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Abstract

Original Article

Introduction

Digital pathology systems were used in 32% of anatomic pathology 
laboratories in the United States in 2016 with another 7% of 
laboratories planning to add a system in 2017.[1] Advantages of digital 
pathology over traditional microscopy include improving efficiencies 
in educational training, tumor boards, research, frozen tissue 
diagnosis, permanent archiving, teleconsultation, access to published 
medical data, quantitative image analysis, quality assurance testing, 
establishment of biorepositories, and pharmaceutical research.[2‑9] 
Acceptance of digital pathology for use in primary diagnosis was 
accelerated by validation of diagnosis of whole slide images (WSI) 
as equivalent to diagnosis of glass slides.[10‑16] In April 2017, the US 
Food and Drug Administration (FDA) approved the first whole slide 
scanner system for use in primary diagnosis and other vendors are 
likely to follow.[17,18]

A digital workflow enhances opportunities for integration 
of diagnoses to a patient’s electronic medical record, 
sharing of images between clinicians and patients, 

improved storage capabilities, and increased workflow 
efficiencies.[19,20]

Dermatopathology is ideally suited for the implementation of 
digital workflow and WSI for primary diagnosis. Specimens 
are small and the number of slides per case is low, although the 
workflow in academic centers, where the dermatopathology 
section is in the pathology department, may yield a different 
case mix and increased slide numbers related to large complex 
excisions and accompanied sentinel lymph node materials. 
Dermatopathology case volume is often high and while there is 
controversy among pathologists regarding workflow efficiency 
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of the computer monitor or tablet versus the microscope, data 
suggest that with training and exposure, equivalence can be 
reached.[15,21‑24]

Since dermatopathology is an image‑intense subspecialty 
and low‑power recognition is often an important first step 
for accurate diagnosis,[25,26] application of deep learning 
algorithms to cutaneous WSI allows for triage capabilities and 
computer‑assisted diagnosis. Pathologists remain critical for 
rendering a final and accurate diagnosis.

Once digital pathology is utilized by a laboratory, there is a 
myriad of new software‑driven opportunities that increase 
workflow efficiency and facilitate precision diagnoses through 
quantitative applications. These applications, enabled by 
artificial intelligence and deep learning, have shown to reduce 
error rates,[27] and increase efficiency in key disciplines of 
pathology. The evolution of artificial intelligence’s role in 
laboratory medicine is a direct product of technological 
advances in hardware for image capture and massive 
computational advances in computer vision and machine 
learning.

The first indication of the benefit of computer‑assisted diagnosis 
to laboratories was in 1996 with Hologic’s ThinPrep system,[28] 
a revolutionary tool for cytopathology laboratories. Anatomic 
pathology laboratories are currently seeing error reduction and 
increased efficiency with quantitative immunohistochemistry, 
which utilizes more primitive computer vision techniques 
than deep learning, to quantify protein expression.[29] For 
example, the FDA approved automated detection, counting, 
and computer‑generated analysis of HER2 gene for therapeutic 
determination in breast cancer.[30,31] Computer‑aided counting 
of mitoses in breast cancer WSI represents another step on the 
artificial intelligence continuum.[32]

Dermatologists are also realizing the value of artificial 
intelligence and deep learning and have used algorithms to 
aid in diagnosis of clinical images.[33]

The combined effect of the introduction of deep learning, the 
democratization of powerful graphics processing unit (GPU) 
computing capacity, and increasing acceptance and use of 
digital pathology has created an unprecedented opportunity 
to explore the power of deep learning. Coupled with the 
acknowledged premise that fundamental dermatopathological 
diagnoses often rely on low power and pattern recognition,[25,26] 
we hypothesized that dermatopathology was an ideal starting 
point for the development of deep learning algorithms for case 
triage and computer‑aided diagnosis.

In this study, we utilize expertly annotated “ground truth” WSI 
and the clinical and medical expertise of dermatopathologists 
in combination with the experience of an artificial intelligence 
team, to develop computer software that teaches itself the 
ability to make binary classifications as to whether test WSI 
represents ground truth diagnosis or not. Initial results from 
algorithmic testing of three common dermatopathology 
diagnoses, nodular basal cell carcinoma (BCC), dermal nevus, 

and seborrheic keratosis, indicate proof of concept and is the 
framework to allow additional development of other relevant 
dermatopathologic predictive models.

