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Chronic obstructive pulmonary disease (COPD) is a syndrome caused by damage to the lungs that results in
decreased pulmonary function and reduced structural integrity. Pulmonary function testing (PFT) is used to diagnose
and stratify COPD into severity groups, and computed tomography (CT) imaging of the chest is often used to assess
structural changes in the lungs. We hypothesized that the combination of PFT and CT phenotypes would provide a
more powerful tool for assessing underlyingmorphologic differences associated with pulmonary function in COPD than
does PFT alone. We used factor analysis of 26 variables to classify 8,157 participants recruited into the COPDGene
cohort between January 2008 and June 2011 from 21 clinical centers across the United States. These factors were
used as predictors of all-cause mortality using Cox proportional hazards modeling. Five factors explained 80% of the
covariance and represented the following domains: factor 1, increased emphysemaand decreased pulmonary function;
factor 2, airway disease and decreased pulmonary function; factor 3, gas trapping; factor 4, CT variability; and factor 5,
hyperinflation. After more than 46,079 person-years of follow-up, factors 1 through 4 were associated with mortality and
there was a significant synergistic interaction between factors 1 and 2 on death. Considering CT measures along with
PFT in the assessment of COPD can identify patients at particularly high risk for death.

chronic obstructive pulmonary disease; Cox proportional hazards; factor analysis; mortality

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; COPDGene, Genetic Epidemiology of Chronic
Obstructive Pulmonary Disease; CT, computed tomography; FEV1, forced expiratory volume at 1 second; FEV1%, percentage of forced
expiratory volume at 1 second; FVC, forced vital capacity; FVC%, percentage of forced vital capacity; HU, Hounsfield unit; SSDI, Social
Security Death Index.

Chronic obstructive pulmonary disease (COPD) is defined
by reduced pulmonary function and is associated with reduced
quality of life, more hospitalizations, and higher risk for death
(1, 2). Cigarette smoking is the major environmental risk factor
for development of COPD (3). Although COPD is defined by
a ratio of less than 0.70 of forced expiratory volume at 1 second
(FEV1) to forced vital capacity (FVC), there is substantial het-
erogeneity in the clinical and pathological manifestations of the

disease (4, 5). Identifying the pathophysiologic processes re-
flecting underlying disease heterogeneity could lead to more
targeted therapies for prevention and treatment.

Chest computed tomography (CT) can aid visualization and
quantification of anatomic features of the lung; however, some
key features of interest are correlated. This presents challenges in
the use of these features as covariates in multivariable statistical
models but also presents an opportunity to better define
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multidimensional pathologic processes in COPD. These CT fea-
tures may represent primary structural abnormalities in the lung
that lead to reduced pulmonary function and, ultimately, COPD
diagnosis.

By taking advantage of the correlation structure of chest CT
and pulmonary function data, factor analysis can reduce the num-
ber of variables to a small and manageable set of uncorrelated
factors (6). We hypothesized that this smaller set of continuous
vectors may represent disease axes that can be used to identify
the underlying pathophysiologic heterogeneity within COPD.
We hypothesized that this method, applied to a large hetero-
geneous dataset of COPD, would result in novel insights into
disease phenotypes and prediction of mortality.

METHODS

TheGenetic Epidemiology of COPDStudy

The Genetic Epidemiology of COPD (COPDGene) Study is a
multicenter (21 clinical sites in the United States), observational
study designed so genetic factors associated with COPD can be
identified and COPD-related phenotypes characterized (7). Into
this study were recruited 10,192 adult current and former smo-
kers who were non-Hispanic whites (two-thirds of cohort)
or who were black (one-third of cohort), ages 44–81 years,
with at least a 10 pack-year history of smoking. Participants
with known COPD were recruited from outpatient pulmo-
nary clinics and other smokers were recruited through

