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The inconsistent findings from epidemiologic studies relating total sugars (TS) consumption to cardiovascular disease
(CVD) or type 2 diabetes (T2D) riskmay be partly due tomeasurement error in self-reported intake. Using regression cali-
bration equations developed based on the predictive biomarker for TS and recovery biomarker for energy, we examined
the association of TS with T2D and CVD risk, before and after dietary calibration, in 82,254 postmenopausal women par-
ticipating in theWomen’s Health Initiative Observational Study. After up to 16 years of follow-up (1993–2010), 6,621 T2D
and 5,802CVD incident caseswere identified. The hazard ratio for T2D per 20% increase in calibrated TSwas 0.94 (95%
confidence interval (CI): 0.77, 1.15) in multivariable energy substitution, and 1.00 (95% CI: 0.85, 1.18) in energy partition
models. Multivariable hazard ratios for total CVD were 0.97 (95%CI: 0.87, 1.09) from energy substitution, and 0.91 (95%
CI: 0.80, 1.04) from energy partition models. Uncalibrated TS generated a statistically significant inverse association with
T2D and total CVD risk in multivariable energy substitution and energy partition models. The lack of conclusive findings
from our calibrated analyses may be due to the low explanatory power of the calibration equations for TS, which could
have led to incomplete deattenuation of the risk estimates.

calibration; cardiovascular disease; diabetes; diet; measurement error; total sugars; Women’s Health Initiative

Abbreviations: BMI, body mass index; CHD, coronary heart disease; CI, confidence interval; CVD, cardiovascular disease; EP,
energy partition; ES, energy substitution; HR, hazard ratio; ME, measurement error; NPAAS, Nutrition and Physical Activity
Assessment Study; OS, Observational Study; T2D, type 2 diabetes; TS, total sugars; WHI, Women’s Health Initiative.

The development of a predictive biomarker for total sugars
(TS) consumption (1) has enabled the study of measurement
error (ME) in self-reported TS intake (2) and ME correction in
disease association studies (3). Predictive biomarkers are a distinct
group of dietary biomarkers that can predict (i.e., estimate) intake
after being calibrated for their biases (2). Hence, these biomarkers
can be used as reference validation instruments similar to recov-
ery biomarkers, provided their biases have been quantified in an
appropriate feeding study.

Type 2 diabetes (T2D) and cardiovascular disease (CVD) are
2 of the most prevalent, largely preventable chronic diseases
worldwide (4). Approximately 30.2 million adults in the United

States have diabetes; of these cases, 90%–95% are T2D (5),
whereas more than 1 in 3 US adults have CVD (including hyper-
tension) (6). Dietary sugars (e.g., TS, sucrose, fructose, glucose)
or sources of sugars (e.g., sugar-sweetened beverages) in rela-
tion to T2D or CVD risk have long been investigated (7–13).
Plausible mechanisms include hyperinsulinemia, insulin resis-
tance, inflammation, and oxidative stress promoted by the gly-
cemic effect of diets high in refined sugars (14).More specifically,
de novo lipogenesis in the liver induced by high levels of fruc-
tose consumption results in dyslipidemia, insulin resistance,
and hyperuricemia (15, 16). In addition, potential excess in
energy intake associated with TS consumption elicits indirect
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effects of sugars on these 2 outcomes mediated by overweight
and obesity (17).

Although establishing the role of TS or individual sugars as
nutrients in the etiology of these 2 outcomes poses a challenge
(7, 8, 18–20), the adverse evidence for sugar-sweetened bev-
erages, a liquid form of added sugars (21), in relation to CVD
(9) and T2D (10) is more consistent. This may result from the
fact that sugars in beverages may have more pronounced
adverse metabolic effects related to rapid metabolism as
compared with sugars in solid foods, which are embedded
within the food matrix and thus are slower to enter metabolic
pathways (22). Sugars from liquids may also haveweaker sati-
ating effect, leading to consumption of larger portion sizes
(23). Furthermore, it is plausible that inconsistencies in the
evidence arise from differential misreporting of sugars-related
intake. Sugar-sweetened beverages come in common, prede-
fined serving sizes; hence, they are generally cognitively easier
to report on any self-reporting instrument, whereas estimates of
individual sugars are generated through food and nutrient data-
bases from reported intake occasions of multiple food items
associated with various levels ofME (24–26).