Methods

Before the study, Institutional Review Board (IRB) approval 
was sought from and exempted by the IRB at Boonshoft 
School of Medicine, Wright State University, Dayton, Ohio 
(IRB # 06194). All hematoxylin and eosin‑stained glass slides 
used in this study were de‑identified of patient information 
before scanning into WSI and stored in our biorepository.

Data collection and annotation
Algorithmic development and testing were partitioned into 
three sequential studies, to include training and testing of 
each individual algorithm, and allow for assessment and 
correction of study design elements. Table 1 shows the total 
number and diagnoses of WSI used for training and testing 
the algorithms [Table 1].

In the first study, a training set of 200 previously diagnosed 
nodular BCC glass slides and 100 distractor glass slides 
were deidentified and scanned into WSI at ×40 magnification 
(Aperio AT2 Scanscope Console, Leica Biosystems). 
The distractor set for nodular BCC consisted of 20 slides 
each of verrucae vulgares, actinic keratoses, spongiotic 
dermatitis, dermal nevi, and basosquamous acanthomas. 
(The term basosquamous acanthoma reflects different types 
of seborrheic keratoses, verrucoid keratoses, and verrucae and 
is an epithelial hyperplasia/hypertrophy that histologically 
manifests a thickening of the spinous layer to include 
papillations and acanthosis and a variable scale/crust and 
inflammation). These five distractor diagnoses were selected 
to include common neoplasms and an inflammatory condition.

In the second study, the training set was reduced to 125 previously 
diagnosed dermal nevi glass slides and 100 distractor glass 
slides, 20 slides each of fibroepithelial polyps, granuloma 
annulare, verrucae vulgares, dermatofibromas, and variants 
of BCCs. All deidentified glass slides were scanned into WSI 
at ×40 magnification.

In the third study, 125 previously diagnosed seborrheic 
keratoses glass slides and 100 distractor glass slides, 20 slides 
each of superficial BCCs, molluscum contagiosum, lichenoid 
keratoses, Bowen’s disease, and verrucae vulgares, were 
deidentified and scanned into WSI at ×40 magnification.

All WSI were uploaded to the Proscia Pathology Cloud into 
separately labeled folders. Positive training examples were 
then annotated according to criteria as determined by the 
dermatopathologists and computer scientists. Figure 1 shows 
multiple sections of annotated nodular BCC [Figure 1].

For each algorithm, randomly selected new test sets of 
hematoxylin and eosin stained previously diagnosed slides, 
as shown in Table 1, consisting of approximately 70% lesion 
of interest and 30% distractors, were de‑identified, scanned 
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at ×40 magnification into WSI, and uploaded into the Proscia 
Pathology Cloud.

Algorithm development and training
For each individual dermatological diagnosis, corresponding 
positive and negative image sets were preprocessed and 
decomposed to extract features relevant to the differential 
diagnosis. Each WSI was parsed in hierarchical fashion 
to access regions of the slide at different magnification 
levels.[34] WSI, containing available resolutions from ×1 to ×40 
magnification, contained on average over 70% unnecessary 
background space which slowed down image processing; 
therefore, tissue samples on WSI were detected and isolated. 
The WSI was then decomposed into many smaller tiles 
representing square regions of tissue. Each individual pixel 
within the tile was assigned a corresponding label, and a 
binary mask was created to indicate delineation of normal 
and neoplastic or inflammatory tissue, according to the expert 

annotations. This process was performed in parallel to generate 
a training set containing image data and labeled annotations 
from 200 nodular BCCs and 125, respectively, for dermal 
nevi and seborrheic keratoses. Distractors had no pixels with 
corresponding positive labels and image data was tiled and 
produced a binary mask where all pixels were homogeneously 
labeled.

Once data collection was complete, we used custom developed 
versions of fully convolutional neural networks  (CNNs) to 
identify high probability regions of each dermatological lesion. 
CNNs are trained end‑to‑end, pixels‑to‑pixels, and represent a 
breakthrough in deep learning‑based semantic segmentation. 
This technology adapts the contemporary classification 
networks into fully convolutional networks and transfers their 
learned representations by fine tuning to the segmentation 
task.[35] The CNN employed for this study is a derivative of a 
typical Visual Geometry Group (VGG) network architecture 
introduced by Simonyan and Zisserman.[36] A VGG network 
consists of multiple layers of neural nodes which, with each 
succeeding layer, encodes a progressively higher level pattern. 
The first layer helps in extracting information relevant to the 
edges and gradients present in the WSI tile. The second layer 
feeds on this information and outputs feature maps which 
represent patterns formed by the connections between the 
edges and gradients. Further, the third layer extracts objects 
formed by these patterns. The final few layers translate these 
maps into a set of feature maps which, once optimized, 
provide the maximum distinction between the diagnoses. Our 
optimization was performed using stochastic gradient descent 
with momentum and regularized the model with a convergent 
loss function to ensure prevention of overfitting.[37]