personal contact with friends and relatives of clinic pa-
tients, advertisements, and outreach to community groups and
other organizations. Study centers were instructed to target
recruitment of participants without COPD from community
sources rather than pulmonary clinics serving other lung diseases.
Nonclinic-based recruitment identified participants with andwith-
out COPD and identified undetected COPD in many partici-
pants. Exclusion criteria were as follows: women who were
pregnant, a history of lung disease other than asthma, surgical
removal of at least 1 lung lobe, active cancer treatment or sus-
pected lung cancer, chest radiation therapy, metal objects in the
chest, recent COPD exacerbation treated with antibiotics or
steroids (these patients were invited to participate at a later
date), recent eye surgery, past myocardial infarction or other
cardiac hospitalization, recent chest or abdominal surgery,
inability to use albuterol, a first- or second-degree relative partici-
pating in the study, or multiple racial categories. All participants
provided written informed consent, and the overall study was
approved by the institutional review boards at all of the participat-
ing centers.

All participants were assessed for pulmonary function using
spirometry and lungmorphology using high-dose inspiration and
low-dose expiration chest CT imaging. Although COPDGene is
enriched for COPD cases, participants included people with and
without COPD and represented a full range of pulmonary func-
tion (Web Figure 1, available at https://academic.oup.com/aje).
Thus, COPDGene provides a broad spectrum of pulmonary phe-
notypes, based on findings of CT imaging, after specific

Table 1. Characteristics of Individuals Included in This AnalysisWith Complete Factor Data ComparedWith the
Entire Cohort, Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study, United States, 2008–2011

Characteristic
Analysis Cohort (n = 8,157) COPDGene Cohort (n = 10,192)

P Value
Mean (SD) No. % Mean (SD) No. %

Age, years 59.7 (9.0) 59.6 (9.0) 0.45

Female sex 3,775 46.3 4,742 46.5 0.74

Black race 2,545 31.2 3,408 33.4 0.001

Current smoker 4,276 52.4 5,414 53.1 0.35

Pack-years of smoking 44.4 (24.9) 44.2 (25.0) 0.59

COPD (yes) 3,604 44.2 4,484 44.0 0.07

FEV1% predicteda 76.8 (25.3) 76.4 (25.6) 0.29

FEV1/FVC 0.67 (0.16) 0.67 (0.16) 1.00

COPD classificationb 0.88

PRISM 992 12.2 1,257 12.4

Gold 0 3,561 43.7 4,388 43.3

Gold 1 651 8.0 794 7.8

Gold 2 1,574 19.3 1,922 19.0

Gold 3 918 11.2 1,162 11.5

Gold 4 461 5.6 606 6.0

Abbreviations: FEV1%, percentage of forced expiratory volume at 1 second; COPDGene, the Genetic Epidemiol-
ogy of Chronic Obstructive Pulmonary Disease Study; GOLD, Global Initiative for Chronic Obstructive Lung Disease;
PRISM, preserved ratio impaired spirometry; SD, standard deviation.

a Based on Third National Health and Nutrition Examination Survey reference values (9).
b GOLD stage is missing for 63 patients in the COPDGene cohort because spirometry could not be completed or

spirometry data weremissing. Percentages are calculated on the basis of a total of 10,129 patients.
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exclusion criteria were applied (7), allowing unique insights
into this population of current and former smokers.

Table 1 details characteristics of the COPDGene participants
included in the present analysis compared with the full cohort.
We excluded subjects without complete data on the phenotypes
of interest or death follow-up. There were a total of 5,612 non-
Hispanic white and 2,545 black participants with complete
data.

