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Abstract

The discovery of the antidepressant effects of ketamine has opened a breakthrough opportunity to 

develop a truly novel class of safe, effective, and rapid-acting antidepressants (RAADs). In 

addition, the rapid and robust biological and behavioral effects of ketamine offered a unique 

opportunity to utilize the drug as a tool to thoroughly investigate the neurobiology of stress and 

depression in animals, and to develop sensitive and reproducible biomarkers in humans. The 

ketamine literature over the past two decades has considerably enriched our understanding of the 

mechanisms underlying chronic stress, depression, and RAADs. However, considering the 

complexity of the pharmacokinetics and in vivo pharmacodynamics of ketamine, several questions 

remain unanswered and, at times, even answered questions continue to be considered controversial 

or at least not fully understood. The current perspective paper will summarize our understanding 
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of the neurobiology of depression, and the mechanisms of action of ketamine and other RAADs. 

The review will focus on the role of glutamate neurotransmission – reviewing the history of the 

“glutamate inhibition” and “glutamate activation” hypotheses, proposing a synaptic connectivity 

model of chronic stress pathology, and describing the mechanism of action of ketamine. It will 

also summarize the clinical efficacy findings of putative RAADs, present relevant human 

biomarker findings, and discuss current challenges and future directions.
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1. Introduction

Serendipity, combined with astute clinical observations, has dominated the path to drug 

discovery in psychiatry (Klein, 2008). In 1951, the first antipsychotic drug was discovered 

unexpectedly, as chlorpromazine was being developed for potentiating anesthesia. The first 

tricyclic antidepressant, imipramine, was synthesized in 1899 and decades later failed as 

antipsychotic compound (Ban, 2006). Yet, one case report in mid-1950s showing 

imipramine’s antidepressant effect in a female with severe depression has led to further 

investigation and eventual discovery of the monoaminergic class of antidepressants. 

Similarly, the first benzodiazepine was lingering on a laboratory shelf for years until it was 

accidentally discovered during a “spring-cleaning” in 1957 and subsequently demonstrated 

strong anxiolytic effects (Ban, 2006).

Another unanticipated observation in the 1950s was the report that the anti-tuberculosis d-

cycloserine, an N-methyl-D-aspartate receptor (NMDAR) modulator, may possess 

antidepressant properties (Crane, 1959). Yet, this fortuitous observation has gained little to 

no attention for more than four decades, until it was discovered in the late 1990s that a single 

subanesthetic dose of the NMDAR antagonist ketamine induces rapid and sustained 

antidepressant effects in severely depressed patients (Berman, et al., 2000). At the time, in 

the context of accumulating evidence proposing NMDAR modulation as a target for 

antidepressants, and relating depression to excess glutamate neurotransmission and 

excitotoxicity, the ketamine findings have generated considerable interest in the field to 

target glutamate neurotransmission for the development of novel rapid-acting 

antidepressants (RAADs) (Berman, et al., 2000; McEwen, 1999; Skolnick, et al., 1996; 

Zarate, et al., 2006). Early attempts have primarily focused on investigating glutamate 

release inhibitors and NMDAR antagonists, both of which were thought to inhibit glutamate 

transmission and offset the depression-related excitotoxicity. Unfortunately, the glutamate 

release inhibition approach has had limited success in human studies over the past 2 

decades, with pilot or inconsistent findings of antidepressant properties following sustained 

treatment and no evidence of RAAD effects (Mathew, Gueorguieva, Brandt, Fava, & 

Sanacora, 2017; Solmi, et al., 2016). Conversely, the NMDAR antagonism approach has 

shown promise (Abdallah, Averill, & Krystal, 2015; Bobo, et al., 2016). Yet, it is becoming 

increasingly apparent that the NMDAR agents with RAAD properties are putatively exerting 
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their effects through glutamate neurotransmission activation, rather than inhibition 

(Aleksandrova, Wang, & Phillips, 2017; Murrough, Abdallah, & Mathew, 2017).

In this perspective paper, we will (1) review the history of the “glutamate inhibition” and 

“glutamate activation” hypotheses, (2) propose a synaptic connectivity model of chronic 

stress pathology, (3) describe the mechanism of action of ketamine, (4) summarize the 

clinical efficacy findings of putative RAADs, (5) present relevant human biomarker findings, 

and (6) discuss current challenges and future directions.

2. Glutamate Inhibition or Activation? A Historical Perspective

Early in the 1990s, a number of NMDAR antagonists have demonstrated antidepressant-like 

effects in rodents (Trullas & Skolnick, 1990). Follow-up studies have later shown that 

chronic, but not acute, administration of several traditional antidepressants (i.e., slow-acting 

antidepressants; SAADs) alter NMDAR binding, leading to the hypothesis that 

downregulation of NMDAR function may be a common pathway across antidepressants 

(Skolnick, et al., 1996). During the same period, grey matter structural deficits were 

demonstrated in stress-related disorders in humans (Bremner, et al., 1995; Sheline, Wang, 

Gado, Csernansky, & Vannier, 1996), and were thought to parallel the dendritic atrophy 

observed following chronic stress in rodents (McEwen, 1999). Interestingly, inhibiting 

NMDARs or glutamate release blocked the effects of chronic stress on dendritic atrophy 

(McEwen, 1999). Together, these early data supported a model in which downregulation of 

excess glutamate may exert antidepressant effects, and raised the question whether the 

RAAD effects of ketamine are due to glutamate neurotransmission inhibition by blocking 

NMDARs.