Using the predictive biomarker of TS, it has been found in sev-
eral validation studies that self-reports underestimated TS con-
sumption (2, 3, 27) and were associated with attenuation factors
that could bias disease relative risks toward the null (i.e., ranging
from 1.1 to 1.5 for a true relative risk = 2) (2, 3), even when they
are assumed to be free of systematic biases.When dietary valida-
tion studies are incorporated within cohorts, adjustment for ME
in self-reported intake or observed relative risks can be made
(28). When a validation study with objective dietary biomarkers
(24) was used in the Women’s Health Initiative (WHI) Observa-
tional Study (OS) (29), after ME correction, energy intake was
associated with increased risk of breast cancer (30), all cancer
(31, 32), CVD (33), and T2D (34), and protein intake was
associated with increased risk of T2D (34) and decreased
risk of frailty (35).

In the current study, we used data from aWHI validation study
with the predictive biomarker of TS intake (3) to correct for ME
(i.e., to calibrate) self-reported TS in all WHI OS participants and
to explore the associations of TS intake with CVD and T2D risk
before and after dietary calibration. These associations were
explored through 2 energy adjustment methods: energy
substitution (ES) and energy partition (EP) models (36, 37).

METHODS

WHI OS Study

TheWHIOS is a prospective study involving 93,676 postmen-
opausal women aged 50–79 years, enrolled during 1993–1998
from 40 clinical centers across the United States. The study
design has been described in detail elsewhere (29, 38, 39).
Briefly, all participants completed baseline questionnaires
inquiring about demographic characteristics, and personal
and familymedical history. TheWHI semiquantitative food fre-
quency questionnaire was used to assess participants’ usual diet
over the previous 3 months. The food frequency questionnaire
included a list of 122 foods or food groups, questions about fre-
quency of intake and portion size, 19 adjustment questions on
how foods were prepared, and 4 summary questions on usual

intake of fruit, vegetables, and fat added to foods and used in
cooking (40). Daily energy and nutrient intake were calculated
using the University of Minnesota’s Nutrition Data System for
Research, version 2005 (Nutrition Coordinating Center, Min-
neapolis,Minnesota). TS represent the sum ofmonosaccharides
(i.e., glucose, fructose, and galactose) and disaccharides (i.e.,
sucrose, lactose, andmaltose). Participants’ smoking and alco-
hol habits and recreational physical activity were assessed
using theWHI Personal Habit Questionnaire (41). To generate
activity-related energy expenditure, estimates of recreational
physical activity were combined with estimates of housework,
yardwork, sitting, and sleeping reported on other WHI ques-
tionnaires in metabolic equivalents per week and computed
into kilocalories per day, according to the following calcula-
tion: total metabolic equivalents per week multiplied by body
weight (in kilograms) divided by 7. At baseline, body height
and weight, and waist circumference were measured, and
body mass index (BMI) was calculated by dividing weight
(in kilograms) by height (in meters) squared.

Nutrition and Physical Activity Assessment Study

The Nutrition and Physical Activity Assessment Study
(NPAAS) was an ancillary study nested within the WHI OS in
which detailed dietary and physical activity measurements were
collected from a representative subsample of theWHIOS partici-
pants (24). All participants completed a doubly labeledwater pro-
tocol, a 24-hour urine collection, and indirect calorimetry, as
previously described in detail (24). NPAAS included 450women
participating inWHI OS who were ages 60–91 years at NPAAS
baseline (2007–2009) and recruited from 9WHI clinical centers.
Biomarker-based estimates of TS (3), energy, and protein intake
(24), ratio of sodium to potassium intake (42), and activity-
related energy expenditure (43) were derived as previously re-
ported. Furthermore, for each of these exposures, a calibration
equation that regresses log of biomarker-predicted expo-
sure on log of self-reported estimate, along with other per-
sonal characteristics, was developed (3, 24, 42, 43).

