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Intrinsic and/or acquired resistance represents one of the
great challenges in targeted cancer therapy. A deeper
understanding of the molecular biology of cancer has
resulted in more efficient strategies, where one or multi-
ple drugs are adopted in novel therapies to tackle resis-
tance. This beneficial effect of using combination treat-
ments has also been observed in colorectal cancer
patients harboring the BRAF(V600E) mutation, whereby
dual inhibition of BRAF(V600E) and EGFR increases anti-
tumor activity. Notwithstanding this success, it is not
clear whether this combination treatment is the only or
most effective treatment to block intrinsic resistance
to BRAF inhibitors. Here, we investigate molecular re-
sponses upon single and multi-target treatments, over
time, using BRAF(V600E) mutant colorectal cancer cells
as a model system. Through integration of transcriptomic,
proteomic and phosphoproteomics data we obtain a
comprehensive overview, revealing both known and novel
responses. We primarily observe widespread up-regula-
tion of receptor tyrosine kinases and metabolic pathways
upon BRAF inhibition. These findings point to mecha-
nisms by which the drug-treated cells switch energy
sources and enter a quiescent-like state as a defensive
response, while additionally compensating for the MAPK
pathway inhibition. Molecular & Cellular Proteomics 17:
10.1074/mcp.RA117.000486, 1892–1908, 2018.

Despite the development of novel drugs for personalized
medicine, both intrinsic and acquired resistance remain major
limitations of targeted anticancer therapies (1, 2). Most of
these drugs target components of the mitogen-activated pro-
tein kinase (MAPK)1 signaling pathway, which contains onco-
genes such as KRAS, BRAF and the epidermal growth factor

receptor (EGFR) (3, 4). The use of monotherapy to inhibit
these oncogenes has often been found to be ineffective due
to reactivation of signaling pathways. For instance, upregula-
tion of upstream components such as receptor tyrosine ki-
nases (RTKs) in KRAS mutant lung and colorectal cancer
(CRC) or of downstream components such as KRAS wild-type
in CRC have been revealed to be responsible for intrinsic drug
resistance (5, 6).

To overcome intrinsic and/or acquired resistance, combined
drug treatments are frequently replacing single-agent targeted
therapies (7–9). An elegant example of bypassing intrinsic re-
sistance using a multi-target approach has been demonstrated
in BRAF(V600E) mutant CRC (10). Whereas BRAF inhibitor
(BRAFi) monotherapy is highly effective in BRAF(V600E) mutant
melanoma, response rates in BRAF(V600E) mutant CRC are
poor (11, 12). Multiple independent studies on CRC found a
crucial role of EGFR as a key driver of resistance to BRAFi
monotherapy (13–15). In congruence with the role of EGFR in
conferring resistance to BRAFi, the suppression of tyrosine
phosphatase nonreceptor type 11 (PTPN11)—which is re-
quired to transduce signals from EGFR and other RTKs to the
downstream MAPK pathway—also sensitizes BRAF(V600E)
CRC cells to BRAF inhibition (16). Consequently, the identifi-
cation of EGFR as a mediator of intrinsic resistance to BRAFi
in CRC has led to initiation of several clinical trials which
combine inhibition of both EGFR and BRAF (BRAFi�EGFRi),
or of other MAPK pathway members (10, 17).

Although the BRAFi�EGFRi combination treatment is more
effective than BRAFi monotherapy in CRC (18), it remains
unclear whether EGFR is the only or most potent synthetic
lethal co-target of BRAF(V600E) in CRC. Addressing this issue
requires an understanding of the cellular response to drug
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treatment across different molecular levels. Such multilayer
approaches could elucidate different branches of the signal-
ing network and track how perturbations propagate to gene
and protein expression in driving resistance. Several studies
have already highlighted the widespread responses to drug
treatment in cancer using multi-omics approaches and ade-
quate data integration (19–21). Advances in next-generation
sequencing and proteomics approaches (22, 23) in combina-
tion with enhanced data integration solutions have paved the
way for such important investigations (24, 25). Notably, the
integrated use of transcriptomics and (phospho)proteomics
has recently demonstrated its power in describing physio-
pathological processes through phenotype and proteotype
analysis (19, 26–28).