In contrast to the glutamate inhibition model, it has been previously shown that 

subanesthetic doses of ketamine transiently activate rather than inhibit glutamate 

neurotransmission (Moghaddam, Adams, Verma, & Daly, 1997). Moreover, the 1990s also 

witnessed the rise of the neurotrophic hypothesis of depression (Duman, Heninger, & 

Nestler, 1997), which associated chronic stress and depression with a deficit in brain derived 

neurotrophic factor (BDNF) and demonstrated that traditional antidepressants increase brain 

BDNF expression (Nibuya, Morinobu, & Duman, 1995). Interestingly, acute glutamate 

neurotransmission activation – rather than inhibition – was initially associated with 

upregulation of BDNF and other neurotrophics (Gall & Isackson, 1989; Patterson, Grover, 

Schwartzkroin, & Bothwell, 1992; Zafra, Castren, Thoenen, & Lindholm, 1991). In addition, 

it was found that glutamate transmission activation, using α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) potentiators, increases brain BDNF and exhibits 

RAAD properties in rodent models (Lauterborn, Lynch, Vanderklish, Arai, & Gall, 2000; X. 

Li, et al., 2001). Hence, by early 2000s, convergent evidence strongly supported the role of 

neuronal plasticity in the pathophysiology of depression and in the mechanisms of 

antidepressant action (D'Sa & Duman, 2002; Manji, Drevets, & Charney, 2001; McEwen, 

2004). In addition, it became evident that targeting glutamate neurotransmission offers a 

novel approach for discovery of new antidepressants (Javitt, 2004; Krystal, et al., 2002). 

However, it was not fully clear whether these novel antidepressants should activate and/or 
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inhibit glutamate neurotransmission, with the latter possibility gaining the most attention 

considering the evidence available at the time.

3. Synaptic Model of Chronic Stress Pathology (CSP)

The synaptic CSP model proposes that trauma and repeated stressors lead to wide spread 

neuronal remodeling consistent with both reduced and increased synaptic connectivity, 

depending on the brain region. The chronic stress induced reduction in synaptic connectivity 

has been mostly studied in the prefrontal cortex (PFC) and the hippocampus. Conversely, the 

CSP-related increases in synaptic connectivity were most commonly shown in the nucleus 

accumbens (NAc) and certain nuclei within the amygdala.

In the PFC (Fig. 1), it was shown that prolonged stress precipitates neuronal synaptic 

hypoconnectivity, as evident by reduced dendritic length and arborization, and by reduction 

in synaptic density and strengths (Duman & Aghajanian, 2012). Glial cells, which play a 

critical role in regulating glutamate neurotransmission and preventing excitotoxicity, were 

also found to be deficient following chronic stress (Sanacora & Banasr, 2013). While the 

mechanisms underlying the CSP-related hypoconnectivity are not fully known, 

accumulating evidence implicates glucocorticoid signaling and dysregulation in glutamate 

neurotransmission (Popoli, Yan, McEwen, & Sanacora, 2012; Sanacora, Treccani, & Popoli, 

2012). In particular, trauma- and stress-related dysregulation of glucocorticoid signaling and 

glutamate release, combined with glial deficit and reduced glutamate uptake, are believed to 

paradoxically maintain high levels of extracellular glutamate despite the reduction of resting 

prefrontal synaptic glutamate neurotransmission following chronic stress.

In this model, acute stress precipitates a prefrontal glutamate surge associated with transient 

(minutes-to-hours) increase in extracellular glutamate (Moghaddam, 1993), but sustained 

(days-to-weeks) increase in NMDARs, AMPARs, and synaptic strength (Yuen, et al., 2009; 

Yuen, et al., 2011). In contrast, chronic stress leads to a sustained increase in extracellular 

glutamate (S. X. Li, et al., 2017), combined with reduced resting prefrontal glutamate 

transmission (Banasr, et al., 2010), and reduction in NMDARs, AMPARs, and synaptic 

strength (Yuen, et al., 2012). Here, the distinction between “acute” and “chronic” stress is 

critical, with the timing (i.e., acute vs. chronic) pertains mostly to the length of the stress 

response – rather than the duration of the stressor. For example, a single severe traumatic 

event may induce a chronic sustained threat response. Conversely, repeated escapable and/or 

predictable mild stressors will result in appropriate adaptation with only acute transient 

stress responses.

In the NAc, a number of chronic stress paradigms were found to increase synaptic 

connectivity, as evident by increased dendritic length and arborization, as well as increased 

synaptic density and strength (Campioni, Xu, & McGehee, 2009; Christoffel, et al., 2011; 

Christoffel, et al., 2012; Coplan, et al., 2018; Muhammad, Carroll, & Kolb, 2012; Warren, et 

al., 2014). While the prefrontal hypoconnectivity was associated with glutamate 

dysregulation and excitotoxicity, the stress-induced NAc synaptic hyperconnectivity is 

related to monoamine dysregulation. In particular, chronic stress leads to phasic activation of 

the dopaminergic neurons from the ventral tegmental area (Chaudhury, et al., 2013), which 
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precipitates the co-release of dopamine and BDNF in the NAc (Walsh, et al., 2014). 

Subsequently, the BDNF upregulation and the induction of its high affinity receptor TrkB 

lead to the CSP-related NAc neuronal hypertrophy (Wook Koo, et al., 2016).