Ascertainment of outcomes

Follow-up for cases of CVD and T2D was calculated from
baseline (1993–1998) until diagnosis and, for noncases, until
censoring on September 30, 2010, last follow-up, or death,
whichever came first. CVD incident cases were reported annu-
ally by a self-administered questionnaire. Reports were then re-
viewed by local WHI physician adjudicators, who assigned
diagnoses on the basis of medical records, death certificates, and
autopsy reports, which were then forwarded to central physician
adjudicators for independent confirmation (44). CVD outcomes
included incident cases from any CVD (total CVD); coronary
heart disease (CHD), and stroke. Findings on nonfatal myo-
cardial infarction, coronary death, heart failure, coronary artery
bypass graft, percutaneous coronary intervention, ischemic and
hemorrhagic stroke are reported in Web Table 1 (available at
https://academic.oup.com/aje). T2D included self-reported inci-
dent cases identified via annual mailed questionnaires when
participants were asked to report if a doctor ever prescribed pills
or insulin shots for diabetes after the participant had been
enrolled in the study. Substantial agreement between self-report
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and medication inventory or medical record-verified T2D was
demonstrated in earlier work in this cohort (45, 46).

Analytical data set

From 93,676 participants, we excluded womenwith implausi-
ble self-reported energy intake (<600 or>5,000 kcal/day) on the
food frequency questionnaire or missing data on diet (n =
3,662), BMI (n = 1,105), physical activity level (n = 2,861),
smoking status (n = 1,351), educational level (n = 767), marital
status, postmenopausal hormone therapy use, history of hyper-
tension or hypercholesterolemia (n = 2,111), and those with
no follow-up (n = 471). To generate the CVD analytical cohort
(n = 64,751), from 82,254 women, we further excluded those
with history of CVD at baseline (n = 16,301) and with missing
data on CVD-specific model covariates (i.e., history of treated
T2D, statin use, aspirin use, family history of CVD) (n = 1,507).
For T2D analysis, from 82,254 women, we further excluded
prevalent cases of T2D at baseline (n = 3,238) and women with
missing data on T2D-specific model covariates (i.e., history of
CVD and family history of diabetes) (n = 3,957) for a final T2D
analytical cohort of 75,320 women. (Some participants were
excluded based onmore than one exclusion criterion.)

Statistical analysis

The calibration equations for TS, energy, protein, and ratio of
sodium to potassium intake, and activity-related energy expenditure

were redeveloped using the NPAAS data by regressing log-
transformed biomarker-based values on log-transformed
self-reported estimates, along with covariates included in the
original respective calibration equations (3, 33, 42, 43) and
covariates from the respective disease risk models, in accor-
dance with the standard regression calibration methodology
(47, 48). We developed individual calibration equations for
age- and energy-adjusted (basic), and multivariable ES and
EP models for T2D and CVD (seeWeb Tables 2–5).

Hazard ratios and 95% confidence intervals for a 20%
increase in calibrated or uncalibrated TS intake were estimated
by a Cox proportional hazards regression model stratified on
age in 5-year categories to allow for different baseline hazards
by age category in basic and multivariable models. These haz-
ard ratio estimates were based on linear modeling of the log of
hazard ratios on the logarithm of calibrated intake. Based on
median intake, a 20% increase corresponds to 18.0 g/1,000 kcal
for calibrated and 12.6 g/1,000 kcal for uncalibrated TS.

We report findings from 2 different modeling approaches for
energy intake adjustment (36, 37). We used the ES model to
investigate the association between TS and outcomes when
substituting TS (g/1,000 kcal) for other energy-contributing nu-
trients not included in the model while keeping total energy
intake constant (kcal/day). We used the EPmodel to investigate
the association between TS and outcomes when adding TS
alongwith energy from sugars (g/day) while keeping nonsugars
and nonalcohol energy constant (kcal/day), calculated as total
energy minus energy from alcohol and energy from TS intake.

Table 1. Baseline Characteristics of Participants in theWomen’s Health Initiative Observational Study Enrolled During 1993–1998 and Nutrition
and Physical Activity Assessment Study Enrolled During 2007–2009

Characteristics

CVDAnalytical Cohort T2DAnalytical Cohort

WHI OS (n = 64,751) NPAAS (n = 342) WHI OS (n = 75,320) NPAAS (n = 383)

