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Abstract

Lipid membranes play key roles in cells, such as in trafficking, division, infection, remodeling of 

organelles, etc. The key step in all these processes is creating membrane curvature, typically under 

the control of many anchored, adhered or included proteins. However, it has become clear that the 

membrane itself can mediate the interactions among proteins to produce highly ordered 

assemblies. Computer simulations are ideally suited to investigate protein organization and the 

dynamics of membrane remodeling at near-micron scales, something that is extremely challenging 

to tackle experimentally. We review recent computational efforts in modeling protein-caused 

membrane deformation mechanisms, specifically focusing on coarse-grained simulations. We 

highlight work that exposed the membrane-mediated ordering of proteins into lines, meshwork, 

spirals and other assemblies, in what seems to be a very generic mechanism driven by a 

combination of short and long-ranged forces. Modulating the mechanical properties of membranes 

is an underexplored signaling mechanism in various processes deserving of more attention in the 

near future.
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Dynamics of cell membranes at multiple scales: The need for coarse-

grained computer simulations

The cell membrane is the first stop en route into the cell. While integral membrane proteins, 

such as signaling receptors, often control the trafficking of cargo in and out of the cell, lipid 

membranes play significant roles in this process. The most common way of entering the cell 

is via endocytosis, in which a small portion of the membrane curves and eventually breaks 

off, handing over the engulfed cargo down the path of intracellular trafficking. Membrane 

curvature is essential for many other aspects of cell’s survival [1]. For instance, highly 

curved protrusions called filopodia are formed at the leading edge of a motile cell to allow 

migration and cell-to-cell contact. Curvature is also a structural feature of many organelles, 

such as the endoplasmic reticulum, which comprises a system of interconnected tubules and 

vesicles. In recent years, it has become apparent that membrane curvature can provide 

signaling downstream of protein binding, through a finely balanced interaction between 

curvature sensing and curvature induction by proteins [2]. Many questions about this 

interaction still remain unsolved, such as understanding how proteins correctly and rapidly 

assemble at the right place and the right time and precisely how the cell modulates the 

activity of curvature proteins.

Over the past five decades, the elastic description of cell membranes has been successful in 

elucidating a number of membrane-remodeling mechanisms and it has provided a powerful 

framework for understanding experimental data. However, the long-wavelength dynamics of 

membranes is deeply connected to their molecular structure. In other words, molecular 

diffusion and the interactions at the lipid-protein interface will have a strong impact on the 

collective organization of proteins and the overall membrane shape. Considering such strong 

molecular-mesoscopic coupling, it is important to understand the protein-membrane 

remodeling from molecular as well as continuum viewpoints.

Computer simulations allow a microscopic and dynamical view into membrane remodeling, 

something that is too challenging for any experimental imaging technique. In particular, 

coarse-grained (CG) models bridge the gap between high-resolution static imaging and 

optical microscopy at the micron-scale [3]. Here, we review recent insights learned from 

simulating membrane-curving proteins and particles at near-micron scales and highlight new 

paradigms in protein self-assembly that emerged from combined simulations and 

experimental measurements.

General mechanisms of membrane bending by BAR domains and other 

proteins

Many proteins regulate membrane curvature in the cell. The basis of their interactions 

typically involves inducing a local asymmetry in the lipid bilayer either by virtue of their 

shape, local clustering, inclusion into the bilayer, active force, or by a combination of 

multiple effects [1]. Many proteins bind peripherally to interact with a membrane’s shape. 

Typically they are themselves intrinsically curved or they form curved multi-protein 

assemblies when bound to the surface. Examples include Bin/amphiphysin/Rvs (BAR) 
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proteins, clathrin, and dynamin [1]. Often, they form large-scale 3D assemblies and act as 

scaffolds that mold the underlying membrane into a vesicle or a tubule [1,2]. Another 

mechanism of bending membranes is by shallow insertion of amphipathic helices into the 

bilayer [4]. Many proteins contain amphipathic helices, especially those involved in 

endoctytosis and trafficking, such as epsins and BAR proteins [1].