In preclinical studies, depressive-like behaviors were directly associated with these synaptic 

alterations in the PFC and NAc (Duman, Aghajanian, Sanacora, & Krystal, 2016; Krishnan 

& Nestler, 2008; Russo & Nestler, 2013). Reversal of the synaptic impairment induces 

antidepressant effects. Moreover, both SAADs and RAADs are known to increase PFC, but 

reduce NAc, synaptic connectivity (Hare, Ghosal, & Duman, 2017; Melo, et al., 2015; Yao, 

Skiteva, Zhang, Svenningsson, & Chergui, 2017). Notably, the CSP-related microstructural 

synaptic alterations are evident at the macrostructural level as assessed by magnetic 

resonance imaging (MRI) (Kassem, et al., 2013). Thus, providing support for the synaptic 

CSP model, human MRI studies have shown increased NAc, but reduced hippocampal and 

PFC volumes in major depression (C. G. Abdallah, A. Jackowski, et al., 2017; Kempton, et 

al., 2011). Here, it is important to highlight that the PFC and hippocampal gray matter 

deficits were absent in several human depression studies. These gray matter deficits are most 

evident in patients with amino acid neurotransmitters (i.e., glutamate & GABA) reduction 

and in individuals who are treatment resistant to SAADs, which are primarily 

monoaminergic drugs [reviewed in (C. G. Abdallah, A. Jackowski, et al., 2017; Abdallah, 

Jackowski, et al., 2015)]. Therefore, it was proposed that the synaptic PFC/hippocampus 

hypoconnectivity and NAc hyperconnectivity reflect two pathways that may independently 

precipitate clinical depression (C. G. Abdallah, A. Jackowski, et al., 2017). In this Dual 

Pathology model, patients with underlying amino acid-based pathology (ABP), leading to 

excitotoxicity and synaptic loss, would show PFC/hippocampus gray matter deficit, present 

with amino acid impairment, and be treatment resistant to monoaminergic antidepressants. 

Conversely, patients with monoamine-based pathology (MBP), leading to localized increase 

in BDNF and synaptic gain, would show NAc gray matter hypertrophy, lack of amino acid 

impairment, and effectively respond to monoaminergic antidepressants (C. G. Abdallah, A. 

Jackowski, et al., 2017).

Finally, although the synaptic CSP model has been typically studied and interpreted within 

the context of major depression, CSP appears to be a common pathway across numerous 

psychiatric disorders (Adams, et al., 2018; Daskalakis & Binder, 2015; Goddard, 2017; 

Kwako & Koob, 2017; L. Y. Maeng & Milad, 2017; Patriquin & Mathew, 2017; Prescot, et 

al., 2018). Hence, the evidence of synaptic loss and dysconnectivity is not limited to major 

depression, but rather common to several stress-related disorders – e.g., posttraumatic stress 

disorder (PTSD), generalized anxiety disorder (GAD), obsessive compulsive disorder 

(OCD), and bipolar depression (Abdallah, et al., 2013; C. G. Abdallah, K. M. Wrocklage, et 

al., 2017; Akiki, et al., 2017; Anticevic, et al., 2013; Anticevic, et al., 2014; Averill, 

Abdallah, et al., 2017; Haukvik, et al., 2015; Kwon, et al., 2003; Pietrzak, et al., 2015; 

Wrocklage, et al., 2017). In addition, antidepressants – known to reverse the CSP in animals 

– have shown efficacy in alleviating symptoms of PTSD, GAD, OCD, bipolar depression, 

and other disorders with a considerable chronic stress component. Here, we note that 

synaptic dysconnectivity could be a predisposing factor, an outcome, or a perpetuator of the 

psychopathology (Averill, Purohit, et al., 2017; Matosin, Cruceanu, & Binder, 2017; Sheth, 

McGlade, & Yurgelun-Todd, 2017; Syed & Nemeroff, 2017). Furthermore, while synaptic 
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loss appears to be common across stress-related disorders, the location and pattern of the 

synaptic dysconnectivity, combined with individual characteristics (e.g., genes & 

environment), may be the mechanism through which CSP is associated with distinct clinical 

presentations and psychopathologies (Abdallah, Southwick, & Krystal, 2017; Averill, 

Purohit, et al., 2017; Krystal, et al., 2017). Together, the presented synaptic model proposes 

that CSP is common across many psychiatric disorders and that targeting synaptic 

connectivity may be a convergent pathway across antidepressants.

4. Mechanism of Action of Ketamine and RAADs

The discovery of the robust RAAD effects of ketamine offered a unique opportunity to better 

understand the neurobiology of depression and to unravel the processes involved in reversing 

CSP. To date, two ketamine-induced glutamate neurotransmission changes appear to be 

critical to its RAAD effects: (1) a transient activation of glutamate neurotransmission in the 

PFC (often referred to as glutamate “surge” or “burst”) and (2) a sustained increase in PFC 

synaptic connectivity (Fig. 2). It is believed that acute administration of subanesthetic doses 

of ketamine induces a transient surge in prefrontal glutamate neurotransmission, which in 

turn induces a number of intracellular processes ultimately leading to sustained increase in 

prefrontal synaptic connectivity within 24h of treatment (Abdallah, et al., 2016; Duman, et 

al., 2016).