No. % No. % No. % No. %

Age group at screening, years

≤59 22,300 34.5 239 69.9 24,399 32.4 260 67.9

60–69 28,426 43.9 86 25.1 33,120 44.0 99 25.8

≥70 14,025 21.7 17 5.0 17,801 23.6 24 6.3

White race 55,132 85.1 226 66.1 65,198 86.6 261 68.1

College degree or higher 28,670 44.3 176 51.5 33,314 44.2 205 53.5

Family history of T2D 19,925 30.8 106 31.0 23,632 31.4 123 32.1

Family history of CVD 43,170 66.7 217 63.5 50,803 67.4 237 61.9

Treated hypertension 14,229 22.0 48 14.0 17,829 23.7 57 14.9

Current smokers 3,864 6.0 17 5.0 4,502 6.0 17 4.4

Alcohol intake

Never or past 17,807 27.5 85 24.9 20,576 27.3 91 23.8

1–6 drinks/week 38,214 59.0 216 63.2 44,530 59.1 244 63.7

≥7 drinks/week 8,730 13.5 41 12.0 10,214 13.6 48 12.5

Use of hormone therapya 30,010 46.3 174 50.9 34,774 46.2 199 51.9

Treated high cholesterol 8,003 12.4 24 7.0 10,549 14.0 27 7.0

Abbreviations: CVD, cardiovascular disease; NPAAS, Nutrition and Physical Activity Assessment Study; OS, Observational Study; T2D, type 2
diabetes;WHI, Women’s Health Initiative.

a Estrogen alone or estrogen plus progestin user.
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The standard errors for hazard ratios from the models with cali-
brated estimates were estimated by a bootstrap procedure with
1,000 bootstrap samples, to account for the random variation in
calibration equation coefficient estimates. We conducted strati-
fied analyses by BMI (<25.0, 25.0–29.9, or≥30.0) usingmulti-
variable EP models with calibrated TS intake, and we only
present findings for the composite CVD outcomes (i.e., total
CVD and CHD) because of the limited number of cases from
individual outcomes in some strata.

Because participants with hypercholesterolemia, history of
hypertension or CVD, or family history of diabetes may have
changed their diet because of their increased risk for T2D, the
models were repeated after excluding these women (n =
47,109). Furthermore, all CVD models were repeated after
excluding cases diagnosed during the first year of follow-
up. All analyses were conducted using SAS, version 9.4 (SAS
Institute, Inc., Cary, North Carolina) and R, version 3.1.2
(R Foundation for Statistical Computing, Vienna, Austria). The
P values for statistical tests were 2 tailed and considered statisti-
cally significant at a level of less than 0.05.

RESULTS

Baseline characteristics of the study population in theWHI OS
and NPAAS are listed in Tables 1 and 2 (for more detail seeWeb
Table 5). WHI OS participants were older, predominantly white,
and had lower BMI compared with participants in NPAAS,
which oversampled participants of younger age, race or ethnici-
ties other than non-Hispanic white, and higher BMI (33). The
median TS density intake ranged from 60 to 62 g/1,000 kcal
before calibration (Web Table 5), and from 79 to 95 g/1,000 kcal
after calibration, inWHIOS andNPAAS populations (Table 2).

After up to 16 years of follow-up, a total of 6,621 incident cases
of T2D and 5,802 cases of CVDwere identified. In calibrated basic
and multivariable ES models, TS intake was not associated with
T2D risk (Table 3). The hazard ratio estimates for 20% increase in
calibrated TS intake remained almost unchanged after adding BMI
and waist circumference to the model. In the basic EP model, we
detected a statistically significant 22% increase inT2D risk for 20%
increase in calibrated TS intake (hazard ratio (HR)= 1.22, 95%
confidence interval (CI): 1.09, 1.37). However, the hazard ratiowas
markedly attenuated toward null in multivariable model (HR =
1.00, 95%CI: 0.83, 1.18) and became lower than 1.0 when BMI
and waist circumference were added to the model (Table 3).
When using uncalibrated TS intake, we found a statistically sig-
nificant decrease in T2D risk in multivariable ES (HR = 0.92,
95% CI: 0.90, 0.93) and EP (HR = 0.94, 95% CI: 0.93, 0.95)
models. The risk estimates remained statistically significant after
the models were adjusted for BMI and waist circumference. In
sensitivity analysis, excluding participants with hypercholesterol-
emia, hypertension, history of CVD, or family history of diabetes
did not appreciably change any of the findings (data not shown).

