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Abstract

Quantification of fat and muscle on clinically acquired CT scans is critical for determination of 

body composition, a key component of health. Manual tracing has been regarded as the gold 

standard method of body segmentation; however, manual tracing is time-consuming. Many semi-

automated/automated algorithms have been proposed to avoid the manual efforts. Previous efforts 

largely focused on segmenting 2D cross-sectional images (e.g., at L3/T4 vertebra locations) rather 

than on the whole-body volume. In this paper, we propose a fully automated 3D body composition 

estimation framework for segmenting the muscle and fat from abdominal CT scans. The 3D whole 

body segmentations were reconstructed from a slice-wise multi-atlas label fusion (MALF) based 

framework. First, we used a low-dimensional atlas representation to estimate each class for each 

axial slice. Second, the abdominal wall and psoas muscle were segmented by combining MALF 

with active shape models and deformable models. Third, skeletal muscle, visceral adipose tissue 

(VAT) and subcutaneous adipose tissue (SAT) were measured to assess the areas of muscle and fat 

tissue. The proposed method was compared to manual segmentation and demonstrated high 

accuracy. Then, we evaluated the approach on 40 CT scans comparing the new method to a prior 

atlas-based segmentation method and achieved 0.854, 0.740, 0.887 and 0.933 on Dice similarity 

index for the skeletal muscle, psoas muscle, VAT and SAT, respectively. Compared with the 

baseline, our method showed significantly (p < 0.001) higher accuracy on skeletal muscle, VAT 

and SAT estimation.
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1 Introduction

Body composition of fat and muscle mass is an important biomarker in cancer treatment. 

The quantitative measurement of body composition is related to the efficacy and toxicity of 

chemotherapy, post therapy functional status, surgical complication rates, length of hospital 

stay and overall survival [1]. In addition, body composition estimation will lead to a more 

reliable replacement of basic measures of healthy weight, such as Body Mass Index (BMI). 

Manual delineation on computed tomography (CT) images has been regarded as the gold 

standard in body composition estimation [2]. However, manual tracing on muscle and fat 

regions are time-consuming and cannot be easily applied to large cohorts. Therefore, many 

automated or semi-automated methods have been proposed to perform the segmentation. 

The previous studies estimated the body composition of muscle and fat based on the 2D 

axial slice at the L3 lumbar vertebra position. However, single slice based estimation is a 

rough approximation of the whole-body composition, which is sensitive to slice selection.

For fat segmentation, the Hounsfield unit (HU) intensity is typically used to distinguish 

muscle and fat on CT images when performing the manual segmentation (e.g., [−29, 150] 

for muscle tissue and [−190, −30] for fat tissue [3]). Importantly, the compartment in which 

adipose tissue resides relates to the clinical significance of that fat. For example, it is found 

that nonagenarian individuals with and without frailty syndrome presented marked 

differences in the pericardial and visceral adipose tissue [4]. Therefore, to generate a 

meaningful measurement, efforts are required to separate fat into visceral adipose tissue 

(VAT) and subcutaneous adipose tissue (SAT). The VAT is the adipose tissue included in 

intra-abdominal cavity, while SAT is the adipose tissue bounded by the inner abdominal wall 

musculature and the skin surface [4]. Muscle segmentation presents a greater challenge as 

the HU for muscle overlaps with other abdominal organs and tissues. Moreover, the variable 

shape and location of muscle make the segmentation even more difficult.

Previous efforts were typically focused on segmenting either muscle or fat. For fat 

segmentation, Yao et al. [5] separated the subcutaneous and visceral fat by a single surface at 

the abdominal wall driven by active contour models (ACM). For muscle segmentation, shape 

models were typically used. For instance, Tsutomu et al. [6] incorporated a shape prior 

represented as logistic curves in higher-order graph cut models to segment psoas from CT 

images. Chung et al. [7] presented a muscle segmentation method in which a thresholded 

binary image was warped to a mean shape prior by a Free Deformation model. Popuri et al. 