Transient PFC glutamate neurotransmission activation leads to activity-dependent release of 

BNDF, activates the mechanistic target of rapamycin complex 1 (mTORC1) signaling, and 

increases protein synthesis and synaptic strength (Lepack, Bang, Lee, Dwyer, & Duman, 

2016; Lepack, Fuchikami, Dwyer, Banasr, & Duman, 2015; Liu, et al., 2012). The 

preclinical evidence of ketamine-induced glutamate release has long been demonstrated 

using microdialysis (Moghaddam, et al., 1997) and, more recently, evidence of transient 

glutamate transmission activation was demonstrated using ex vivo carbon-13 magnetic 

resonance spectroscopy (13C MRS) (Chowdhury, et al., 2012; Chowdhury, et al., 2016; 

Rothman, De Feyter, de Graaf, Mason, & Behar, 2011). Here, it is important to distinguish 

between presynaptic glutamate release and postsynaptic activation. The latter – i.e., 

postsynaptic glutamate activation – is required for the induction of BDNF and its high 

affinity receptor TrkB, the increase in synaptic strength, and the RAAD effects. Hence, 

mechanisms independent of evoked presynaptic release of glutamate have been proposed for 

ketamine (Autry, et al., 2011; Miller, Moran, & Hall, 2016) and agents directly targeting 

postsynaptic glutamate activation may possess RAAD properties (e.g., AMPAR potentiators 

or NMDAR partial agonists; Fig. 2).

The role of the transient postsynaptic glutamate activation in the RAAD effects of ketamine 

has been abundantly shown in preclinical studies. First line of evidence stems from a 

consistent observation that the inhibition of postsynaptic glutamate activation – using 

AMPAR antagonists – blocks the synaptic remodeling and the RAAD effects of ketamine 

(N. Li, et al., 2010; S. Maeng, et al., 2008). Here, we note that even selective AMPAR 

antagonists will presumably block overall postsynaptic glutamate activation through 

inhibition of both AMPAR and NMDAR, considering that AMPAR activation leading to 

membrane depolarization is required for NMDAR signaling. In this context, most of the 
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evidence relating AMPAR blockade to the inhibition of RAADs would be considered an 

indication of the need for postsynaptic glutamate activation rather than specific AMPAR 

activation. For example, NMDAR potentiators – without AMPAR modulating properties – 

may possess RAAD effects by inducing transient postsynaptic glutamate activity (e.g., 

NMDAR partial agonists). Furthermore, the RAAD effects of these NMDAR potentiators 

will still be blocked by pretreatment with AMPAR antagonists, because the latter also 

inhibits NMDAR signaling. Another line of evidence underscoring the role of transient 

glutamate activation is that postsynaptic depolarization and activation of L-type voltage-

dependent calcium channels (VDCC) are necessary for the synaptic changes and the RAAD 

effects of ketamine (Jourdi, et al., 2009; Lepack, et al., 2015) and other RAADs (Ghosal, et 

al., 2018).

While the mechanisms through which ketamine induces a transient postsynaptic glutamate 

activation are not fully known, a leading hypothesis is that subanesthetic doses of ketamine 

preferentially inhibits NMDARs on a subpopulation of interneurons precipitating pyramidal 

neurons disinhibition and paradoxical surge in glutamate release (Homayoun & 

Moghaddam, 2007). However, alternative hypotheses have also been proposed. One study 

hypothesized that blockade of at rest NMDAR signaling – i.e., without evoked glutamate 

release – would be sufficient to increase eukaryotic elongation factor 2 (eEF2) signaling and 

BDNF translation, leading to increased protein synthesis and synaptic connectivity (Autry, et 

al., 2011). Yet, using AMPAR modulation, the same study has also demonstrated that 

postsynaptic glutamate activation is necessary for the RAAD effects of ketamine (Autry, et 

al., 2011). A main metabolite of ketamine is (2S,6S;2R,6R)-hydroxynorketamine (HNK). 

Following injection, ketamine rapidly reaches the brain within 1 minute and it maintains a 

brain/plasma concentration ratio equal 6.5 for 10 minutes (Cohen, Chan, Way, & Trevor, 

1973). In rodents, the plasma concentrations of ketamine and norketamine, both potent 

NMDAR antagonists, peak at 10 minutes post-injection and decrease exponentially 

thereafter, while the HNK concentration peaks at 30 minutes (Can, et al., 2016; Moaddel, et 

al., 2015; Paul, et al., 2014). Recently, it was found that HNK possesses RAAD properties 

without blockade of NMDARs (Zanos, et al., 2016). However, the same study has also 

demonstrated that postsynaptic glutamate activation is necessary for the RAAD effects of 

ketamine (Zanos, et al., 2016), and preliminary evidence has since shown that (2R,6R)-HNK 

also induces a glutamate release surge (Pham, et al., 2017; Schwarcz, Wu, Zanos, & Gould, 

2017). Together, the data highlights the ability of ketamine to induce a surge in glutamate 

transmission and that the transient postsynaptic activation is responsible for its RAAD 

effects (Fig. 2).

The role of transient postsynaptic glutamate activation is not limited to the neurobiology of 

ketamine. In fact, the mechanisms of several other RAADs have been related to transient 

glutamate activation. Scopolamine, a muscarinic cholinergic receptor (M-AChR) antagonist, 

was shown to increase glutamate release and postsynaptic activation, leading to increased 

PFC BDNF and synaptic connectivity, and to RAAD effects. The molecular and behavioral 

effects of scopolamine are blocked by inhibiting postsynaptic glutamate activation 

(Chowdhury, et al., 2016; Ghosal, et al., 2018; Voleti, et al., 2013; Wohleb, et al., 2016). 