In basic and multivariable ES models, no association between
calibrated TS intake and total CVD, CHD, or strokewas detected
(Table 4). In multivariable EPmodels, we found an inverse asso-
ciation between calibrated TS intake and total CVD (per each
20% increase, HR = 0.90, 95% CI: 0.84, 0.97) and CHD risk
(HR = 0.89, 95% CI: 0.81, 0.96) only after adjusting for BMI.
With regard to other CVD outcomes, we observed inverseT
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association with coronary death and heart failure in basic ES
models, and this association became attenuated toward null in
multivariable models (Web Table 1). In basic EP models, a 20%
increase in TS intake was associated with a statistically sig-
nificant increase in risk for coronary artery bypass graft (HR =
1.14, 95%CI: 1.02, 1.27). This association dissipated after add-
ing other covariates (multivariable 1), and become signifi-
cantly inverse with BMI in the model (multivariable 2).
Statistically significant inverse association was also observed
for nonfatal myocardial infarction and percutaneous coronary
intervention, which remained unchanged after adjusting for
BMI. For uncalibrated sugars, we found aweak inverse associa-
tion for several CVD outcomes in the multivariable ES and EP
models (Table 4, Web Table 1). Excluding CVD cases diag-
nosed within the first year of follow-up did not appreciably
change any of the findings (data not shown).

In Table 5, we report hazard ratio estimates for T2D and CVD
from EPmodels with calibrated TS by BMI category. No associ-
ation was found between calibrated TS intake and T2D risk in
any of the BMI strata. There was no association between cali-
brated TS intake andCVD risk among normal-weight and obese
participants; there was some evidence of an inverse association
among overweight women only (for total CVD, per each 20%
increase, HR = 0.90, 95% CI: 0.81, 1.01; for total CHD, HR =
0.87, 95%CI: 0.76, 0.99).

DISCUSSION

In this analysis in which biomarker-based ME correction was
applied to self-reports of TS and energy byWHIOS participants,
we found no statistically significant association between TS
intake and either T2D or CVD risk. In contrast, analyses with
uncalibrated exposures appeared to generate an inverse

association with T2D risk and some evidence of inverse asso-
ciation with CVD risk.

In a meta-analysis of 12 prospective cohort studies, no asso-
ciation was found between self-reported TS intake and T2D
risk with a pooled relative risk of 0.91 (95% CI: 0.76, 1.09) for
participants with highest versus lowest level of intake (11).
Only 1 among these cohorts reported an inverse association
with T2D risk (49), whereas no association was reported by
others (12, 50–53). Similar to our study, Ahmadi-Abhari et al.
(50) used ES and EP models, and with neither model did they
observe an association between TS consumption and T2D risk.
Although we included calibrated protein in our analyses, the
lack of biomarkers for fat or complex carbohydrates prevented
us from exploring any potential confounding effect from the lat-
ter 2 macronutrients, because combining calibrated with uncali-
brated energy sources would not have allowed for a meaningful
interpretation. In our uncalibrated analyses, TS intake was
inversely associatedwith T2D risk across all themodels, whereas
this association was no longer evident after calibration. More-
over, there was a statistically significant increase in T2D risk
in the model testing the association when adding calibrated
TS intake while keeping nonsugars energy constant (EP basic
model), though this association was attenuated in multivari-
able models, and especially when BMI and waist circumfer-
ence were added to the model. Yet, that, in contrast, we
observed no association in the ES models suggests the associa-
tion observed in the EP model was mediated by energy and,
similar to other energy sources, TS intake may be a risk factor
for T2D. In our cohort, family history of T2D and personal his-
tory of hypercholesterolemia are strong correlates of BMI (a
potential mediator in the observed association), which may
have led to underestimation of the association between sugars
intake and T2D in the multivariable model (without BMI) due
to possible overadjustment. An interesting observation was the

Table 3. Hazard Ratios for Type 2 Diabetes for a 20% Increase in Calibrated and Uncalibrated Intakes of Total Sugars, FromBaseline (1993–
1998) Through September 30, 2010 (n = 75,320),Women’s Health Initiative Observational Studya,b

Model

Calibrated Total Sugarsc Uncalibrated Total Sugarsc

Energy Substitution Energy Partition Energy Substitution Energy Partition

HR 95%CI HR 95%CI HR 95%CI HR 95%CI

Age- and energy-adjustedd 0.99 0.92, 1.07 1.22 1.09, 1.37 0.93 0.92, 0.95 0.94 0.93, 0.96

