykinin, neurotensin and dynorphin) are sensitive to ACE-2 proteolysis (Vickers, 

et al., 2002), suggesting the importance of these heterodimers in cardiovascular 

pharmacology. For example, APJ receptors can allosterically modify the functional state of 

AT1-receptors to a low affinity state towards angiotensin II (Siddiquee, et al., 2013; Sun, et 
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al., 2011) and these actions can be independent of its putative ligand, apelin (Siddiquee, et 

al., 2013). Similarly, constitutive heterodimers of APJ- and bradykinin (B1)-receptors are 

shown to generate higher intracellular Ca2+ and upregulate eNOS phosphorylation, possibly 

by strengthening the association of the dimer with Gαq subunits (Bai, et al., 2014b). APJ-

NTSR1 or APJ-KOR heterodimers also cause significant increases in phosphorylated 

ERK1/2 levels by increasing intracellular Ca2+ (Li, et al., 2012; Bai, et al., 2014a). A recent 

report demonstrated the existence of homodimers-oligomers of the human APJ receptor, 

which could possibly mediate different signaling events in comparison to APJ monomers 

(Cai, et al., 2017).

APJ receptor expression is altered in various cardiovascular diseases, and both increases as 

well as decreases in APJ receptor expression have been reported. A decrease in mRNA and 

protein levels of APJ receptors was observed in patients with ischemic heart disease or 

idiopathic dilated cardiomyopathy (Földes, et al., 2003; Pitkin, et al., 2010b); however, APJ 

receptor protein levels were significantly increased in ischemic heart failure (Atluri, et al., 

2007; Sheikh, et al., 2008). Hypoxia, one of the major consequences of ischemic injury, may 

lead to increased APJ receptor expression, as hypoxia-activated HIF-1α has been shown to 

cause aberrant increases in APJ receptor protein expression (Kerkela, et al., 2013; Kong, et 

al., 2015; Zhang, et al., 2015). APJ receptor mRNA levels are up-regulated in patients with 

aortic valve stenosis in comparison to controls (Peltonen, et al., 2009). Both mRNA and 

protein levels of APJ receptors are reduced in the heart, kidney and aorta of hypertensive rats 

(Najafipour, et al., 2012; Najafipour, et al., 2015), whereas in obese women, there is an 

increase in APJ receptor mRNA levels, which was attenuated by improving insulin 

resistance (Castan-Laurell, et al., 2008).

4. Vascular Effects of Apelin

Apelin has complex vasomotor effects as it can cause either vasodilation or vasoconstriction 

depending on the vascular bed and underlying conditions. These dual actions of apelin are 

attributed to the presence of APJ receptors in both the endothelial and smooth muscle cell 

layers of the blood vessel wall. Vasoactive agents may act directly on vascular smooth 

muscle cells to cause contraction or relaxation, or on endothelial cells, which can secrete 

substances that mediate vasodilation (e.g. NO, prostacyclin) as well as vasoconstriction (e.g. 

endothelin) (O’Rourke, et al., 2006).

4.1 Role of Apelinergic System in Vasodilation

A hypotensive effect of apelin was first reported in 2000, when it was shown that 

intraperitoneal injection of apelin reduces both systolic and diastolic pressure in anesthetized 

normotensive animals (Lee, et al., 2000). Shortly thereafter, intravenous administration of 

apelin was shown to produce hypotensive effects (Reaux, et al., 2001), as well as cause 

venodilation (Cheng, et al., 2003). The various apelin isoforms may have different potencies 

in different experimental models. For example, apelin-12 is more potent in reducing mean 

arterial pressure in comparison to apelin-13 and -36 in anesthetized normotensive rats 

(Tatemoto, et al., 2001), whereas apelin-13 has higher potency in comparison to apelin-12 in 

spontaneously hypertensive rats (Lee, et al., 2005). In addition, apelin-17 produces a greater 
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depressor response than [Pyr]-apelin-13 and apelin-15 in normotensive rats (El Messari, et 

al., 2004).