Similarly, rapastinel (also known as GLYX-13) – a drug with presumable NMDAR partial 

agonist properties – was shown to increase PFC BDNF and synaptic connectivity, and to 
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exert RAAD effects, all of which were dependent on postsynaptic glutamate activation as 

evident by manipulation of AMPAR and VDCC (Lepack, et al., 2016; Liu, et al., 2017). The 

transient glutamate activation was also related to many other putative RAADs, including the 

selective NMDAR subtype 2B (GluN2B) antagonists Ro 25-6981 and traxoprodil (also 

known as CP-101,606), the mGluR2/3 antagonist LY341495, and the AMPAR potentiator 

LY392098 [Positive allosteric modulators (PAM) or ampakines] (Chowdhury, et al., 2016; 

Karasawa, Shimazaki, Kawashima, & Chaki, 2005; X. Li, et al., 2001; Tang, et al., 2018). 

Here, it is important to note that the reviewed literature is specific to transient glutamate 

effects, and may not necessarily translate to the effects of sustained increase in glutamate 

activation. Indeed, comparable to CSP, it is a concern that frequent daily administration of 

ketamine or chronic activation of glutamate may lead to excitotoxicity and synaptic 

dysconnectivity. Consistent with this concern, extensive preclinical literature relates repeated 

ketamine administration to neurotoxicity and behavioral abnormalities [e.g., (Schobel, et al., 

2013)]. Similarly, the substance abuse literature of daily use of ketamine underscores its 

detrimental effects on cognition and mood (Morgan, Curran, & Independent Scientific 

Committee on, 2012). Future studies should investigate whether infrequent glutamate 

activation, such as twice per week administration of ketamine, would provide optimal 

balance for maintaining the beneficial synaptic connectivity changes.

While there is evidence to support the SAAD properties of glutamate release inhibitors [e.g., 

lamotrigine (Solmi, et al., 2016)], these medications do not typically induce RAAD effects. 

Moreover, the ultimate effects of the chronic administration of these glutamate modulators 

may still be increasing glutamate neurotransmission and BDNF, and subsequent 

normalization of synaptic connectivity. For example, chronic treatment with the glutamate 

release inhibitor lamotrigine was shown to reverse the pathology of chronic stress and to 

increase prefrontal and hippocampal BDNF (N. Li, et al., 2011). In addition, chronic riluzole 

treatment – an agent believed to inhibit the calcium-dependent glutamate release and 

increase astrocytic glutamate re-uptake – was shown to reverse CSP and increase overall 

PFC glutamate neurotransmission activation, rather than decreasing it (Banasr, et al., 2010; 

Chowdhury, et al., 2008). Finally, in contrast to synaptic NMDARs where activation would 

lead to increased synaptic formation and strength (i.e., synaptogenesis), the activation of 

extrasynaptic NMDARs is thought to promote synaptic death (Hardingham & Bading, 

2010). Extrasynaptic NMDARs are activated by excessive extracellular levels of glutamate, 

which causes overstimulation of NMDARs. This leads to an increased calcium influx, 

activates toxic metabolic processes and triggers cell death (Deutschenbaur, et al., 2016; 

Paoletti, Bellone, & Zhou, 2013). Therefore, selective blockade of extrasynaptic NMDARs 

may induce synaptogenesis and exert antidepressant effects. A recent study has shown that 

targeting the extrasynaptic NMDARs would exert RAAD effects in rodents (S. X. Li, et al., 

2017). Another study has shown that ketamine blockade of the lateral habenula bursting 

activities precipitates RAAD effects (Yang, et al., 2018). However, a major limitation of 

these studies is that the behavioral effects were tested immediately after ketamine 

administration, rather than 24h later to confirm the presence of RAAD effects in the absence 

of ketamine intoxication (S. X. Li, et al., 2017; Yang, et al., 2018). Additionally, the 

selective NMDAR modulation approaches used may have inadvertently induced a 

paradoxical glutamate surge in the PFC, similar to the in vivo effects of ketamine and many 
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other NMDAR modulators. Future studies would be necessary to demonstrate the RAAD 

effects at 24h post administration, and to determine whether selective blockade of 

extrasynaptic NMDAR signaling is sufficient to exert RAAD effects without the need for 

postsynaptic glutamate neurotransmission activation.

5. Clinical Efficacy of RAADs

Following the regimen used in the first study (Berman, et al., 2000), clinical trials have 

mostly administered 0.5 mg/kg intravenous (i.v.) ketamine infused over 40 minutes 

[reviewed in (Abdallah, Averill, et al., 2015)]. To date, there is well replicated evidence 

showing the RAAD effects of a single ketamine infusion in MDD (McGirr, et al., 2015). 

Concerns regarding the efficacy of the treatment blinding were partially addressed using 

active placebo (Murrough, et al., 2013). A major limitation of the single infusion treatment 

is that patients often relapse within 1–2 weeks. However, repeated administration of 

ketamine (e.g., twice per week) appears to maintain the RAAD effects (Singh, Fedgchin, 

Daly, De Boer, et al., 2016). While the need for intravenous administration could be a 

limiting factor, pilot evidence suggests that intranasal (i.n.) administration of ketamine may 

exert RAAD effects (Canuso, et al., 2018; Daly, et al., 2017; Lapidus, et al., 2014). The 

psychotomimetic effects of ketamine could be considered a limitation, although these 

adverse events are transient (1–2h) and typically well tolerated. The main remaining 

limitations of ketamine treatment are its addiction liability and the scarcity of data regarding 

the safety of chronic treatment (Kokkinou, Ashok, & Howes, 2018; Sanacora, Frye, et al., 

2017). The latter is particularly important considering the association of heavy daily use of 

ketamine with ulcerative cystitis, hepatotoxicity, and neurotoxicity (Cottrell, et al., 2008; 

Morgan, et al., 2012; Noppers, et al., 2011; Shahani, Streutker, Dickson, & Stewart, 2007).