Multivariable 1e 0.94 0.76, 1.15 1.00 0.85, 1.18 0.92 0.90, 0.93 0.94 0.93, 0.95

Multivariable 2f 0.93 0.67, 1.31 0.94 0.87, 1.01 0.95 0.94, 0.97 0.96 0.95, 0.98

Abbreviations: AREE, activity-related energy expenditure; CI, confidence interval; HR, hazard ratio; T2D, type 2 diabetes.
a Findings from energy substitution and energy partitionmodels.
b n = 6,621 T2D cases.
c Models with calibrated total sugars included calibrated estimates of energy intake and AREE, whereas models with uncalibrated total sugars

included uncalibrated estimates of those exposures.
d Coxmodels were stratified by 5-year age groups and adjusted for age as a continuous variable and energy intake (total energy intake in energy

substitutionmodels; nonsugars and nonalcohol energy in energy partitionmodels).
e Additionally adjusted for race and ethnicity (white, black, Hispanic, American Indians, Asian/Pacific Islanders, or other or unknown), marital sta-

tus (never married, divorced or separated, presently married or living as married, or widowed), educational level (0–8 years, some high school, high
school diploma or General Educational Development diploma, school after high school, or college degree or higher), smoking status (never, past
smoker, and current smoker), hormone therapy use (never, estrogen alone, and estrogen plus progestin user), history of treated hypertension (yes
or no), history of cardiovascular disease (yes or no), family history of T2D (yes or no), history of treated hypercholesterolemia (yes or no), alcohol
consumption (never drinker, past drinker,<1 per month, 1–3 per month, 1–6 per week, and≥7 per week), and AREE.

f Multivariable model 1 plus BMI plus waist circumference.
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opposite direction in the association of calibrated compared
with uncalibrated TS consumption with T2D in the basic EP
models, which suggestsME does not always lead to attenuation
but can even cause a change of direction in the association.

We observed no association between TS intake and CVD
risk in ES models, which suggests other energy sources may
be equally important in relation to CVD risk. There was some
evidence of a weak inverse association with total CVD and
CHD in EPmodels confined to overweight women only, which
may have been due to confounding from other nutrients derived
from nutrient-dense foods high in naturally occurring sugars
(e.g., fruits, vegetables). The difference in hazard ratio estimates
derived from uncalibrated versus calibrated basic EP mod-
els implies that increased sugars intake along with increases in
energy may increase CVD risk (e.g., coronary artery bypass
graft), yet these associations were no longer evident when other
confounders were included in the models. In 2 studies, among
few prospective studies of European populations, no asso-
ciation was found between sugars intake and total CVD (7) or
CHD risk (18), in fully adjusted ES models with BMI. In 1

cohort, borderline increased risk was found for CHD risk (per
29.5 g TS, HR = 1.15, 95% CI: 0.97, 1.36) among men, no
associationwas found inwomen, and no associationwith stroke
risk was found in either sex (19).

A major strength of our analysis was the use of biomarker-
based, ME-corrected estimates of self-reported TS intake and
other exposures, which dampens the ME in the main exposure
and the effect of residual confounding from important, poorly
measured confounders. The prospective design of our analysis
prevented recall bias and limited the potential for reverse cau-
sality.We explored association using 2 energy adjustmentmod-
els, which allowed investigation of the association between TS
intake and outcomes when substituting TS for isocaloric amount
of other macronutrients (ES model), and when increasing TS
intake while keeping the amount of other macronutrients fixed
(EPmodel). The hazard ratios were estimated for a 20% increase
in TS consumption, which translates into modest changes in diet
(i.e., 18 g/1,000 kcal); however, this would mean that even small
hazard ratio estimates would still be important at a population
level. We report findings from different models on multiple

Table 4. Hazard Ratios for Cardiovascular Disease for 20% Increase of Calibrated and Uncalibrated Intakes of Total Sugars FromEnergy
Substitution and Energy PartitionModels, FromBaseline (1993–1998) Through September 30, 2010 (n = 64,751),Women’s Health Initiative
Observational Study

Model

Calibrated Total Sugarsa Uncalibrated Total Sugarsa

Energy Substitution Energy Partition Energy Substitution Energy Partition

HR 95%CI HR 95%CI HR 95%CI HR 95%CI

Total CVDb

Age- and energy-adjustedc 0.98 0.94, 1.03 1.03 0.95, 1.12 0.96 0.94, 0.97 0.96 0.95, 0.98

Multivariable 1d 0.97 0.87, 1.09 0.91 0.80, 1.04 0.97 0.95, 0.99 0.98 0.96, 0.99

Multivariable 2e 0.97 0.85, 1.12 0.90 0.84, 0.97 0.98 0.96, 1.00 0.98 0.97, 1.00

Total CHDf

Age- and energy-adjusted 0.99 0.94, 1.04 1.05 0.95, 1.15 0.95 0.93, 0.97 0.96 0.94, 0.97