Pulmonary function variables

Pulmonary function testingwas performed followingAmerican
Thoracic Society guidelines (8) using the Easy-One spirometer
(nddMedical Technologies, Andover,Massachusetts). Spirometry
was performed at baseline and repeated after the administra-
tion of 180 μg of inhaled albuterol. FEV1, FVC, peak expiratory
flow, and forced expiratory flow at 25%–75% of the FVC were
obtained for all participants, FEV1 percent (FEV1%) predicted
and FVC percent (FCV%) predicted values were calculated
using the Third National Health and Nutrition Examination Sur-
vey reference values (9). The FEV1/FVC ratio was calculated
using the absolute measures in liters. FEV1% predicted, FVC%
predicted, peak expiratory flow, forced expiratory flow at 25%–

75% of the FVC, and FEV1/FVCmeasure unique aspects of pul-
monary function and eachwas included in the factor analysis.

CT variables

CT images of the chest were acquired at full inspiration
and relaxed exhalation, as described previously (10, 11).
Multiple CT-based metrics of the lung were obtained, including
densitometric assessments of the lung parenchyma to provide
objective assessments of emphysema-like tissue (CT threshold
of −950 Hounsfield units (HU) and −910 HU expressed as a
percentage of total lung parenchyma) and gas trapping (i.e.,
expiration-to-inspiration attenuation ratio, which is thought to
reflect small airways disease). The percentage of lung tissue
below a threshold of−856HUwas used to represent a quantita-
tive metric of gas trapping on the expiratory CT scan.

Additional measures of central airway morphology were also
used to provide objective assessments of airway wall thickening.
One suchmeasure is thewall area percentage. This is calculated as
the 100 multiplied by the ratio of the airway wall area divided by
the total bronchial cross-sectional area (wall plus lumen).Multiple
investigations have demonstrated that increases in these measures
(e.g., increased wall area percentage) reflect airway wall thicken-
ing and spirometric and clinical impairment. These measures are
commonly obtained at select sites in the tracheobronchial tree,
such as the third-generation (i.e., segmental) airways. Measures of
airway wall thickness and the square root of the wall area of
derived airways with lumen circumference of 10 mm and 15 mm
were calculated as described previously (12, 13). Total lung capac-
ity was measured in liters using volumetric CT imaging obtained
during a breath hold at full inspiration with the subject supine.
Functional residual capacity wasmeasured in liters using volumet-
ric CT scans obtained at the end of relaxed exhalation while
supine. CT variables included in the factor analysis were designed
to represent the broad range of CT phenotypes related toCOPD.

Other covariates

Height was measured in centimeters using a stadiometer,
weight was measured in kilograms,, and bodymass index (BMI)
was calculated by dividing the weight by height squared (using
weight in kilograms and height in meters) (14). Current smoking
status and pack-years of smoking were determined by question-
naire. Self-reported physician diagnoses of comorbid conditions
were also determined by questionnaire.

Statistical methods for factor analysis

Before conducting the factor analysis, the distributions of
variables were assessed for normality and Box-Cox transfor-
mations were considered for each nonnormally distributed
variable. See Web Table 1 for transformations that were per-
formed. Note that for all transformations, the scale direction
was preserved to facilitate interpretation of the loading scores in
clinically relevant terms.

Before performing factor analyses in the full cohort, we strati-
fied the cohort by sex and race (non-Hispanic white or black) and
assessed the dimensionality of the variables, each centered at 0
and scaled to have variance of 1, using principal components
analysis based on the number of eigenvalues that were greater
than 1. In addition, factor analysis was performed in the 4 strata
we compared for factor similarities and differences. Horn’s paral-
lel analysis was also conducted based on factor analysis fit to
minimize the sum of squares of off-diagonal residuals of the re-
sulting correlation matrix (15). Factor scores were computed
using the Varimax rotation. Analyses were all conducted in R,
version 3.1.1 (R Foundation for Statistical Computing, Vienna,
Austria) using the psych package.