The most highly studied group of membrane remodelers are BAR domain proteins [5]. The 

group comprises dozens of members whose roles have been linked to a number of cellular 

compartments and membrane-bending phenomena [2]. Based on the shape of their BAR 

domain, one divides them into (1) BAR/N-BAR, (2) F-BAR, both positively curving and (3) 

I-BAR, inducing negative curvature [5]. Even within each group, the BAR domain still 

varies in size, surface charge, curvature, and the presence of amphipathic helices; thus, 

further contributing to the diversity of their interactions. An additional complication is that 

their activity depends on protein density, surface tension, and membrane shape [2]. For 

instance, it was experimentally shown that two regimes can be distinguished: at low protein 

surface densities, they essentially act as curvature sensors whereas at high density they 

globally bend membranes [6,7], likely by forming a scaffold [8]; in between, there is a cross-

over regime where they have both actions simultaneously. Under the scaffolding regime, 

they can even induce scission of tubular membranes [9], adding to their remarkable arsenal 

of activity.

Bending membranes by proteins: insights from CG simulations

Many CG lipid and protein models with varying degree of coarseness have been designed in 

the recent years to study membrane bending by proteins (Figure 1A,B). The higher-

resolution CG models, such as MARTINI [10], retain much of the sub-molecular 

information and are therefore well suited for questions where the chemical specificity of 

components is important (Figure 1A). For instance, MARTINI MD simulations have shown 

how the embedded voltage sensor Kv [11] or small peptides [12] couple with the local 

membrane deformations. Simulations of a lattice composed of α-synuclein molecules 

showed how their binding strength, helix length, and the depth of insertion correlates with 

membrane bending, suggestive of tubule formation [13,14].

Lower resolution CG lipids, in which a lipid molecule is represented with three or fewer 

sites such as the hybrid CG (HCG) model (Figure 1A) [15], together with various continuum 

or phenomenological CG models [16] have been developed to investigate membrane 

dynamics at micron-scales. Important progress has been made in understanding the role of 

adhesive forces and local membrane deformation in the engulfment of nanoparticles by 

membranes [17]. For instance, the efficiency of engulfment was linked to particle shape [18] 

which can possibly be tuned to inhibit their uptake [19]. Simulations of multiple 

nanoparticles showed an unexpected cooperative interaction among particles, which drives 

tubulation into the membrane vesicle [20,21] (Figure 1C, left). These simulations may help 

to shed light on the mechanism of passive entry into the cell by large particles, such as 

viruses, and potentially aid in designing efficient drug carriers.
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Endocytosis is not a passive transport of material into the cell. Quite the contrary, it is finely 

orchestrated by its many different components, often coupling with an active, energy-driven 

process. Simulating single components interacting with the membrane helps in 

understanding their individual roles. In the best known endocytic pathway, clathrin 

molecules polymerize into a basket-shaped structure that molds the membrane into a vesicle 

[22]. CG simulations employing a patchy-particle model of clathrin have been used to 

identify some of the key interactions that drive clathrin assembly, fleshing out new 

intermediates in the budding pathway [23,24]. The last step of clathrin-mediated endocytosis 

is the GTP-driven constriction of polymerized dynamin followed by membrane scission 

[25]. Recent efforts using a semi-quantitative CG model, that mimics some aspects of 

dynamin structure, predicted that scission requires dynamin units to induce local positive 

curvature to properly drive scission, perhaps by shallow insertion of amphipathic moieties, 

thus complementing the classical picture of membrane constriction by scaffolding [26].

BAR proteins are found in almost all pathways of endocytosis, where they function in 

curvature sensing, bilayer bending and even scission [2] (see Figure 1B for a structure of an 

N-BAR domain). Atomic MD simulations of N-BAR, F-BAR and, more recently, I-BAR 

domains adhered to a small membrane patch have shown that single BAR domain molecules 

have a bending capacity through interactions between positively charged residues and 

negatively charged lipid head groups [27–30]. The same approach has identified the details 

of how amphipathic helices wedge into the bilayer, demonstrating that without the BAR 

domain backbone, helices alone would need to cover the membrane at a much larger surface 

fraction to impose as much curvature [31]. All-atom studies of N-BAR domains started to 

delineate the role of individual subdomains in their interactions with membrane curvature at 

the molecular level.