A role for NO in the hypotensive effect of apelin was demonstrated in studies where the NO 

synthase inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME), abolished the reduction in 

mean arterial pressure produced by intravenous administration of apelin (Tatemoto, et al., 

2001). Similarly, intravenous infusion of apelin-36 and [Pyr]-apelin-13 produced coronary 

vasodilation that was inhibited by an “NO clamp” (L-N(G)-monomethylarginine co-infused 

with sodium nitroprusside), but not by inhibition of cyclooxygenase with aspirin (Japp, et 

al., 2008). Experiments performed with isolated human and rat peripheral arteries also 

suggested a role for NO in apelin-induced relaxations. Relaxation of isolated human 

mesenteric, but not hepatic arteries was attenuated in the presence of L-NAME (Salcedo, et 

al., 2007). In isolated rat aorta, apelin caused concentration- and time-dependent increases in 

eNOS activity and NO formation (Jia, et al., 2007). Apelin produced endothelium-dependent 

relaxation of isolated rat coronary arteries by stimulating the release of NO, which activated 

BKCa channels without altering cGMP levels in the underlying smooth muscle cells of these 

arteries (Mughal, et al., in press). Activation of mechanosensor pathways by flow-mediated 

shear stress increases APJ receptor expression and apelin and NO formation in human 

endothelial cells (Busch, et al., 2015). A role for prostanoids in apelin-induced relaxation 

was established in human mammary arteries, where several apelin isoforms (apelin-13, -36 

and [Pyr]-apelin-13) caused concentration-dependent relaxations that were inhibited in the 

presence of indomethacin, but not L-NAME (Maguire, et al., 2009). Moreover, in the 

isolated portal vein of the rat, apelin attenuated angiotensin II-induced contractions, but the 

effect of apelin was only partially inhibited by endothelial denudation, suggesting that apelin 

may act directly on vascular smooth muscle to cause relaxation (Gurzu, et al., 2006). By 

contrast to apelin-induced relaxation, Elabela-induced relaxation in isolated mouse aortae 

was unchanged in the presence of L-NAME, suggesting the involvement of NO-independent 

mechanism(s) in the relaxation response to Elabela (Wang, et al., 2015b).

Apelin has been shown to have beneficial effects in several vascular or metabolic disorders. 

In animal models of pulmonary hypertension and diabetes, apelin treatment lowered mean 

arterial pressure and reduced the levels of vasoconstrictor mediators such as angiotensin-II 

and endothelin-1 (Akcilar, et al., 2013; Falcao-Pires, et al., 2009). Similarly, intravenous 

bolus administration of apelin caused a significant reduction in mean pulmonary arterial 

pressure during acute pulmonary embolism (Feng, et al., 2010), and apelin signaling via APJ 

– KOR heterodimers caused a depressor response during renovascular hypertension 

(Yeganeh-Hajahmadi, et al., 2017; Rostamzadeh, et al., 2018). Moreover, by increasing 

eNOS phosphorylation, apelin reversed the impaired relaxation response to acetylcholine 

and abrogated abnormal Ang II-induced contractile tone in intrarenal arteries from diabetic 

mice (Zhong, et al., 2007a). In human subjects, apelin-induced vasodilation was preserved in 

patients with chronic heart failure whereas the vasodilator response to acetylcholine was 

significantly impaired (Japp, et al., 2010). In middle-aged and older adults, an exercise-

associated increase in plasma apelin levels was positively correlated with a decrease in 

carotid arterial stiffness, which commonly occurs with aging (Fujie, et al., 2014).
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Like apelin, the novel peptide, Elabela, also has the ability to cause vasodilation in coronary 

arteries (Perjes, et al., 2016). Elabela has been shown to reverse vasopressor responses 

during pulmonary arterial hypertension and angiotensin-II-induced hypertension (Yang, et 

al., 2017b; Sato, et al., 2017). Moreover, sustained Elabela gene therapy delayed blood 

pressure elevation in hypertensive rats (Schreiber, et al., 2017).