Figure 1: Nodular basal cell carcinoma. Multiple H and E‑stained sections 
annotated for artificial intelligence training phase (×1 magnification)

Table 1: Number and diagnoses of whole slide images used in algorithm training and testing

Algorithm Training set Test set
BCC, nodular 200 BCC, nodular (annotated) 83 BCC, nodular

20 verruca vulgaris 8 verruca vulgaris
20 actinic keratosis 9 actinic keratosis
20 spongiotic dermatitis 8 spongiotic dermatitis
20 basosquamous acanthoma (8‑acanthotic seborrheic keratosis, 
6‑reticulated (adenoid) seborrheic keratosis, 4‑hyperkeratotic 
seborrheic, 1‑verrucoid keratosis, 1‑verruca vulgaris)

7 basosquamous acanthoma (3‑acanthotic seborrheic keratosis, 
2‑reticulated (adenoid) seborrheic keratosis, 2‑hyperkeratotic 
seborrheic keratosis)

20 dermal nevus 9 dermal nevus
Dermal nevus 125 dermal nevus (annotated) 79 dermal nevus

20 fibroepithelial polyp 6 fibroepithelial polyp
20 granuloma annulare 7 granuloma annulare
20 verruca vulgaris 8 verruca vulgaris
20 dermatofibroma 8 dermatofibroma
20 BCC (variants to include nodular, superficial (multifocal), 
infiltrative)

6 BCC (variants to include nodular, superficial (multifocal), 
infiltrative)

Seborrheic 
keratosis

125 seborrheic keratosis (annotated) 83 seborrheic keratosis
20 verruca vulgaris 8 verruca vulgaris
20 Bowen’s disease 8 Bowen’s disease
20 lichenoid keratosis 8 lichenoid keratosis
20 molluscum contagiosum 8 molluscum contagiosum
20 BCC, superficial; multifocal 8 BCC, superficial; multifocal

BCC: Basal cell carcinoma
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Algorithm testing
For double‑blind testing, a WSI with no pixel labels was 
deconstructed into tiles of the same size as the training 
exemplars, and each tile assigned a probability by the semantic 
segmentation model, which involves assigning one semantic 
class to each pixel of the input image. CNNs were used to 
model the class likelihood of pixels directly from either the 
WSI or the image patches. The WSI was reconstructed with a 
third dimension class likelihood which is a value on a uniform 
probability density function representing likelihood of that pixel 
belonging to the given lesion. This third dimension is visualized 
by generating a heat map where each pixel is assigned a value 
on the probability continuum and assigned a corresponding red, 
green, and blue color value to represent that class likelihood.

The resulting heat map [Figure 2] is a representation of the 
model’s ability to distinguish between benign and neoplastic or 
inflammatory cells within a given WSI. For example, visually 
investigative results indicate that the traditional basaloid 
nesting pattern in the dermis is continually identified on 
images where BCC is present. As an additional regularization 
technique, we implemented a rule‑based discrimination system 
to eliminate false positives by identifying each contiguous 
region or nest of the lesion identified in any image and 
generated a feature vector representing size, shape, and texture 
of that region. These independent variables were used to train 
a classification model to determine if each individual region 
was the lesion of interest or not and we used this classification 
system as the final arbiter of truth [Figure 2].

Slide level evaluation was a composition of all individual 
patterns available, identified by the postprocessing system 
on the slide, and the final label indicating the presence of the 
lesion or not on a given WSI. Each slide output was compared 
against established ground truth diagnosis and results evaluated 
to determine model performance.

Results

Timing profile
Our models were implemented using Caffe[38] on a machine 
equipped with a 32‑Core processor, 60GB RAM, and four 
NVIDIA K520 GPUs. For each algorithm, the training and 
validation was conducted over a period of 4  days. During 
the testing phase, we used the trained algorithm to predict 
the probability of the presence of the target pathology in the 
input tiles. The average compute time for the testing phase 
was found to be 40 s/image.