More recent CG and continuum approaches simulated many BAR proteins attached to the 

membrane, revealing different modes of large-scale membrane remodeling. Simulations 

using various CG models, in which the rigidity and spontaneous curvature can be externally 

tuned, have shown that bent rods or nematogenic particles embedded in the membrane can 

induce continuous tubulation of the membrane surface, as seen in cells with overexpressed 

BAR domains [32–34] (Figure 1C, center). Interestingly, these studies demonstrated that the 

local shape of the deformation—isotropic vs. anisotropic—will greatly affect how embedded 

rods interact with one another. A different mechanism was revealed by combined CG and 

continuum simulations of large (~500 nm) vesicles with electron microscopy (EM). At very 

high surface coverage, N-BAR proteins create a nematic stress field, causing the bilayer to 

break topology and fold into a network of tubules (Figure 1C, right) [35,36], matching very 

well with structures seen with EM [35]. While the radius distribution of tubules in the 

experiments with N-BARs was relatively uniform, MARTINI-like simulations of 

freestanding membrane patches decorated by BAR lattices showed that the tubule radius can 

also be affected by how individual proteins are arranged in the lattice [28,37], but this radius 

also depends critically on the strength of water-screened interactions between the BAR 

domain and the lipid headgroups – an effect that must be carefully treated in any CG model 

[38]. However, the tubular transformation of membrane vesicles is likely not relevant for 

understanding endocytosis, as BAR proteins presumably do not get so densely bound, but it 

is potentially important for understanding mitochondrial or T-tubule reticulation [2].
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At the onset of endocytosis, proteins, especially BARs and epsins, must likely aggregate 

from low concentrations to the remodeling sites. Recently, initiation of membrane curvature 

by these proteins was studied with CG models, which were based on their actual atomic 

structures. These simulations have shed light on how local curvature imposed by single BAR 

domains couples with bud formation whose radius of curvature is much larger than the size 

of the protein. A key feature is the anisotropic interaction with the lipid bilayer likely 

coming from the elongated shape of the BAR domain [39] and probably amplified by 

enhanced adhesion due to amphipathic helices [40]. Somewhat similar in spirit, a 

cooperative action among multiple epsin N-terminal homology domains, which stabilize 

large-scale membrane curvature, were seen in simulations of a few MARTINI proteins on a 

membrane patch [41]. This cooperativity and coupling with membrane curvature seems to be 

a common theme in initial protein assembly, with important implications in how complex 

membrane remodeling phenomena may be controlled and fine tuned.

Membranes mediate the formation of highly ordered protein assemblies

Simulations summarized in the previous section demonstrated that protein-bilayer 

interactions can give rise to local and global membrane deformations. However, the reverse 

process—the effect of membrane curvature on protein interactions—is equally important in 

understanding membrane-remodeling phenomena. It is especially important in the context of 

BAR proteins, which, according to experimental measurements, do not induce global 

curvature when sparsely bound to the membrane; rather, they most likely form higher-order 

assemblies [6–8].

A number of analytical studies over the years have predicted that membranes can mediate 

both the attractive and the repulsive interactions among bound particles [16,42]; however 

recent works have captured the dynamics of these interactions and how they play into the 

organization of many components. For instance, CG simulations of nanoparticles on vesicles 

have demonstrated that the membrane mediates attractions between adhered particles that 

induce local curvature [43–45] and experiments visualized their interactions [46]. 

Intriguingly, it has been seen with both nanoparticles and N-BAR proteins that they undergo 

a very specific assembly mechanism when bound to membranes, characterized by rapid 

formation of long linear aggregates (Figure 2A) [39,44]. Given the absence of explicit 

attractions between particles in the CG model, these effective interactions must be 

membrane driven. Based on simulations of N-BARs, it seems that the anisotropic curvature 

interactions activate very long-ranged interactions among proteins—much larger than its 

length—attracting others into the 1D cluster [39]. While spherical particles themselves 

interact isotropically, their pairing may be seen as the asymmetric unit. Interestingly, linear 

and circular assemblies of inclusion in membranes were first predicted using an analytical 

potential that modeled anisotropic inclusions in the membrane [47].

After the initial computational discovery, experimental evidence for the protein linear 

aggregates has also emerged. First, very long filaments of F-BAR proteins were seen with 

EM [48]; however, considering that F-BARs are known to interact in solution as well, the 

role of the membrane in this case is less clear. Single-molecule imaging of a BAR domain in 

yeast has shown that it forms very long filaments, albeit much denser than seen in 
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simulations. However, this has shown that the protein exchange only happens at the edges, 

suggesting a very stably held filament [49], as measured in CG simulations [45]. 