[3] proposed a FEM-based registration model to perform template-based segmentation of 

skeletal muscle. Although these methods achieved high accuracy, they were based on 2D 

cross-sectional images taken at the 3rd lumbar vertebra (L3) or the 4th thoracic vertebra (T4) 

locations rather than on whole 3D volumes. Zhang et al. [8] presented an atlas-based 

approach to segment the musculature on CT volumes using five pre-defined muscle atlas 

models, and then refined by ACM. Xu et al.[9] proposed a slice-wise method called 

augmented ASM (AASM) that integrated multi-atlas label fusion (MALF) and level set into 

the active shape model (ASM) framework. To overcome the large intra-slice variations in the 

abdominal wall along the cranial-caudal direction, this method pre-classifies slice-wise 
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images to five exclusive classes using landmarks. However, for clinical data with large 

variations on fields of view (FOV), such landmarks are not typically available (Fig. 1).

In this study, we propose a fully automated framework to segment the skeletal muscle, psoas 

muscle, VAT and SAT from clinically acquired CT scans. Briefly, we first used a PCA-based 

low-dimensional representation to estimate the atlas class for the target image. Second, the 

abdominal wall was segmented using AASM under a slice-wise MALF framework. Here, 

the abdominal wall is characterized as an enclosed region bounded by the inner surface and 

outer surface. Then, the psoas muscle was segmented using combination of MALF and a 

deformable model. Finally, the skeletal muscle, VAT and SAT were extracted using the 

generated abdominal wall mask and pre-defined HU ranges. The main novelty of our work 

lies in the application of MALF on the challenging problem of muscle and fat quantification. 

Considering different anatomies of target regions, an active shape model and a deformable 

model are used to refine and regularize the initial results of MALF. The whole pipeline is 

fully automated, without the need of user interaction or parameter adjustment, which gives it 

potential to be applied in clinic.

2 Methods

The proposed pipeline is shown in Fig. 2. It integrates a slice-wise multi-atlas label fusion 

framework with an active shape model and a deformable model.

2.1 Atlas class estimation via PCA

We use a PCA-based low-dimensional representation to decide the atlas class for each 

testing image. Following [9], three biomarkers, i.e., xiphoid process (XP), pubic symphysis 

(PS) and umbilicus (UB) are manually labeled on each training volume. According to the 

location of these biomarkers, training axial slices are separated into five exclusive classes. 

For training image j, we assume that we are given the image aj ∈ ℝD and its atlas class cj, 

where D is the total number of pixels and cj ∈ {1,2,3,4,5}. Given a set of training images, 

the goal is to assign a target slice image x into the most similar atlas class. Firstly, we align 

all training images to the same space. Specifically, one image is randomly selected and 

others are registered to it using an affine transform. Then, an average image is generated 

from all registered images and all images are registered to the average image again. We 

denote the aligned training data set as matrix A = (a11, …, a1n1, …, a51, …, a5n5) ∈ ℝD×N, 

where N = ∑
i = 1

5
ni is the total number of training images. Secondly, by using PCA 

dimension reduction, the high-dimensional datapoints A are transformed into a low-

dimensional representation Y = y11, …, y1n1, …, y51, …, y5n5 ∈ ℝd × N, where d ≪ D. The 

PCA is performed by minimizing the cost function ϕ Y = ∑
i, j

di j
2 − yi − y j

2 , where di j

represents Euclidean distance between the high-dimensional points ai and a j. Finally, the 

target image x is projected to the low-dimensional space and the k -nearest neighbors in 

Euclidean distance are selected to estimate its class using majority voting.
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2.2 Abdominal wall and psoas segmentation

Prior probability map learned from MALF—For each axial slice of the test CT 

volume, all the training images in the estimated class are considered as atlases to perform 

slice-wise multi-atlas label fusion with respect to regions of interest, i.e., the abdominal wall 

and psoas muscle. Each atlas is non-rigidly registered to the target image with Nifty Reg 

package [10]. Atlas labels are then warped to the target image and combined using the joint 

label fusion algorithm [11], yielding prior probability maps for the abdominal wall and 

psoas muscle.

Abdominal wall segmentation—In abdominal wall segmentation, we use AASM [9] to 

search the optimal shape iteratively. In the training stage, an active shape model and a local 

appearance model are trained from each atlas class. In testing, the trained ASM, local 

appearance model and the probability map generated from MALF guide landmarks along 

current contour move to new positions. Specifically, firstly level set evolution is applied on 

the probability map to move the current contour. Then, the zero-crossing points along the 

normal direction of the zero level set are collected as landmarks. These landmarks are 

updated with the active shape search and used as the initialization of LS evolution for the 

next iteration. The constrained ASM parameters guarantee the regularization of the shape.