The renin-angiotensin system is a key pathway in the development and progression of 

hypertension, heart failure and other cardiovascular disorders. APJ and AT1-receptors share 

significant sequence homology and have a similar tissue distribution pattern (O’Dowd, et al., 

1993); however, apelin does not bind AT1-receptors nor does angiotensin II (Ang II) bind to 

APJ receptors (O’Dowd, et al., 1993; Tatemoto, et al., 1998). Nonetheless, activation of the 

apelinergic system has an antagonistic effect toward AT1-receptor mediated responses, either 

by allosteric regulation of the receptor (Sun, et al., 2011; Siddiquee, et al., 2013) or by 

increasing NO-dependent signaling (Siddiquee, et al., 2011). Both acute and chronic apelin-

induced vasodilation and depressor responses are preserved during renin-angiotensin system 

activation in healthy humans and in patients with heart failure (Barnes, et al., 2013). 

Moreover, apelin abrogated Ang II-induced atherosclerosis in ApoE-deficient mice by 

increasing NO formation to quench superoxide-induced changes in the vascular wall (Chun, 

et al., 2008). The antagonistic effects of apelin on Ang II signaling may be dependent on the 

underlying pathologic condition, since apelin attenuated Ang II-induced contractions in 

pulmonary arteries from normoxic animals, but not in arteries from animals exposed to 

chronic hypoxia (Andersen, et al., 2009). Apelin-APJ receptor signaling can also increase 

ACE-2 gene expression, which could increase conversion of Ang II to Angiotensin1–7 to 

modulate cardiovascular functions (Sato, et al., 2013).

4.2 Role of the Apelinergic System in Vasoconstriction

APJ receptors are expressed on vascular smooth muscle cells and their activation results in 

vasoconstriction (Katugampola, et al., 2001; Maguire, et al., 2009; Han, et al., 2013; 

Mughal, et al., 2018). Indeed, some studies have reported a blood pressure-elevating effect 

of systemic administration of apelin, consistent with a vasoconstrictor response to the 

peptide. For example, a biphasic hemodynamic response to an intravenous bolus of apelin 

was observed in conscious sheep, where there was an initial transient fall in arterial pressure 

followed by a rise in arterial pressure and peripheral vascular resistance (Charles, et al., 

2006). In conscious rats, intravenous administration of apelin failed to produce a depressor 

response, but caused a dose-dependent increase in mean arterial pressure (Kagiyama, et al., 

2005).

Though few studies have been performed with isolated blood vessels, apelin generally 

causes relaxation of isolated arteries with intact endothelium (as described above), whereas 

vasoconstriction has been observed in isolated vessels denuded of endothelium and under 

conditions where the endothelial cells are damaged or dysfunctional. [Pyr]-Apelin-13 causes 

vasoconstriction in endothelium-denuded human saphenous veins and mammary arteries 

(Katugampola, et al., 2001; Maguire, et al., 2009), and in coronary arteries obtained from 

atherosclerotic patients (Pitkin, et al., 2010b). Apelin may also permeate through endothelial 

cells damaged by asymmetric dimethylarginine (Wang, et al., 2011), and cause 
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concentration-dependent vasoconstriction in isolated caudal arteries by increasing 

phosphorylation of MLC in vascular smooth muscle cells (Han, et al., 2013). That apelin 

passes through dysfunctional endothelial cells and activates APJ receptors on vascular 

smooth muscle is supported by in vivo studies in which apelin caused an increase in systolic 

blood pressure in mice treated with L-NAME, and in rats with vascular endothelium 

damaged by asymmetric dimethylarginine (Han, et al., 2013; Nagano, et al., 2013). In mouse 

thoracic aorta, apelin causes vasoconstriction by increasing myosin light chain 

phosphorylation via Gαi/o-dependent activation of PKC and Na+-Ca2+ exchanger-dependent 

pathways (Hashimoto, et al., 2006). In addition to MLC phosphorylation as a mechanism of 

vasoconstriction, apelin may also exert a net vasoconstrictor influence by inhibiting NO-

induced relaxation, an effect of apelin that is mediated by inhibition of NO-induced 

activation of BKCa channels in cerebral arterial smooth muscle cells (Modgil, et al., 2013; 

Mughal, et al., 2018).