Receiver operating characteristics analysis
The classifying model was examined with different probability 
values  (0.0–1.0) as threshold. This analysis is illustrated 
in Figures  3‑5, by receiver operating characteristics curves 
for nodular BCC, dermal nevus, and seborrheic keratosis, 
respectively. The area under the curve correlates with the 
detection accuracy. The optimal threshold value was recognized 
to provide the best sensitivity and specificity [Figures 3‑5].

Sensitivity and specificity analysis
The computer algorithm for nodular BCC correctly classified 
123 of 124 test WSI (99.45% balanced accuracy) as nodular 
BCC or not. The computer algorithm for dermal nevi also 
yielded a high percentage of accurate results as it correctly 

Figure 2: Nodular basal cell carcinoma. Probability heat map visualization 
generated by deep learning model indicates high probability regions of 
nodular basal cell carcinoma (×3 magnification)

Figure 3: Nodular basal cell carcinoma. Receiver operating characteristics 
curve for binary detection

Figure 4: Dermal nevus. Receiver operating characteristics curve for 
binary detection
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classified 113 of 114 test WSI  (99.4% balanced accuracy) 
as dermal nevus or not. The computer algorithm correctly 
classified 100% of the test WSI as seborrheic keratosis or 
not on all 123 cases. Table 2 shows the results of the binary 
classification by diagnosis [Table 2].

Balanced accuracy is the average of the sensitivity and 
specificity testing. Sensitivity testing includes only the results 
obtained from testing on the target pathology. For example, to 
validate the sensitivity of the nodular BCC detection model, 
a dataset of 83 randomly selected nodular BCC images was 
subjected to prediction by the algorithm. All of the 83 images 
were correctly labeled as nodular BCC by the algorithm, 
exhibiting a sensitivity of 100% on this dataset.

Specificity testing describes the testing conducted with 
distractors. For example, the specificity of the nodular BCC 
algorithm was tested with 41 randomly chosen images from 
different pathologies that are visually similar or commonly 
found in the laboratory workflow. Of the 41 distractor images, 
40 were accurately labeled as non‑BCC by the algorithm, 
resulting in a 98.9% specificity. Thus, the balanced accuracy 
for the nodular BCC algorithm was 99.45%.

Discussion

Artificial intelligence, and specifically deep learning, is 
now being applied to the fields of clinical dermatology and 
pathology.[39‑48] Both specialties are image intense, rely on 
the integration of visual skills for diagnosis, and are a natural 

Figure 5: Seborrheic keratosis. Receiver operating characteristics curve 
for binary detection

segue for algorithmic development. Esteva et al. trained a CNN 
dataset, consisting of approximately 129,000 clinical images 
and 2000 diseases, to recognize nonmelanoma skin cancer 
versus benign seborrheic keratosis, and melanoma versus 
benign nevi, equal to the clinical diagnostic impressions of 
21 board‑certified dermatologists. The authors project their 
results to a practical application of incorporating deep neural 
networks into clinician’s mobile devices to yield diagnoses 
beyond the confines of the office/clinic.[33]

Bejnordi et al. tested the performance of seven deep learning 
algorithms to detect lymph node metastasis in women with 
breast cancer against a panel of 11 participating pathologists 
with results reflecting equivalence of the algorithm versus the 
pathologists for the WSI classification task.[46]

Dermatopathology is an image‑intense specialty and 
our WSI biorepository provided an optimum source for 
development and testing of this technology. We investigated 
application to three common diagnoses in skin pathology, 
representing approximately 20% of specimens diagnosed in 
our dermatopathology laboratory; nodular BCC, dermal nevus, 
and seborrheic keratosis.

Algorithmic diagnosis of nodular BCC was successful in 123 of 
124 cases with a sensitivity and specificity of 100% and 98.9%, 
respectively. The single false positive was a dermal nevus 
incorrectly classified as nodular BCC. Although speculative as 
to the algorithm’s misclassification of this WSI, the specimen 
reflected, particularly in the papillary and upper reticular 
dermis, nested aggregates of nevocytes with similarity in size 
to nests of BCC. Nevocytes were more diffusely arranged in 
the deeper reticular dermis.