Other putative RAADs with published clinical trials in MDD include: (1) Scopolamine (3 

i.v. infusions separated by 3–4 days) has shown efficacy compared to placebo in small 

clinical trials (Drevets, Zarate, & Furey, 2013); (2) Traxoprodil showed efficacy at day 5 

following single infusion in a proof of concept study (S. H. Preskorn, et al., 2008), yet its 

development was stopped due to incidence of QT prolongation (Machado-Vieira, Henter, & 

Zarate, 2017); (3) Esketamine, the S enantiomer of ketamine, appears to have RAAD 

properties following i.v. or i.n. administration in early studies (Canuso, et al., 2018; Daly, et 

al., 2017; Singh, Fedgchin, Daly, Xi, et al., 2016); (4) Low doses of d-cycloserine, with 

NMDAR partial agonist effects, were reported to exert RAAD effects in retrospective 

investigations (Kim, Kushner, Yoon, Anker, & Grant, 2016); (5) Rapastinel (i.v.) has shown 

efficacy in a proof of concept study (S. Preskorn, et al., 2015); (6) Lanicemine, a low-

trapping NMDAR antagonist, has shown efficacy in one phase II study but failed in a second 

larger clinical trial that may have been complicated by high placebo response rates 

(Sanacora, Johnson, et al., 2017; Sanacora, et al., 2013; Zarate, et al., 2013). Together, these 

clinical trials provide a clear evidence on the prospect of RAADs. However, additional 

confirmatory clinical trials are still needed to determine the efficacy of these putative 

RAADs.

As described earlier, the synaptic CSP model would predict that ketamine may have 

therapeutic effects in many psychiatric disorders with considerable chronic stress 
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component. In fact, pilot trials to date support this hypothesis. Accumulating evidence 

suggests that ketamine may have independent rapid anti-suicidal effects in depressed 

patients (Canuso, et al., 2018; Grunebaum, et al., 2017; Wilkinson, et al., 2018). Moreover, 

pilot evidence suggests potential therapeutic effects of ketamine in treating bipolar 

depression, PTSD, OCD, GAD, social anxiety disorder (SAD), and substance/alcohol use 

disorders [(Albott, et al., 2018; Diazgranados, et al., 2010; Feder, et al., 2014; Glue, et al., 

2017; Ivan Ezquerra-Romano, Lawn, Krupitsky, & Morgan, 2018; Rodriguez, et al., 2013; 

Taylor, et al., 2018; Zarate, et al., 2012), but also see (Bloch, et al., 2012)]

6. Clinical Biomarkers of RAADs

To better understand the neurobiology of depression and RAADs, numerous clinical 

biomarker studies over the past decade capitalized on the RAAD effects of ketamine, its 

potent effects on prefrontal glutamate neurotransmission, and its robust neuronal remodeling 

24h post infusion. Here, we will briefly review biomarker studies of relevance to the 

ketamine induced acute glutamate surge (i.e., during infusion) and sustained neuronal 

remodeling (i.e., 24h post treatment).

Several lines of evidence have supported the presence of a ketamine induced prefrontal 

glutamate surge in humans and have associated this surge with the psychotomimetic effects 

of the drug. Early studies have shown that glutamate release inhibitors would reduce the 

psychotomimetic effects of ketamine. Later neuroimaging studies have either shown 

ketamine induced increases in PFC glucose metabolism or blood flow, PFC blood oxygen 

level dependent (BOLD) signal, or PFC total glutamate level (Anand, et al., 2000; Breier, 

Malhotra, Pinals, Weisenfeld, & Pickar, 1997; Deakin, et al., 2008; Javitt, et al., 2017; 

Krystal, et al., 2005; Krystal, et al., 2010; Milak, et al., 2016; Rowland, et al., 2005; Stone, 

et al., 2012; Vollenweider, Leenders, Oye, Hell, & Angst, 1997; Vollenweider, Leenders, 

Scharfetter, et al., 1997). While collectively these studies provide convincing evidence of an 

acute glutamate surge, most of these studies were in healthy subjects which limits their 

ability to associate this surge to the RAAD effects. Another main limitation is that these 

approaches do not distinguish between presynaptic glutamate release and postsynaptic 

activation. As reviewed earlier, the postsynaptic glutamate activation appears to be the 

critical process for the RAAD effects. Moreover, recent data using ex vivo (in rats) and in 
vivo (in humans) 13C MRS suggests that the psychotomimetic effects of ketamine may be 

due to the decoupling between presynaptic glutamate release and postsynaptic activation 

(i.e., disruption in communication fidelity across synapses), as evident by increased 

glutamate cycling combined with inefficient increase in neuroenergetics that are primarily 

due to postsynaptic activation (i.e., reduction of energy per cycle) [(Chowdhury, et al., 2016) 

& (Abdallah et al. under review)]. If these pilot data were confirmed in future human 

studies, it will offer a mechanism through which novel drugs may induce RAAD effects 

without psychotomimetic symptoms, provided that these new agents equally increase 

presynaptic release and postsynaptic activation.