Interestingly, a membrane curving protein matrix M1 from the influenza virus, unrelated to 

the BAR family, was also seen with confocal microscopy to form microns-long lines, orderly 

spaced on lipid vesicles (Figure 2B) [50]. The resemblance to simulations of N-BARs on 

vesicles is striking (Figure 2B), even recapitulating crosslinking and quasi-meshing seen 

with increased protein density. The difference, however, is in the length scale, which could 

be internally set by the spontaneous curvature induced by the protein and other parameters. 

These observations suggested (1), that the mechanism of linear protein aggregation on 

membranes is likely a general assembly phenomenon and (2), that membranes can drive not 

only local or intermediate-range protein interactions, but potentially control high-order 

assemblies, by mediating filament interactions. Indeed, recently it has been observed with 

atomic force microscopy and supported by free energy calculations that membranes not only 

mediate the formation of N-BAR protein lines, but they also give rise to strong repulsions 

between protein filaments over long distances, creating a striped pattern on the near-micron 

scale (Figure 2C) [51]. The combination of short-range attractions and the long-range 

repulsions thus drives the formation of complex higher order structures, such as a meshwork 

on lipid vesicles [39], and spirals as part of a protein scaffold bound to a tubular membrane 

[8].

Protein assembly can also be modified by tuning the physical properties of the membrane. 

Increased surface tension or bending rigidity decreases the propensity of linear aggregation 

and introduces a higher variability in assembly, such as side-by-side interactions vs. tip-to-

tip for BARs [45], but also much more generally for cylindrically bound particles [52]. The 

cell could potentially complement the intrinsic differences in the way individual proteins 

affect membrane shape, and use membrane’s physical properties to fine-tune their 

organization and delivery to membrane-remodeling sites.

Future Outlook

We expect CG simulation to tackle several more complex questions in the near future. First, 

every membrane-remodeling phenomenon involves multiple types of proteins and their 

correct and timely assembly. It will be interesting to use CG models to simulate multiple 

BAR proteins, and BAR proteins interacting with other types of proteins, such as epsins and 

clathrin, in the same system. These simulations will help in resolving the controversial issue 

of the temporal order of recruitment and activity of individual proteins in endocytosis. 

Simulating multiple BAR proteins on the membrane will also help in understanding their 

differential recruitment during endosomal sorting. Second, membrane scission by dynamin 

or facilitated by motor proteins is challenging to simulate as it contains an energy-driven 

component. Future challenges in CG modeling will be how to account for active processes 

and conformational changes of proteins during simulations. Third, continuum modeling can 

access essentially arbitrary length scales, always at a cost of resolution. We anticipate that 

effort will be made to create better statistical-mechanical connections between models of 

different resolutions and, perhaps, even modeling membrane-remodeling processes using 

mixed-resolution models, so to capture global membrane changes with continuum 
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mechanics, while keeping the essential molecular understanding of these processes, with 

connections to CG modeling.

The computational efforts that we reviewed here have only opened a window into the 

understanding the dynamics of protein interactions on membranes. CG simulations will 

surely bring many more insights into membrane remodeling and cellular trafficking in the 

coming years, and they will become increasingly utilized to interpret experimental studies 

and to even make key predictions that will be subsequently confirmed.
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Figure 1. 
CG modeling to simulate membrane-curving phenomena. (A) Comparing the atomic picture 

of a lipid with CG lipid models of different resolution, MARTINI and the three-site HCG 

model. (B) Elastic-network CG modeling of the N-BAR domain. (C) Different mechanisms 

of creating membrane tubules from flat membranes and vesicles. From left to right: co-

operative invagination of adhered nanoparticles (courtesy of A. Saric [20]), emanation of 

tubules toward embedded curved rods (reprinted from [34]), reticulation of a vesicle into a 

network of tubules induced by densely adhered N-BARs (based on [35]).
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Figure 2. 
Membrane-mediated assembly of curvature-generating proteins. (A) Linear aggregation of 

nanoparticles (left) and N-BAR proteins (right) on lipid vesicles. Left modeled with a 

triangular-mesh model and adhesive spherical particles (courtesy of A. Saric [44]), right 

modeled with the HCG lipid model and elastic-network model N-BAR domain (based on 

[39]). (B) Comparing the assembly of M1 and N-BAR proteins on lipid vesicles. Top row 

confocal images reprinted from [50], bottom row CG simulations based on [39]. (C) Atomic 

force microgram of N-BAR proteins assembled on a supported lipid bilayer (reprinted from 

[51]).
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