Multivariable 1 0.96 0.86, 1.07 0.90 0.78, 1.04 0.97 0.95, 0.99 0.98 0.96, 0.99

Multivariable 2 0.96 0.83, 1.11 0.89 0.81, 0.96 0.97 0.95, 1.00 0.98 0.96, 1.00

Total strokeg

Age- and energy-adjusted 0.96 0.92, 1.01 0.98 0.91, 1.05 0.98 0.95, 1.01 0.98 0.96, 1.00

Multivariable 1 1.00 0.85, 1.18 0.97 0.85, 1.10 0.99 0.95, 1.03 0.99 0.96, 1.02

Multivariable 2 1.00 0.84, 1.20 0.95 0.86, 1.06 1.00 0.96, 1.03 0.99 0.96, 1.02

Abbreviations: AREE, activity-related energy expenditure; CHD, coronary heart disease; CI, confidence interval; CVD, cardiovascular disease;
HR, hazard ratio.

a Models with calibrated total sugars included calibrated estimates of energy, protein, and ratio of sodium to potassium intake, and AREE,
whereasmodels with uncalibrated total sugars included uncalibrated estimates of those exposures.

b n = 5,802.
c Coxmodels were stratified by 5-year age groups and adjusted for age as a continuous variable and energy intake (total energy intake in energy

substitutionmodels; nonsugars and nonalcohol energy in energy partitionmodels).
d Additionally adjusted for race and ethnicity (white, black, Hispanic, American Indians, Asian/Pacific Islanders, or other or unknown), educa-

tional level (0–8 years, some high school, high school diploma or General Educational Development diploma, school after high school, or college
degree or higher), smoking status (never, past smoker, and current smoker), hormone therapy use (never, estrogen alone, and estrogen plus pro-
gestin user), history of treated hypertension (yes or no), history of cardiovascular disease (yes or no), family history of T2D (yes or no), history of
treated hypercholesterolemia (yes or no), alcohol consumption (never drinker, past drinker, <1 per month, 1–3 per month, 1–6 per week, and ≥7
per week), AREE, and ratio of sodium-to-potassium intake.

e Multivariable 1 plus BMI.
f n = 4,291.
g n = 1,868.
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outcomes, thus some of the findings may have occurred due to a
chance. Yet, this is an exploratory, rather than confirmatory, anal-
ysis of the effect of ME on the investigated associations. We
acknowledge that some selection bias may have occurred, if data
were not missing completely at random, which is unlikely, how-
ever, given the prospective nature of the analysis.

Although we used ME-corrected estimates for some impor-
tant confounders, we still lacked calibrated intake for other nu-
trients for which no biomarkers were available (e.g., fat,
dietary fiber), hence we could not control for those. The origi-
nal calibration equation for TS developed in NPAAS ex-
plained only small proportion of variation in “true” sugars
intake (6%–18% for absolute TS and 29%–40% for TS den-
sity) (3), possibly resulting in incomplete ME correction. In
addition, the relatively small size of NPAAS decreased the
precision of the risk estimates. The TS biomarker was devel-
oped in 2 highly controlled feeding studies conducted in the
United Kingdom (1, 54). Although the biomarker was sensi-
tive to intake, and had good reproducibility and high predic-
tive potential, its biases were estimated on the basis of 13
participants consuming their usual diet under controlled con-
ditions in a UK-based study (2). In this application, therefore,
we assumed that the biomarker’s biases do not substantially
change from 1 population to another, thus the equation for bio-
marker correction or calibration is transferrable and can be
applied to a US population (2, 3). This assumption has yet to
be investigated under controlled conditions (55). Energy
intake was a strong risk factor for T2D and CVD in this cohort
when using calibrated energy (per 20% increase, for T2D,

multivariate HR = 4.17, 95% CI: 2.68, 6.49; for total CVD,
HR = 1.49, 95% CI: 1.23, 1.81) but not when using uncali-
brated intake (for T2D, HR = 1.06, 95% CI: 1.04, 1.07; for
total CVD, HR = 1.00, 95% CI: 0.99, 1.01) (32). Hence, su-
gars could be contributing to disease risk through provision of
unnecessary energy, as suggested from our basic EP models.
The lack of associations in multivariable models may be due
to incomplete ME correction, and population-specific bio-
marker calibration equations may be needed to correct for bio-
marker’s biases. Finally, the biomarker measures total, rather
than added sugars; hence, the negative confounding from ben-
eficial micronutrients and bioactive compounds derived from
fruit and vegetables, sources of naturally occurring sugars is
very likely, and may have counterbalanced the influence of TS
intake per se. Furthermore, sugars encapsulated within the food
cellular structure may have different metabolic effects than su-
gars in processed foods high in energy density and depleted of
micronutrients (22, 56).