Further supporting the presence of ketamine induced glutamate surge, recent studies have 

shown alterations in the binding of metabotropic glutamate receptors subtype 5 (mGluR5) 

during infusion of ketamine in healthy and depressed subjects (Davis, Holmes, Pietrzak, & 
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Esterlis, 2017; DeLorenzo, et al., 2015; Esterlis, et al., 2017). Yet, perhaps the most studied 

approach has been the use of resting state functional MRI. In particular, PFC global brain 

connectivity (GBC) reduction has been observed in several psychiatric disorders with a 

strong chronic stress component (Anticevic, et al., 2013; Anticevic, et al., 2015; Anticevic, 

et al., 2014; Cole, Anticevic, Repovs, & Barch, 2011). This observation has led to the 

hypothesis that GBC may reflect an underlying CSP of reduced PFC synaptic connectivity. 

Supporting this hypothesis, several studies have demonstrated reduced PFC global 

connectivity in MDD (C. G. Abdallah, C. L. Averill, et al., 2017; C. G. Abdallah, L. A. 

Averill, et al., 2017; Murrough, et al., 2016; Scheinost, et al., 2017; Wang, et al., 2014). In 

addition, human mechanistic studies have provided evidence directly linking glutamate 

neurotransmission to PFC GBC (C. G. Abdallah, C. L. Averill, et al., 2017). Moreover, 

subanesthetic doses of ketamine have been shown to increase PFC GBC during infusion in 

healthy individuals, which parallel the hypothesized glutamate surge (C. G. Abdallah, C. L. 

Averill, et al., 2017; Anticevic, et al., 2015; Driesen, McCarthy, Bhagwagar, Bloch, Calhoun, 

D'Souza, Gueorguieva, He, Ramachandran, et al., 2013; Driesen, McCarthy, Bhagwagar, 

Bloch, Calhoun, D'Souza, Gueorguieva, He, Leung, et al., 2013). Consistent with the role of 

PFC synaptic connectivity in the mechanisms of RAADs, ketamine was found to rapidly 

normalize PFC GBC abnormalities in MDD patients within 24h of treatment. These PFC 

GBC increases were also associated with treatment response (C. G. Abdallah, L. A. Averill, 

et al., 2017). More recently, in a randomize placebo controlled design, it was shown that 

ketamine increases PFC GBC in MDD during infusion and at 24h post-treatment. In 

addition, the amount of PFC GBC increases during ketamine infusion predicted treatment 

response at 24h post-treatment (C.G. Abdallah, et al., 2017). Finally, similar to the 

preclinical data of ketamine induced increases in hippocampal synaptic connectivity along 

with reduction in NAc synaptic connectivity (Melo, et al., 2015; Reus, et al., 2013; Yao, et 

al., 2017), recent pilot human evidence using structural MRI have shown that ketamine 

significantly increases hippocampal and reduces NAc volumes in MDD patients within 24h 

of treatment, particularly in individuals who responded to treatment (C. G. Abdallah, A. 

Jackowski, et al., 2017).

7. Current Challenges & Future Directions

The ketamine findings have generated considerable excitement about the promise of a truly 

novel class of robust and effective RAADs. This excitement was translated into a sizable 

investment from academia, the pharmaceutical industry, and funding agencies. Hundreds of 

papers over the past decade have investigated the mechanisms of ketamine and/or its 

potential therapeutic utility. However, while preclinical data have extensively investigated 

ketamine’s targets and putative mechanisms, the clinical mechanistic evidence remains 

lagging.

In particular, to date, we do not have a well-established reproducible biomarker of target 

engagement (i.e., transient postsynaptic glutamate activation) or target validation (i.e., 

sustained synaptic remodeling) for the development of RAADs. This issue may have been 

less problematic for the development of monoaminergic drugs. Following the identification 

of the in vitro pharmacodynamics of tricyclic antidepressants, the field over the next half a 

century successfully produced several SAADs, which primarily shared the common in vitro 
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detectable pharmacodynamics of serotonin re-uptake inhibition (SRI). In addition, SRI 

largely has (1) linear dose response, (2) broad therapeutic window, and (3) relatively stable 

in vivo pharmacodynamics across administration regimens. In contrast, the development of 

RAADs has proven more complex; at least two NMDAR antagonists (memantine & 

CERC-301) and two ampakines (S47445 & ORG 26576) failed in clinical trials and other 

similar agents have shown promise only in preclinical studies or proof of concept trials. 

Several challenges may have contributed to the complexity of developing RAADs: (1) While 

it is evident that blocking NMDAR may induce RAAD effects, only focusing on the in vitro 
NMDAR antagonism properties appears to have low predictability for the development of 

new RAADs. (2) Determining the in vivo effects of novel RAAD agents on transient 

glutamate neurotransmission and sustained synaptic connectivity is critical. However, at this 

stage, this is only possible in animal studies. The presence of an inverted U-shaped 

relationship between dose and response further complicates the translatability of preclinical 

findings. Together, these challenges underscore the need for robust and reproducible 

biomarkers of prefrontal glutamate activation and synaptic connectivity in humans in vivo. 

The successful development of these biomarkers would be essential to optimize 

administration regimens of new RAAD compounds prior to testing them in large expensive 

trials. Capitalizing on the extensive preclinical and clinical ketamine data, and the swiftness 

and robustness of its synaptic remodeling and behavioral (psychotomimetic and 

antidepressant) effects, future studies have a unique opportunity to use ketamine as a tool to 

establish these synaptic biomarkers that are not only relevant to depression, but also to 

normal brain function and most neuropsychiatric disorders.