Vasopressor responses to apelin have also been observed following injection of the peptide 

into cardiovascular regulatory regions of the brain (Seyedabadi, et al., 2002; Kagiyama, et 

al., 2005). Moreover, overexpression of apelin in the rostral ventrolateral medulla of 

normotensive rats results in increased mean arterial blood pressure via NADPH oxidase-

dependent formation of superoxide(s), and apelin gene expression in the rostral ventrolateral 

medulla is increased in spontaneously hypertensive rats (Yao, et al., 2011; Zhang, et al., 

2009). The vasopressor response to centrally administered apelin is abolished in animals fed 

a high fat diet or subjected to chronic stress (Cudnoch-Jedrzejewska, et al., 2015; Gomolka, 

et al., 2015).

The role of apelin-APJ receptor signaling during cardiovascular disorders associated with 

endothelial dysfunction remains unclear. On one hand, increased apelin/APJ receptor 

expression and bioavailability produced beneficial vascular effects in conditions with 

endothelial dysfunction such as end-stage heart failure (Fukushima, et al., 2010), 

atherosclerosis (Chun, et al., 2008) and obesity (Schinzari, et al., 2017), while others have 

shown that apelinergic signaling may be a mediator for atherosclerosis (Hashimoto, et al., 

2007). Indeed, up-regulated apelin genes are localized in atherosclerosis plaques (Pitkin, et 

al., 2010b) and stenotic aortic valves (Peltonen, et al., 2009). Thus, it will be important to 

decipher whether increased apelin-APJ receptor signaling has a role in disease progression 

or is involved in compensatory feedback mechanism(s).

4.3 Other Vascular Effects of Apelin

In addition to its direct regulatory role in controlling vascular tone, the apelin/APJ receptor 

signaling system also plays an important role in vascular stabilization, including 

angiogenesis, proliferation and permeability.

Cell Migration and Angiogenesis—Cell migration is an important feature of several 

physiological and pathological processes, including embryogenesis, would healing, 

inflammation, cardiovascular disease and cancer (Staff, 2001). High expression of APJ 

receptors during embryogenesis and postnatal retinal blood vessel formation provided initial 

support for the importance of apelinergic signaling during angiogenesis (Devic, et al., 1996; 
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Saint-Geniez, et al., 2002). In addition, Elabela increases migration of mesendodermal cells 

during gastrulation in a tightly regulated fashion (Pauli, et al., 2014).

Angiogenesis can be either beneficially adaptive (e.g. ischemia, myocardial infarction) or 

potentially deleterious (e.g. tumor growth, retinopathy, nephropathy). Hence, the role of the 

apelinergic system during angiogenesis can have either beneficial or detrimental effects 

based on the underlying physiology or pathological conditions. For example, intra-

myocardial delivery of apelin-overexpressing bone marrow cells to ischemic mice increased 

the homing of bone marrow derived progenitor cells in ischemic heart progressing to 

neovascularization (Li, et al., 2013b). Similarly, increased coronary collateral development 

is correlated with increased plasma apelin levels in patients with coronary artery disease, 

establishing the beneficial angiogenic potential of apelin (Akboga, et al., 2014). Moreover, 

loss of apelin-APJ signaling has been shown to impair differentiation of endothelial, 

hematopoietic and cardiac progenitor cells (Inui, et al., 2006; Zeng, et al., 2007; Wang, et al., 

2013). Treatment with apelin also alleviates diabetic cardiomyopathy in mice by increasing 

angiogenesis via SirT3-dependent pathways (Zeng, et al., 2014). By contrast, apelin-induced 

angiogenesis of retinal and glomerular endothelial cells is associated with increased risk of 

retinopathy and nephropathy during type 2 diabetes mellitus (Zhang, et al., 2013; Du, et al., 

2014). Furthermore, apelin-induced migration of vascular smooth muscle cells suggests the 

possible involvement of smooth muscle APJ receptor signaling in the development of 

atherosclerosis (Liu, et al., 2013; Wang, et al., 2015a).