In conclusion, using biomarker-based calibrated intake esti-
mates, no association was observed between TS intake and
either T2D or CVD risk in the postmenopausal women in this
study, though we cannot rule out that sugars could be contribut-
ing to T2D and CVD risk through provision of excess energy.
Low explanatory power of the calibration equations for TS
intake may have led to incomplete ME correction and incom-
plete deattenuation of the risk estimates. Additional research on
the performance of the sugars biomarker in the US population
is needed to better characterize its use and to verify the calibra-
tion equations applied here.

Table 5. Multivariable Hazard Ratios for Total Cardiovascular Disease, Coronary Heart Disease, and Type 2 Diabetes for a 20% Increase in
Calibrated Total Sugars FromEnergy PartitionModels, by BodyMass Index Category, FromBaseline (1993–1998) Through September 30, 2010,
Women’s Health Initiative Observational Study

Disease Outcome Total No.

BMIa

<25.0b 25.0–29.9b ≥30.0b

No. of Cases HR 95%CI No. of Cases HR 95%CI No. of Cases HR 95%CI

Total CVDc 64,751 1,986 0.95 0.82, 1.11 2,064 0.90 0.81, 1.01 1,752 0.95 0.86, 1.07

CHDc 64,751 1,416 0.93 0.77, 1.11 1,511 0.87 0.76, 0.99 1,364 0.95 0.82, 1.10

T2Dd 75,320 1,318 0.91 0.79, 1.04 2,126 0.90 0.78, 1.04 3,177 0.94 0.86, 1.03

Abbreviations: AREE, activity-related energy expenditure; BMI, body mass index; CHD, coronary heart disease; CI, confidence interval; CVD,
cardiovascular disease; HR, hazard ratio; T2D, type 2 diabetes.

a Body weight (kg)/height (m)2.
b Total number of participants by BMI category: BMI <25.0: CVD/CHD cohort, n = 27,396, T2D cohort, n = 32,093; BMI = 25.0–29.9: CVD/CHD

cohort, n = 21,806, T2D cohort, n = 25,379; BMI≥30.0: CVD/CHD cohort, n = 15,549, T2D cohort, n = 17,848.
c Multivariable models were stratified by 5-year age groups and adjusted for age as a continuous variable, calibrated nonsugars and nonalcohol

energy (kcal/day), race and ethnicity (white, black, Hispanic, or other races), educational level (high school or less, more than high school, or col-
lege degree or higher), smoking status (never, past smoker, or current smoker), history of treated hypertension (yes or no), treated hypercholester-
olemia (yes or no), family history of CVD (yes or no), hormone therapy use (never, estrogen alone, or estrogen plus progestin), alcohol
consumption (never drinker, past drinker, <1 per month, 1–3 per month, 1–6 per week, and ≥7 per week), calibrated AREE, and calibrated ratio of
sodium to potassium intake.

d Multivariable models were stratified by 5-year age groups and adjusted for age as continuous variable, calibrated nonsugars and nonalcohol energy
(kcal/day), ace and ethnicity (white, black, Hispanic, American Indians, Asian/Pacific Islanders, or other or unknown), marital status (never married,
divorced or separated, presentlymarried or living asmarried, andwidowed), educational level (0–8 years, some high school, high school diploma orGen-
eral Educational Development diploma, school after high school, or college degree or higher), smoking status (never, past smoker, and current smoker),
hormone therapy use (never, estrogen alone, and estrogen plus progestin user), history of treated hypertension (yes or no), history of cardiovascular dis-
ease (yes or no), family history of T2D (yes or no), history of treated hypercholesterolemia (yes or no), alcohol consumption never drinker, past drinker,
<1 permonth, 1–3 permonth, 1–6 per week, and≥7 per week), calibrated AREE, and calibrated protein intake (g/day).
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