Another opportunity for future studies is that both the chronic stress related synaptic 

hypoconnectivity and the ketamine induced synaptic hyperconnectivity are reversible within 

2 weeks of the intervention, raising mechanistic questions about this individualized 

homeostatic stable equilibrium of overall synaptic strength. Future studies can capitalize on 

this notable reversibility to determine the mechanisms underlying this putative homeostatic 

stable equilibrium of synaptic strength within the context of chronic stress and ketamine 

treatment. Successful unraveling of these mechanisms may provide information that goes 

beyond the progress and treatment of depression, and begins to examine the etiology and 

perhaps cure of depression.

In summary, elegant ketamine studies over the past decade have significantly improved our 

understanding of the pathophysiology of chronic stress and depression, while unraveling 

several mechanisms through which transient prefrontal glutamate activation produces rapid 

restoration of synaptic connectivity along with RAAD effects. Although there is evidence 

associating glutamate inhibition with antidepressant properties, these data have been 

primarily limited to SAAD effects. So, is it glutamate inhibition or activation? Within the 

PFC, chronic stress and depression seem to be associated with high extrasynaptic glutamate 

level, but overall reduced glutamate neurotransmission as evident by reduction in synaptic 

connectivity, glutamate cycling, and neuroenergetics. As for the neurobiology of ketamine 

and other RAADs, it is increasingly evident that transient PFC glutamate postsynaptic 

activation is a primary underlying mechanism. Yet, it remains to be seen in future studies 

whether selective inhibition of extrasynaptic NMDARs would be sufficient to induce 

sustained synaptic remodeling and robust RAAD effects.
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Abbreviations
13C MRS carbon-13 magnetic resonance spectroscopy

ABP aminoacid-based pathology

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

BDNF brain derived neurotrophic factor

BOLD blood oxygen level dependent

CSP chronic stress pathology

GAD generalized anxiety disorder

GBC global brain connectivity

GluR2B N-methyl-D-aspartate receptor subtype 2B

HNK hydroxynorketamine

i.n. intranasal

i.v. intravenous

M-AChR muscarinic cholinergic receptor

MBP monoamine-based pathology

mGluR5 metabotropic glutamate receptor subtype 5

MRI magnetic resonance imaging

mTROC1 mechanistic target of rapamycin complex 1

NAc nucleus accumbens

NMDAR N-methyl-D-aspartate receptor

OCD obsessive compulsive disorder

PFC prefrontal cortex

PTSD posttraumatic stress disorder

RAAD rapid-acting antidepressant

SAAD slow-acting antidepressant

SAD social anxiety disorder

SRI serotonin re-uptake inhibition

VDCC L-type voltage-dependent calcium channels
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Figure 1. Chronic Stress Pathology (CSP) in the Prefrontal Cortex (PFC)
The synaptic CSP model proposes that synaptic dysconnectivity may be a common 

pathological pathway across psychiatric disorders with chronic stress component – as a 

predisposition, a trigger, or an outcome. In the PFC, chronic stress is believed to induce glial 

deficit, leading to reduced glutamate reuptake capacity and increased extrasynaptic 

glutamate levels and excitotoxicity. Subsequently, neuronal atrophy develops, resulting in 

overall reduction in glutamate neurotransmission, which reflects reduced dendritic length 

and branching, and reduction of spines and synapses density. In the remaining PFC 

synapses, the neurotransmission strength is also affected by reduced postsynaptic glutamate 

N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid receptor (AMPA) receptors. Ketamine reverses this PFC CSP within 24h of injection. It 

is thought that ketamine induces a transient (minutes-to-hours) postsynaptic glutamate 

activation, which leads to upregulation of neurotrophic signaling, increased protein 

synthesis, and sustained (days-to-weeks) restoration of synaptic connectivity. Abbreviations: 

EAAT = excitatory aminoacid transporter; Gln = glutamine; GluN1 = NMDA subtype 1; 

GluN2B = NMDA subtype 2B; Glu = glutamate. The figure was adapted with permission 

from the Emerge Research Program (emerge.care).
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Figure 2. Molecular Targets of Rapid-acting Antidepressants (RAADs)
It is believed that RAADs exert their effects by inducing a transient (minutes-to-hours) 

postsynaptic glutamate activation, which ultimately leads to sustained (days-to-weeks) 

increase in synaptic formation and strength in the prefrontal cortex. It remains to be 

determined in future studies whether inhibition of extrasynaptic N-methyl-D-aspartate 

(NMDA) receptors would be sufficient to exert RAAD effects. The figure depicts the 

potential targets of agents suspected to have RAAD properties. Abbreviations: AMPA = α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; BDNF = brain derived 

neurotrophic factor; CB1 = cannabinoid receptor; EAAT = excitatory aminoacid transporter; 

eEF2 = eukaryotic elongation factor 2; Gln = glutamine; GluN1 = NMDA subtype 1; 

GluN2B = NMDA subtype 2B; Glu = glutamate; Gly = Glycine; GlyT = Glycine 

transporter; HNK = hydroxynorketamine; M-AChR = muscarinic acetylcholine receptor; 

mGluR2/3 = metabotropic glutamate receptor subtype 2 and 3; mTORC1 = mechanistic 

target of rapamycin complex 1; N-AChR = nicotinic AChR; TrkB = tyrosine kinase B 

receptor. The figure was adapted with permission from the Emerge Research Program 

(emerge.care).
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