Cell Proliferation—Cellular proliferation is a complex process and apelin is shown to 

have both proliferative and anti-proliferative actions. Apelin stimulates vascular smooth 

muscle cell proliferation via PI3K/Akt/ERK (Liu, et al., 2010) and Jagged-1/Notch3 (Li, et 

al., 2013a) signaling pathways with a common downstream mediator, cyclin D1, to 

accelerate cell cycle progression from G0/G1 to S phase (Li, et al., 2008a). In addition, 

hypoxia-induced apelin gene expression also increases proliferation and differentiation of 

stem cells and progenitor cells, suggesting the possible therapeutic potential of apelin in 

ischemic reperfusion injury (Zhang, et al., 2015; Hou, et al., 2017). By contrast, apelin 

treatment reduces pulmonary vascular smooth muscle cell proliferation in hypoxic 

conditions via PI3K/Akt/mTOR signaling pathways (Zhang, et al., 2014b). Likewise, down-

regulation of apelin signaling during pulmonary hypertension is correlated with hyper-

proliferation of pulmonary endothelial cells and smooth muscle cells (Kim, et al., 2013).

Cell Permeability—Cell adhesion molecules regulate cell-to-cell adhesion and 

paracellular permeability. By regulating the permeability of pericytes, apelin modulates 

vascular development and remodeling (Chen, et al., 2015). The putative beneficial effects of 

apelin during obesity and cancer are associated with improved vascular integrity and 

decreased permeability (Kidoya, et al., 2012; Sawane, et al., 2013). Similarly, 

overexpression of apelin-APJ signaling during acute lung injury and respiratory distress 

syndrome can reduce capillary-alveolar leakage to alleviate symptoms (Fan, et al., 2015). 

These beneficial actions of apelin suggest a protective role of apelin during inflammation 

and immunotoxicity. In this regard, apelin is shown to have protective actions during post-

burn sepsis via PI3K signaling pathways (Luo, et al., 2015).
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5. Apelin Mimetics and Inhibitors

At present, only a limited number of apelin-like agonists and APJ receptor antagonists have 

been discovered. There is still a great need for the development of potent and selective drugs 

that target the apelin/APJ receptor-signaling pathway, not only as potential therapeutic 

agents but also as pharmacologic tools for dissecting the role of apelin in vascular biology. 

Those agents most commonly being used at the present time are described below.

5.1 Apelin Mimetics

There are three general types of apelin-like agonists, i.e. non-peptide agonists, biased 

agonists, and peptide agonists. In addition, novel drug delivery approaches, such as 

PEGylation and nano-encapsulation, have been employed in order to increase the biological 

half-life and activity of native apelin isoforms (Narayanan, et al., 2015).

E339-3D6 was the first non-peptide APJ receptor agonist to be developed (Iturrioz, et al., 

2010). E339-3D6 has a binding affinity of 90 nM towards APJ receptors and it relaxes 

precontracted rat thoracic aorta at lower concentrations than acetylcholine (pD2= 8.6 ± 0.4 

vs. 6.8 ± 0.4 for E339-3D6 and acetylcholine; respectively). Moreover, E339-3D6 showed 

full agonist behavior with regard to β-arrestin-dependent APJ receptor internalization, but 

behaved as a partial agonist in inhibiting cAMP formation (Iturrioz, et al., 2010). E339-3D6 

was later shown to be a mixture of polymethylated species, which were further purified to 

generate analogs with higher affinity and full agonist activity (Margathe, et al., 2014). 

Another synthetic non-peptide analog, ML-233, also reduced forskolin-induced cAMP 

formation, with maximum effects at 100 μM, and increased APJ receptor internalization by 

β-arrestin recruitment (Khan, et al., 2010). ML-233 has ~ 21-fold selectivity towards APJ 

receptors as compared to AT1-receptors. Further in vitro and in vivo characterization of these 

molecules is required in order to better understand their vasoactive therapeutic potential.