Dermal nevi also reflected a high degree of accuracy with 
113 out of 114 cases being correctly diagnosed by the algorithm 
with sensitivity of 98.8% and specificity of 100%. The one 
false‑negative WSI [Figure 6] was a dermal nevocellular nevus 
and although unknown why this was misclassified by the 
algorithm, the dermatopathologist noted the specimen having 
a diffuse arrangement of nevocytes rather than a combination 
of nests and diffuse arrangements, which are seen in many 
dermal nevi [Figure 6].

Figure 6: Dermal nevus. H and E‑stained whole slide images not identified 
by algorithm (false negative) (×2 magnification)

Table 2: Results of algorithm testing

Diagnosis Sensitivity 
(%)

Specificity 
(%)

Balanced accuracy 
(%)

BCC, nodular 100 98.9 99.45
Dermal nevus 98.8 100 99.4
Seborrheic 
keratosis

100 100 100

BCC: Basal cell carcinoma
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Seborrheic keratoses were the highest yield with the algorithm 
making the diagnosis in 123 out of 123  cases. This was 
particularly significant since the seborrheic keratosis training 
and test set was more rigorous and included a blend of 
acanthotic (72), reticulated (24), hyperkeratotic (12), and other 
variants (17) of seborrheic keratoses.

The distractor diagnoses for each particular lesion were 
variably rigorous yet followed machine learning sequential 
training, starting with more obvious distractors and moving 
to the more difficult ones, respectively. In addition, the 
distractors selected mirrored the more typical diagnoses in a 
dermpath laboratory workflow. Thus, distractors for nodular 
BCC only included one dermal process, and namely, a dermal 
nevus. The other four distractors were epithelial proliferations 
and dermatitis  (verruca, actinic keratosis, basosquamous 
acanthoma, and spongiotic dermatitis). No other basaloid 
neoplasms, such as trichoepithelioma, spiradenoma, nodular 
hidradenoma, or Merkel cell carcinoma and lymphoma, were 
included for this proof of concept study.

Distractors for dermal nevi included four out of five dermal 
processes and/or neoplasms. Fibroepithelial polyps were 
included because of their polypoid morphology, similar 
in silhouette morphology to many dermal nevi, yet an 
absence of nevocytes in the stroma. Considerations for more 
rigorous distractors in the training process might include 
syringomas, mastocytomas, Spitz nevi, and potentially, a 
nevoid melanoma.

Distractors for seborrheic keratosis all reflected varying 
involvement of the epithelium and significantly, a superficial 
(multifocal) variant of BCC. Since seborrheic keratoses 
represent a proliferation of an intermediate keratinocyte, 
particularly in the acanthotic variant of seborrheic keratosis, 
the low‑power impression can mimic the basaloid proliferation 
of superficial (multifocal) BCC. The rigor of this grouping of 
distractors was at a different level than the nodular BCC and 
dermal nevi.

Future data collection to enhance rigor of the algorithms, 
ut i l iz ing more s imulant  dis t ractors  s imilar  to  a 
dermatopathologist deciding between two or more lesions, 
will be critical.

Our workflow did not involve an explicit stain normalization 
step but fine‑tuning models with datasets developed using 
different staining conventions is expected to produce similar 
results. We leverage the fact that deep learning models, 
when trained with datasets that encompass all the variations 
introduced by scanners and staining conventions, tend to base 
their decisions on features or patterns that explicitly define the 
diagnosis, thereby eliminating any bias.

A significant limitation of our study was that the statistical 
analysis was a binary classification system. Organization of the 
study follows typical medical image analysis machine learning 
protocol,[49] with a train‑test split showing generalizability of 
the model and performance on out‑of‑sample observations. 

Development of a multivariate classification system integrating 
the individual algorithms into a holistic system would enhance 
the future studies.

Conclusions

Results from this study provide proof of concept that can serve 
as a framework for refinement and expansion of algorithmic 
development for common diagnoses in a dermatopathology 
laboratory. Exposing the algorithmic library to a digital 
workflow of all dermatopathology specimens is essential 
to collection of meaningful results that allow build out 
and refinement of these and further algorithms. With rapid 
advancements occurring in both medicine and technology, 
clinicians, and computer scientists must work collaboratively 
to take full advantage of the unprecedented opportunities 
that are transforming medicine.[50] Integration of refined and 
fully developed computer algorithms into digital pathology 
workflow could facilitate efficient triaging of cases and aid in 
diagnosis, resulting in significant cost savings to the health‑care 
system.
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