Psoas muscle segmentation—For psoas muscle, we adopt a 3D deformable model that 

integrates intensity statistical information, a prior probability map, and a gradient map to 

refine the initial surface. Given a volume image I : x ∈ Ω ℝ defined on Ω ⊂ ℝ3, we denote 

the indicator function of psoas as u x = 0, 1 , x ∈ Ω, which is obtained by minimizing the 

energy functional:

E u = λ1Edata u + λ2Eprior u +∫
Ω

g x ∇u dx . (1)

The first data term formulates the intensity statistics inside and outside the region, i.e., 

Edata u = −∫
Ω

ulogpin I x + 1 − u logpout I x dx, where pin and pout are intensity 

distributions of foreground and background pixels defined by the initial psoas muscle region 

given by MALF. The second prior term presented as 

Eprior(u) = −∫
Ω

u log L x + 1 − u log (1 − L(x))dx is to provide spatial constraints, where 

L(x) is the psoas muscle probability map learned from MALF. The last weighted total-

variation term acts as regularization term, where g x = 1
1 + β ∇I x 2 , β > 0. The energy 
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function (1) is globally optimized in a surface evolution way with the continuous max-flow 

algorithm [12, 13].

2.3 Skeletal muscle and adipose tissue measurement

Using the segmented abdominal wall as a mask, skeletal muscle and fat tissue in each axial 

slice are extracted based on pre-defined HU ranges according to Ref. [3]. The region that 

locates inside the inner wall surface with HU [−190,−30] is extracted as VAT, and the region 

resides outside inner wall surface within the body mask with HU [−190,−30] is extract as 

SAT. The skeletal muscle tissue is segmented inside abdominal wall mask with HU 

[−29,−150].

2.4 Baseline method

We take the method of Zhang et al. [8] as baseline, which also focused on whole CT volume 

segmentation and used slice-wise algorithms. Following [8], we used fuzzy c-means and an 

active contour model (ACM) to segment VAT and SAT, and then used an atlas-based method 

to segment skeletal muscle. To avoid the effect of atlas model selection on muscle 

segmentation, the ACM was applied to refine the results from our MALF as re-implemented.

All experiments in this paper were run on a machine with 8 cores of Intel Xeon W3520 

processors and 12 GB RAM available running Ubuntu 14.04.1 LTS (64 bit). Algorithms 

were implemented in MATLAB 2014b environment. The proposed segmentation method has 

been made available online in open-source1.

3 Experiments and Results

3.1 Data

Abdominal CT data on 60 patients from two clinical datasets were randomly retrieved in de-

identified form under IRB approval (40 patients from PHC and 20 from GIONC). 

Specifically, 20 scans from PHC were used for training, and the remaining 20 PHC scans 

and 20 GIONC scans were for testing. The FOVs of PHC scans ranged from 335×335×390 

mm3 to 500×500×708 mm3, with resolutions ranging from 0.65×0.65×2.50 mm3 to 

0.98×0.98×5.00 mm3. The FOVs of GIONC scans were from 346×346×165 mm3 to 

412×412×505 mm3, with resolutions from 0.65×0.65×1.50 mm3 to 0.85×0.85×5.00 mm3. 

All 60 scans were manually labeled by an experienced rater to generate ground truth of 

skeletal muscle, psoas, VAT and SAT. Specifically, for the 40 PHC scans, essential 

biomarkers, i.e., xiphoid process, pubic symphysis, and umbilicus were identified, and the 

abdominal wall and psoas muscle were delineated on axial slices spaced every 5 cm, 

generating 177 and 184 axial slices for training and testing, respectively. Besides, 40 axial 

slices at the L3 position of the 40 testing scans were extracted and labeled. Axial slices from 

the same patient for training were not used for testing.

1https://www.nitrc.org/project/showfiles.php?group_id=385&release_id=3557
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3.2 Experimental setting

For all training and testing slices, a body mask was obtained by thresholding the image to 

remove the background, then selecting the largest 3D connected component to ensure that 

the CT table was excluded before image analysis. All the images were centered after body 

extraction. A leave-one-out approach that excluded slices from the same patient was used to 

optimize the parameters in PCA dimension reduction on the labeled slices from PHC 

dataset. As a result, 9 modes of variation in the low-dimensional space and k = 3
neighboring images are chosen to estimate the target image class.