All-causemortality

Assessment of death in COPDGene was conducted using
multiple approaches. A longitudinal follow-up data collection
effort was conducted using automated telephony and web-based
survey instruments every 6 months for all available participants
(16). Participant contact through this system resulted in identifi-
cation of deceased participants and subsequent follow-up request
for confirmation of death. Searches based on the Social Security
Death Index (SSDI) are also conducted at regular intervals in
COPDGene. Individual study-center institutional review board
restrictions allowed an SSDI search to be conducted for 8,675
subjects in October 2016 by a central study search and by 9 sites
performing their own searches. Results were aggregated cen-
trally. Assessment of vital status (i.e., alive vs. dead) was back-
dated 3 months to account for the expected lag time between
death and its appearance in the SSDI dataset. We included 333
participants who were unable to be searched through SSDI but
were active participants in the longitudinal follow-up (partici-
pant returned a longitudinal follow-up survey within 7 months
of the search). Participant follow-up time was the time between
their baseline study visit and SSDI identified death, report of
death from institutional review board–restricted study centers,
or most recent, active, longitudinal follow-up participation. A
total of 1,454 participants have been lost to follow-up (i.e., they
have no SSDI identifier and no study contact has been made
after the baseline study visit).
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The Cox proportional hazard model, based on time to death,
was used to model prediction of death in the sample. Continu-
ous factor scores were tested for interactions as well as nonlin-
ear associations with death.

RESULTS

The study population for the current analysis with complete
data is similar to the overall cohort with respect to age (P = 0.5),
sex (P = 0.7), smoking status (P = 0.4), and history of pack-years
of smoking (P = 0.6), but differed with respect to race, with fewer
black participants included (P = 0.001) (Table 1). There were no
differences in COPD case status (P = 0.07), pulmonary function
(P for FEV1 = 0.3 and P for FEV1/FVC = 1.0), or Global Initia-
tive for Chronic Obstructive Lung Disease stage (a measure of
COPD severity) (P = 0.9) between the study population with
complete data and the overall cohort.

Principal component analysis was performed separately in the
subgroups (male non-Hispanic whites, female non-Hispanic
whites, male blacks, female blacks) to assess the dimensional-
ity of the underlying factor model and all models yielded 5 to
6 eigenvalues greater than 1. The first 6 principal components
explained between 82% and 85% of the variability for all
groups. Horn’s parallel analysis indicated no more than 7 fac-
tors existed, and that no more than 6 principal components ex-
plained variability beyond background noise.

Beginning with the white male group (n = 2,973), factor anal-
ysis was conducted starting with 7 factors with factors subse-
quently removed until all factors had absolute factor loadings
greater than 0.7. This yielded a 5-factor model. Likewise, in each
of the other subgroups, a 5-factor model was supported by the
data. Correlating these factor loadings among all subgroups re-
vealed 5 consistent factors. Using the factormodel from thewhite
male subgroup, factor scores were derived for each of the other
subgroups. These were then correlated with the scores derived
from their respective subgroup analyses. The correlations were
all quite high: 0.84 for factor 2 in female black participants and
greater than 0.96 for all other subgroups and all 5 factors (Web
Table 2). These correlations support the same underlying factor
model for all subgroups. Given evidence for the same underlying
factors explaining correlation among the variables, a single-
factor model was fit on the basis of the combined set of data,
using the same approach.

From the factor analysis with varimax rotation, 5 factors
were identified (Table 2). These 5 factors explained 80% of the
total variance of the 26 variables included in the final analysis,
with the first factor accounting for 37% of the variance of these
measures and the remaining factors accounting for progres-
sively less of the total variance—17%, 10%, 9%, and 7% of the
total variance, respectively, for factors 2 through 5. These fac-
tors accounted for a majority of the individual-measure var-
iances of pulmonary function (72%–98%), inspiration CT
density measures (52%–99%), expiration CT measures (74%–

99%), but substantially less of the specific airway disease mea-
surements (33%–36%) (Table 2).