Target receptor internalization and β-arrestin dependent receptor silencing are major 

limitations for G-protein coupled receptors, including APJ receptor mediated signaling 

(Evans, et al., 2001; Masri, et al., 2006). Novel strategies are being employed to develop 

biased agonists with higher affinity towards the APJ receptor and with minimal effects on β-

arrestin dependent pathways. Brame et al. designed the first cyclic biased APJ receptor 

agonist, MM07 (Brame, et al., 2015). MM07 has nanomolar potency towards the human 

APJ receptor (pD2: 9.54 ± 0.42) and higher circulatory life (~17 min), but significantly 

lower potency towards β-arrestin internalization (pD2: 6.16 ± 0.07) in comparison with 

[Pyr]-apelin-13. Repeated administration of MM07 caused an increase in forearm blood 

flow without desensitization of APJ receptors. MM07 also caused a significant increase in 

cardiac output with no evidence of hemodynamic instability (Brame, et al., 2015). This same 

group later designed another small molecule APJ receptor biased agonist, CMF-019. This 

molecule has longer half-life (~38 minutes) with nanomolar affinity (pD2=10.00 ± 0.13) 

towards APJ receptors, with lesser potency on receptor internalization (pD2=6.16 ± 0.21). 

Moreover, CMF-019 increased cardiac contractility with limited effects on the vasculature 

(Read, et al., 2016).
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Two other synthetic analogs of apelin-17, P92 and LIT01-196, were designed by classic 

chemical substitution and fluorocarbon chain addition, respectively (Gerbier, et al., 2017). 

These analogs resulted in higher circulatory half-life (P92: 24 min and LIT01-196: >24 hr) 

with sub-nanomolar binding affinity (Ki= 0.09 ± 0.02 nM and 0.08 ± 0.01 nM for P92 and 

LIT01-196, respectively). Both P92 and LIT01-196 caused potent relaxation of rat thoracic 

aorta (EC50= 7 ± 5 nM and 2 ± 1 nM for P92 and LIT01-196, respectively), which was 

abolished in the presence of L-NAME. Moreover, both P92 and LIT01-196 caused a marked 

increase in the diameter of rat glomerular arterioles precontracted with angiotensin-II. 

Intravenous injection of LIT01-96 and P92 in normotensive anesthetized rats caused a potent 

and prolonged depressor response in comparison to apelin-17. Likewise, both compounds 

showed a potent inotropic and diuretic response suggesting their ability to activate multiple 

signaling mechanisms to maintain physiological homeostasis (Gerbier, et al., 2017).

Considerable efforts have been made to structurally modify apelin in order to improve its 

biological half-life. One approach has been to design molecules that are resistant to 

enzymatic degradation by neprilysin. Recently, three metabolically stable analogs of 

apelin-17 have been synthesized by modifying neprilysin-sensitive Leu-Arg (RPRL) 

residues. These analogs include modified N-methyl Leu9 analogs and aza-analogs (azaArg 

and azaLeu), which demonstrated sub-nanomolar binding affinity (Ki= 0.14 – 0.15 nM) with 

beneficial cardiovascular effects, including vasodepressor and inotropic effects (McKinnie, 

et al., 2017). Another approach has been to structurally modify apelin by PEGylation of the 

N-terminal residue. Conjugation of a 40 kDa PEG moiety to apelin-36 resulted in a longer 

circulatory half-life with minimal effect on the binding constant (Ki= 0.3 nM vs. 0.05 nM 

with and without PEG-conjugation)(Jia, et al., 2012). PEG-apelin-36 demonstrated an 

extended effect on cardiac ejection fraction, but had no effect on aortic pressure, similar to 

that observed with apelin-36 (Jia, et al., 2012). It is not yet known if developing similar 

conjugates with the more vasoactive isoforms of apelin, i.e. apelin-13 and/or [Pyr]-

apelin-13, will further prolong and enhance their vasoactive effects.