In the AASM-based abdominal wall segmentation, 177 labeled axial slices from 20 patients 

were used as training set (also atlases) to build the active shape model with default 

parameters as in [9]. The parameters in energy function (1) of psoas refinement were 

empirically set as λ2=0.1, λ2 = 0.01,   β = 0.2.

3.3 Results

Automated results were validated against the manual labels on 184 axial slices taken at 

different positions in 20 scans (Fig. 3). The Spearman’s rank correlation coefficient between 

estimated cross-sectional tissue area (cm2) and the truth was 0.91, 0.75, 0.99, and 0.99 for 

skeletal muscle, psoas, VAT and SAT, respectively. Fig. 4 shows qualitative segmentation 

results at different position slices from one CT. Although there are large shape variations in 

axial slices taken at different positions, the automated segmentations of muscle, VAT and 

SAT region match well with the manual label. Failures of the psoas segmentation occur on 

the slices taken at the bottom position, where the psoas muscle region is very small and 

difficult to detect (see Fig. 4, row 1, column 3).

In Fig. 5, we used the Spearman rank correlation to compare the estimated tissue area by the 

proposed method with the ground truth on axial slices taken at L3 position from 40 testing 

scans. Average tissue areas of three and five axial slices centered at L3 are also measured.

In Table 1, we compared our method with the baseline method [8] on 40 L3 axial slices from 

testing scans. Both the proposed method and baseline focused on whole CT scan 

segmentation and used slice-wise algorithms. As shown in Table 1, our method achieved 

significantly (p <0.001) higher Dice similarity index (Dice) values for the skeletal muscle, 

VAT and SAT using Wilcoxon signed rank test.

4 Conclusions

We presented an automated workflow to segment the skeletal muscle, psoas muscle, visceral 

adipose tissue and subcutaneous adipose tissue from clinically acquired abdominal CT 

scans. The results on 40 subjects from two separate clinical datasets demonstrated that the 

proposed framework was able to achieve 0.854, 0.740, 0.887 and 0.933 Dice similarity 

coefficient for the skeletal muscle, psoas muscle, VAT and SAT, respectively. The future 

work can be the improvement of the proposed method by using shape prior in psoas muscle 

segmentation.
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Fig. 1. 
Illustration of challenges in muscle and fat segmentation. The sagittally reconstructed 

images show differing fields of view while the axial images demonstrated the large intra-

slice and inter-slice variations in muscle and fat cross-sectional area on CT images.
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Fig. 2. 
Flowchart of the proposed segmentation framework
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Fig. 3. 
Scatter plots showing the correlation between estimated tissue area by the proposed method 

and the ground truth on 184 axial slices.
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Fig. 4. 
Qualitative results on different axial slices from one subject. Manual label (green), 

automated label (red) and overlap (yellow).
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Fig. 5. 
Scatter plots showing the correlation between estimated tissue area by the proposed method 

and the ground truth. The first row shows tissue area estimated on one slice at middle L3 

position. The second and third row show the average tissue area estimated at three and five 

slices at the L3 position, respectively.
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Table 1

Comparison of tissue area estimation by the proposed method and Zhang et al. [8] on 40 L3 axial slices.

Tissue Skeletal
Muscle

Psoas
Muscle VAT SAT

Manual area (cm2) 142.7±35.0 15.6±5.9 168.4±97.5 224.6±126.5

Proposed Dice 0.854±0.110 0.740±0.259 0.887±0.075 0.933±0.046

Proposed area error (cm2) 17.1±14.9 4.5±7.1 12.0±14.0 15.5±14.4

Zhang [8] Dice 0.758±0.128 – 0.828±0.054 0.852±0.054

Zhang [8] area error (cm2) 46.8±27.7 – 46.6±22.1 44.0±21.7

Proposed v.s. Zhang [8] Dice p-value 3.3×10−5 – 2.4×10−5 5.6×10−8

Proposed v.s. Zhang [8] area error p-value 3.8×10−6 – 7.6×10−7 1.6×10−6
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