CT measures of quantitative measures of emphysema on
CT scan loaded strongly on factor 1, with the highest factor-
loading scores being inspiratory CT volume less than −910
HU and less than −950 HU (factor loading = 0.96 for both)

(Table 2). Measures of emphysema distribution also loaded
highest on factor 1, as did the analogous measures of density on
the expiration CT scans. Pulmonary function measures FEV1/
FVC, FEV1% predicted, and forced expiratory flow 25%–75%
loaded negatively on factor 1 (−0.63,−0.41, and−0.51, respec-
tively). The airway measurements did not load strongly on fac-
tor 1. Based on the factor-loading scores, high CT measures
of lung density with concomitant low pulmonary function,
we interpret factor 1 to represent a multidimensional (i.e.,
low attenuation areas and lower pulmonary function) emphy-
sema disease axis.

Factor 2 was represented by strong factor loadings for the
physiologic pulmonary function measures, with factor-loading
scores range from−0.61 to−0.89, except for total lung capacity
and functional residual capacity (Table 2). Airway measure-
ments of CT morphology loaded highest on factor 2: 0.57 for
segmental wall area percentage and 0.51 for square root of the
wall area of derived airways with lumen circumference of 10
mm and 15 mm. The measures of CT density, particularly from
the inspiratory CT scans, did not load strongly on factor 2. The
morphologic measures of the airways, combined with low pul-
monary function loading on factor 2, indicated to us that factor
2 represents a multidimensional airway disease axis.

Physiologic measures of pulmonary function did not load
strongly on factors 3 or 4. CT measures of low attenuation on
expiratory CT scans, which are not present on inspiration CT
images, indicate gas trapping and represent a gas-trapping dis-
ease axis (factor-loading score for expiration-to-inspiration
attenuation ratio, 0.81). Measures of CT density variability
measured by the standard deviation of the CT histogram and
BMI loaded on factor 4 and therefore represent a complex axis
capturing risk associated with BMI (low BMI possibly sug-
gesting cachexia, high BMI suggesting obesity), as well as CT
“noise” potentially capturing risk associated with both high
and low attenuation present in individuals (e.g., low attenua-
tion attributable to emphysema combined with high attenua-
tion attributable to fibrotic lung diseases). Total lung capacity
and functional residual capacity are the only variables that
loaded strongly on factor 5 (Table 2). The coefficients for the
derivation of factor scores of this model are provided in Web
Table 3.

Relationships between disease axes and all-cause
mortality

A total of 950 deaths occurred over a mean follow-up time
of 6.3 years, representing 46,079 person-years of follow-up.
Older age (P < 0.0001), male sex (P = 0.018), being a current
versus former smoker (P = 0.048), and pack-years of smoking
(P = 0.0003) were all positively associated with death (Table 3).
Lower BMI was associated with higher risk for death (P <
0.0001) in this population of current and former smokers en-
riched for more severe COPD. The emphysema disease axis was
associatedwith higher risk for death (P = 0.045). The airway dis-
ease axis was associated with the greatest risk for death (P <
0.0001) and, in addition to the linear term, a squared term for
the airway disease axis was also significantly associated with
greater risk for death (P = 0.027).

We explored both the airway and emphysema axes by asses-
sing their relationship with death, using deciles of each axis.
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The nonlinear risk observed across deciles of both axes
prompted us to test for a statistical relationship (Web Figure 2).
Furthermore, there was a statistically significant synergistic
interaction between the emphysema disease axis and the airway
disease axis (P = 0.001) on death risk. Neither the gas-trapping
factor nor the total lung capacity and functional residual capacity
factor were related to all-cause mortality (P = 0.5 and P = 0.3,

respectively). The CT intensity variability factor that included
BMI was positively associated with a higher risk of death (P <
0.0001).

