Skip to main content
. 2018 Aug 1;9(10):1235–1240. doi: 10.1111/1759-7714.12821

Table 3.

Multivariate logistic regression analysis of the significant radiomic features to predict Ki‐67 status

Radiomic features B SE Wald df Sig. Exp (B) 95% CI for EXP (B)
Lower Upper
Inverse variance (GLCM) 18.30 6.68 7.50 1.00 0.01 88 591 554.41 181.63 4.3211E + 13
Minor axis (shape) −0.44 0.20 5.00 1.00 0.03 0.65 0.44 0.95
Elongation (shape) 9.91 4.00 6.13 1.00 0.01 20 160.92 7.88 51 564 672.82
Surface volume ratio (shape) 2.05 2.89 0.50 1.00 0.48 7.78 0.03 2250.67
Volume (shape) 0.00 0.00 1.90 1.00 0.17 1.00 1.00 1.00
Surface area (shape) 0.00 0.00 0.57 1.00 0.45 1.00 1.00 1.00
Least axis (shape) 0.18 0.12 2.29 1.00 0.13 1.20 0.95 1.52
Maximum 2D diameter column (shape) 0.10 0.08 1.68 1.00 0.19 1.11 0.95 1.29
Maximum 2D diameter row (shape) 0.11 0.06 3.08 1.00 0.08 1.12 0.99 1.26
Gray Level Non‐uniformity (GLCM) 0.00 0.00 1.18 1.00 0.28 1.00 1.00 1.00
Zone variance (GLSZM) 0.00 0.00 0.01 1.00 0.91 1.00 0.99 1.01
Large area emphasis (GLSZM) 0.00 0.00 0.01 1.00 0.91 1.00 0.99 1.01

2D, two‐dimensional; CI, confidence interval; GLCM, Gray Level Non‐uniformity; GLSZM, Gray Level Size Zone Matrix; SE, standard error.