5.2 Apelin Inhibitors

The first antagonist of the cardiovascular actions of apelin is known as F13A, which was 

synthesized by chemical substitution of the C-terminal phenylalanine (Phe13) residue of the 

native apelin peptide with an alanine residue (Lee, et al., 2005). F13A demonstrated dose-

dependent inhibition of apelin-induced hypotensive effects, with no effect on Ang II-induced 

hypertensive effects, indicating selectivity of F13A toward apelin-induced responses (Lee, et 

al., 2005). F13A also attenuated apelin-induced depressor responses during renovascular 

hypertension (Rostamzadeh, et al., 2018) and, in isolated rat cerebral arteries, F13A 

abolished the inhibitory effects of apelin on BKCa channel function and NO-induced 

relaxation (Mughal, et al., 2018). Moreover, pressor responses to centrally administered 

apelin in both normotensive and hypertensive rats are significantly attenuated by pre-

treatment with F13A (Zhang, et al., 2014a; Griffiths, et al., 2017).

A second peptide APJ receptor antagonist was designed using a bivalent ligand approach 

(Macaluso, et al., 2011). The cyclic APJ receptor antagonist, [cyclo(1–6)CRPRLC-KH-

cyclo(9–14)CRPRLC], demonstrated a Ki value of 82 nM in CHO cells transfected with 
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human APJ receptors and a KD value of 3.2 μM in competition binding studies in human left 

ventricle (Macaluso, et al., 2011). This cyclic receptor antagonist has yet to be evaluated in 

in vivo or in vitro studies designed to determine its antagonist activity versus apelin-induced 

vasoactive effects.

ML-221 is the first non-peptide APJ receptor antagonist to be developed (Maloney, et al., 

2012). ML-221 has micromolar potency in cell-based assays (IC50: 0.70 μM in the cAMP 

assay, and 1.75 μM in the β-arrestin assay) and > 37-fold selectivity towards APJ receptors 

as compared to AT1-receptors. However, ML-221 has low aqueous solubility, moderate 

stability, limited membrane permeability, and high protein binding, all of which can limit its 

utility as an in vitro or in vivo pharmacologic tool (Maloney, et al., 2012). Nonetheless, it 

was recently reported that ML-221 caused a reduction in apelin-induced microvascular 

endothelial cell proliferation and that intraperitoneal administration of ML-221 reduced the 

retinal angiogenesis commonly observed during ischemic retinopathy (Ishimaru, et al., 

2017). ML-221 has also been shown to attenuate Elabela-induced APJ receptor activation 

and signaling (Yang, et al., 2017b). The effects of ML-221 on the vasomotor actions of 

apelin are not yet known.

6. Conclusions and Future Directions

Targeting the apelinergic system provides exciting opportunities for the treatment of 

cardiovascular disease. Apelin/APJ receptor signaling has beneficial effects in several 

cardiovascular and metabolic disorders, including hypertension, heart failure, pulmonary 

hypertension, and obesity. Promising apelin-mimetics are in development, but several 

challenges remain. A key limitation at present is that our knowledge of the vasomotor effects 

of apelin in specific vascular beds (e.g. coronary, cerebral, renal) is limited. As there is 

potential for apelin to cause both vasodilation and vasoconstriction, there is a need to 

improve our understanding of apelin signaling and how it relates to these opposing 

functional effects. Other challenges associated with the therapeutic use of apelin and its 

isoforms include their short biological half-lives, complex intracellular signaling pathways, 

and the possible existence of more than one APJ receptor subtype or another cell surface 

receptor that has affinity for both apelin and Elabela. Overcoming these challenges will 

provide guidance on how to optimize opportunities to target the beneficial effects of apelin 

and improve the development of novel therapeutic agents for treating cardiovascular 

diseases.
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AT-1 angiotensin-1

BKCa large conductance calcium-activated potassium

CAD coronary artery disease

cAMP cyclic adenosine monophosphate

cGMP cyclic guanosine monophosphate

ERK extracellular signal-regulated kinase

HIF-1α hypoxia inducible factor - 1α

KOR κ-opioid receptors

L-NAME N(G)-nitro-l-arginine methyl ester

MLC myosin light chain

NO nitric oxide

PI3K phosphoinositide 3-kinase

PKC protein kinase C
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