The complex relationship among the emphysema and airway
disease axes with death is summarized in Figure 1. The z-axis
represents the probability of all-cause mortality ranging from
less than 5% to 40% for each decile of loading score for

Table 2. Factor Loadings for a 5-Factor Model Based on the Combined Data Set (n = 8,157), Genetic Epidemiology of Chronic Obstructive
Pulmonary Disease Study, United States, 2008–2011

Variable Emphysema
Disease Axis

Airway
Disease Axis

Gas
Trapping

CT Intensity
Variability

TLC and
FRC

Proportion of Variance
Explaineda

Pulmonary function

FEV1/FVC −0.63b −0.61b −0.23 0.12 0.05 0.83

FEV1% predictedc −0.41 −0.89b −0.1 0.03 −0.08 0.98

FVC%predictedc −0.06 −0.82b 0.06 −0.05 −0.19 0.72

Peak expiratory flow −0.4 −0.7b −0.19 0.08 0.16 0.72

Forced expiratory flow 25%–75% −0.51b −0.7b −0.22 0.07 0.11 0.81

TLC (predicted-race adjusted) −0.04 −0.08 −0.03 0.01 0.95b 0.9

FRC (predicted-race adjusted) 0.05 −0.02 0.04 0.03 0.94b 0.88

Inspiratory CT

Less than−856 HU 0.86b −0.18 0.03 −0.44 0.01 0.96

Less than−910 HU 0.96b −0.05 0.11 −0.2 0 0.98

Less than−950 HU 0.96b 0.08 0.18 0.1 0 0.96

Inspiration histogram, 15th
percentile

−0.94b −0.01 −0.12 0.19 0.01 0.93

Emphysema, lower one-third, % 0.92b 0.04 0.12 0.02 0.05 0.87

Emphysema, upper one-third, % 0.91b 0.09 0.19 0.15 −0.04 0.89

Inspiration intensity, mean −0.88b 0.06 −0.06 0.41 −0.01 0.94

Inspiration intensity, SD −0.03 0.26 0.12 0.66b −0.01 0.52

Exp/insp attenuation ratio 0.31 0.41 0.81b −0.24 −0.01 0.99

Expiratory CT

Less than−910 HU 0.75b 0.33 0.54b 0.15 0.03 0.98

Less than−950 HU 0.73b 0.33 0.48 0.3 0.04 0.97

Gas trapping, % 0.68b 0.23 0.65b −0.05 0.03 0.95

Expiration histogram, 15th percentile −0.66b −0.25 −0.58b 0.1 −0.01 0.84

Expiration intensity, mean −0.62b −0.27 −0.64b 0.36 0 0.99

Expiration intensity, SD 0.1 −0.1 −0.19 0.82b 0.05 0.74

Airwaymeasurements

Wall area, % segmental −0.07 0.57b 0.13 0.07 −0.08 0.36

Pi 10 −0.16 0.51b 0.13 0.16 −0.1 0.34

Pi 15 −0.21 0.51b 0.1 0.14 −0.02 0.33

BMI −0.26 0.07 −0.13 0.50b 0.01 0.33

Proportion of variance explained 0.37 0.17 0.1 0.09 0.07

Cumulative variance explained 0.37 0.53 0.64 0.72 0.8

Abbreviations; BMI, body mass index; CT, computed tomography; Exp, expiration; FEV1/FVC, ratio of forced expiratory volume at 1 second to
forced vital capacity; FEV1%, percentage of forced expiratory volume at 1 second; FRC, functional residual capacity; FVC%, percentage of forced
vital capacity; HU, Hounsfield unit; Insp, inspiration; Pi 10, airway wall thickness at an internal perimeter of 10 mm; Pi 15, airway wall thickness at
an internal perimeter of 15 mm ; SD, standard deviation; TLC, total lung capacity.

a Proportion of variance in the row variable explained by the 5 factors.
b Factors loading≥│0.5│.
c Based on Third National Health and Nutrition Examination Survey reference values (9).
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factors 1 and 2 in a Cox proportional hazards model adjusted
for age, sex, current smoking, pack-years of smoking, BMI,
high blood pressure, each of the 5 factors, the interaction

between factors 1 and 2, and a quadratic term for factor 2. As
can be seen in Figure 1 in dark blue (the decile of emphysema
axis ranging from 1, small loading score, to 10, large loading

Table 3. Cox Proportional HazardModel of Death, Survival Follow-up December 2016, the Genetic Epidemiology of
Chronic Obstructive Pulmonary Disease Study Cohort, United States, 2008–2011

Variable β
Estimate

Standard
Error P Value Hazard

Ratio 95%CI

Age 0.03058 0.00556 <0.0001 1.031 1.02, 1.04

Male sex 0.00334 0.00141 0.0178 1.003 1.00, 1.01

Current smoker 0.19166 0.09702 0.0482 1.211 1.002, 1.465

Pack-years of smoking 0.30179 0.08248 0.0003 1.352 1.15, 1.59

BMI (1 unit) −0.0569 0.00867 <0.0001 0.945 0.929, 0.961

High blood pressure 0.17596 0.08129 0.0304 1.192 1.017, 1.398

Emphysema disease axisa 0.11584 0.05784 0.0452 1.123 1.002, 1.258

Airway disease axisb 0.64179 0.05853 <0.0001 1.900 1.694, 2.131

Interaction between the emphysema and airway
disease axes

0.16892 0.0474 0.0004

Airway disease axis squared 0.07635 0.0345 0.0269 1.079 1.009, 1.155

Gas trapping 0.03526 0.05231 0.5004 1.036 0.935, 1.148

CT intensity variability/noise 0.30924 0.04911 <0.0001 1.362 1.237, 1.500

TLC and FRC −0.0398 0.04004 0.3205 0.961 0.888, 1.039

Abbreviations: BMI, body mass index; CI, confidence interval; CT, computed tomography; FRC, functional residual
capacity; TLC, total lung capacity.

a Hazard ratio for factor 1 is presented for factor 2 = 0.
b Hazard ratio for factor 2 is presented for factor 1 = 0.
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Figure 1. The relationship among the emphysema and airway disease axes with death, Genetic Epidemiology of Chronic Obstructive Pulmonary Dis-
easeStudy, United States, 2008–2011. The z-axis represents the probability of all-causemortality, ranging from4% (dark blue), 5%–10% (purple), 10%–

15% (blue), 15%–20% (green), 20%–25% (orange), 25%–30% (yellow), 30%–35% (red), to greater than 35% (dark red) for each decile of loading score
for factors 1 (emphysema axis) and 2 (airway axis) in a Cox proportional hazards model adjusted for age, sex, being a current smoker, pack-years of
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interaction between factors 1 and 2, and a quadratic term for factor 2. The x- and y-axes represent deciles of each axis, ranging from 1, representing a
small loading score, to 10, representing a large loading score.
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score), there was not a significant increase in death for low levels
of the emphysema disease axis, and even at high levels of the
emphysema disease axis, the death rate was not elevated at the
lower end of the distribution of the airway disease axis. The air-
way disease axis was strongly associated with death at all levels
of the emphysema axis (decile of airway axis in Figure 1 ranging
from 1, small loading score, to 10, large loading score) and with
the increase in the death rate being more than a simple linear
function. The synergistic interaction between the emphysema
and airway disease axes can be seen as the greater mortality rate
associated with the higher levels of both (i.e., the progression
dark blue to the upper, rear quadrant of the surface plot shown in
red in Figure 1.

DISCUSSION

COPD has long been recognized as a heterogeneous disease
(4). In recent uses of multidimensional analyses, researchers
have characterized this heterogeneity by clustering individuals
into discrete phenotypic categories (5). Our approach attempts
to identify multidimensional vectors on the basis of combined
spirometric and CT data, with each person contributing to each
vector depending upon their values for all variables within this
multivariable analysis. This provides a continuous distribution
for each vector representing an underlying physiologic process,
which can be interpreted based on the factor loadings of each
individual variable.

Conducting factor analysis of subjects in the COPDGene
Study revealed 5 unique, multidimensional factors from the cor-
relation structure of pulmonary function and morphologic mea-
sures obtained from chest CT imaging. Spirometric measures
contributed to 2 of the factors, which were defined on the basis
of morphologic measures from the CT images: the emphysema
disease axis, characterized by low attenuation areas from inspi-
ration CT, and the airway disease axis, characterized by mea-
sures of airway wall thickness. These 2 disease axes were
associated with death. Furthermore, a synergistic interac-
tion became apparent such that high levels of both factors
were associated with the greatest risk for death.

Morphologicmeasures from chest CT imaging andmeasures
of pulmonary function were included in this analysis. Vector la-
bels from chest CT variables indicate the observedmorphologic
differences. For example, the emphysema axis represents strong
factor loadings of low attenuation area on inspiration CT scans
(i.e., less than−950HU and less than−910HU), and the airway
axis represents strong factor loadings of airway thickness (i.e.,
segmental wall area percentage, square root of the wall area of a
derived airwaywith lumen circumferences of 10 mm and 15 mm).
These were labeled as disease axes on the basis of their strong
inverse factor loadings of pulmonary function (i.e., FEV1/FVC
for the emphysema and airway disease axes and FEV1% pre-
dicted for the airway disease axis).

Low pulmonary function is a well-established risk factor
for death (2), and the results of our study are consistent with
that observation. In addition, these analyses partition pulmo-
nary function variables into the proportion associated with an
emphysema disease axis and the proportion associated with an
airway disease axis. To illustrate, reading Table 2 from left to
right, the loading scores reported for the row labeled FEV1

show a negative relationship with the emphysema disease axis
in column 1 (loading score = −0.41), a stronger negative rela-
tionship with the emphysema disease in column 2 (loading
score = −0.89), and a weaker negative relationship with the
gas-trapping axis in column 3. To assess the impact of these
disease axes on death independent of pulmonary function,
FEV1% predicted and the FEV1/FVC ratio were removed
from the disease axes and were included directly as indepen-
dent variables in the Cox proportional hazard model along
with the disease axes. The airway disease axis remained inde-
pendently associated with death rate, whereas the emphysema
disease axis was only marginally associated with overall death
rate after adjustment for pulmonary function (data not shown).
These analyses indicate an important role for pulmonary func-
tion on death associated with emphysema as well as an inde-
pendent role associated with the airway disease axis.

Limitations of this study include the use of several measures
of CT intensity on inspiration and expiration that have not been
directly shown to have clinical relevance. These measures fell
into predictable factors, however, which suggests the values
chosen (e.g., inspiration percentage of the lung less than −856,
less than −910, and less than −950) were correlated measures
of a similar disease process with clinical relevance. COPDGene
is a large study of current and former smokers with a history of
smoking cigarettes for more than 10 pack-years. This likely
makes the generalizability of the results questionable when
applied to a population with shorter history of cigarette smok-
ing. The COPDGene Study has experienced loss to follow-up
over this time, and this can induce bias. Table 1 indicates that
all characteristics except race were not statistically different
between the main cohort and the cohort used for the factor
analysis.

Disease axes, compared with disease clusters, may be diffi-
cult to interpret in a clinical setting, making the direct applicabil-
ity of this approach complex for physicians. This approach does
avoid the potential misinterpretation of assessing individual
variables in the presence of highly correlated data. However,
future work should include assessment of inflection points in
the risk for all-cause mortality in each of the factors that define
high-risk subgroups on the basis of the continuous disease axes.
Although clustering approaches have not achieved strong sepa-
ration for COPD subtypes, inflection points in risk may suggest
reasonable clinical cutpoints for individuals. Disease axes may
provide important insights into the pathophysiologic processes
leading to COPD and death associated with COPD and provide
potential targets for intervention for prevention or treatment of
COPD.
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