In this study we analyze and integrate proteomics, phos-
phoproteomics, and transcriptomics data to track molecular
responses over time upon perturbation with BRAFi, EGFRi, or
their combination in CRC cell lines. We aim to study whether
there are other post-translational or transcriptional mecha-
nisms—in addition to EGFR and the MAPK pathway—that are
activated upon treatment, to identify novel targets that may
overcome innate resistance and prevent acquired resistance
to BRAF inhibition.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—Colorectal tumor
cell lines WiDr and WiDr PTPN11 KO were used as model to study
resistance upon drug treatment. Both WiDr and WiDr PTPN11 KO
cells were plated in 15-cm dishes for (phospho)proteomics and
10-cm dishes for transcriptomics. All cells were cultured in RPMI
supplemented with 10% fetal calf serum (FCS) 1% L-Glutamine and
1% Penicillin/Streptomycin. Cells were grown to around 70–80%
confluence and starved for 24 h in serum-free media, after which all
plates were supplemented with serum-free media containing either no
drugs (WiDr Control, WiDr PTPN11 KO control) or 3 �M PLX4032
(BRAFi, BRAFi in PTPN11 KO) or 3 �M gefitinib (EGFRi) or the com-
bination of 3 �M PLX4032 and 3 �M gefitinib (BRAFi�EGFRi). Follow-
ing 30 min incubation, both Controls (n � 24) and treated cells (n �
48) were stimulated by 10% FCS and then collected at four-time
points: 2, 6, 24, and 48 h. Controls at T � 0 for both WiDr and WiDr
PTPN11 KO were instead immediately harvested without any stimu-
lation (n � 6). To increase the statistical power, the whole experiment
was executed in three biological replicates for both (phospho)pro-
teomics (n � 78) and transcriptomics (n � 78). At least two and three
technical replicates were processed for proteomics (168 RAW spec-
tra) and phosphoproteomics (243 RAW) respectively. No technical
replicates were processed for the transcriptomics experiment. The
reported driver mutations (BRAF(V600E), PIK3CA P449T, TP53
R273H) (29) were verified on 24 pooled samples and the ploidy of the
chromosomes checked against previous characterizations of WiDr/
HT-29 (30, 31) (supplemental Fig. S14). Single nucleotide variants

were called by GATK v3.4–46 (32), and copy number was determined
using CONTROL-FREEC v10.4 (33).

Cell Lysis—After each treatment, both WiDr and WiDr PTPN11 KO
cells were harvested by washing twice with cold PBS and then
resuspended in ice cold lysis buffer. For (phospho)proteomics anal-
ysis, protein extraction was obtained by adding 2 ml of buffer con-
taining 8 M urea, 50 mM ammonium bicarbonate (pH 8.0), 1 mM

sodium orthovanadate, complete EDTA-free protease inhibitor mix-
ture (Roche, Indianapolis, IN), and phosSTOP phosphatase inhibitor
mixture (Roche). Finally, cells were snap frozen in 15 ml Falcon
Centrifuge Tubes and stored at �80 °C until use. For transcriptomics
analysis, total RNA was extracted by adding 600 �l Lysis/Binding
Buffer from the mirVana miRNA Isolation Kit by Ambion (Cat.
AM1560), and then collecting cells by scraping. Next, cell lysate was
transferred into a 1.5 ml tube and stored at �80 °C until time of total
RNA isolation which was performed following the mirVana total RNA
workflow.

Proteomics Analyses—Lysed cells were defrosted, and each tube
was supplemented with 300 �l of fresh lysis buffer. Cells were further
lysed by 10 rapid passages through 23G needle and by sonication on
ice. Cell debris were removed by centrifugation at 20,000 � g for 30
min at 4 °C and cleared supernatants were stored at �80 °C. The
total protein concentration was measured using Bradford assay
(Bio-Rad, Hercules, CA).

Next, samples were split into 200 �g aliquots for quality control
analysis via western blots and 2 mg aliquots for tryptic digestion.
Proteins were reduced with 8 mM DTT (Sigma-Aldrich, Germany) for
1 h at room temperature, alkylated with 16 mM IAA (Sigma-Aldrich) for
30 min at room temperature in the dark and reduced again with 8 mM

DTT at room temperature to prevent overalkylation. Later, proteins
were first digested by Lys-C (Wako Chemicals, Virginia) (enzyme/
substrate ratio 1:65) at 37 °C for 4 h. Subsequently, urea was diluted
to 2 M with 50 mM ammonium bicarbonate and trypsin (Sigma-Aldrich)
was added (enzyme/substrate ratio 1:50). The digestion was exe-
cuted at 37 °C overnight and then quenched with 5% formic acid.
Peptides were desalted using Sep-Pak C18 cartridges (Waters), dried
and stored at �80 °C.

Phosphopeptide Enrichment—Ti4�-IMAC material was prepared
as previously described (34). Briefly, the affinity material was loaded
onto GELoader tips (Eppendorf, California) using a C8 plug. The
columns were pre-equilibrated two times with 50 �l of Ti4�-IMAC
loading buffer (80% ACN, 6% trifluoroacetic acid (TFA)). Next, sam-
ples were resuspended in loading buffer and 200 �g were loaded into
each microcolumn. Columns were sequentially washed with 50 �l
wash buffer A (50% ACN, 0.5% TFA, 200 mM NaCl) and 50 �l wash
buffer B (50% ACN, 0.1% TFA). Bound peptides were first eluted by
30 �l of 10% ammonia into 30 �l of 10% FA. Finally, all remaining
peptides were eluted with 2 �l of 80% ACN, 2% FA. The collected
eluate was further acidified by adding 3 �l of 100% FA, and subse-
quently dried in vacuo and stored at �80 °C. The procedure was
repeated in three technical replicates for each biological replicate.
Later, phosphopeptides were further desalted using SPE C18 car-
tridge homemade. Stationary phase C18 beads were dissolved in 500
�l isopropanol and loaded onto GELoader tips using a C18 plug as
previously described. The columns were washed with 50 �l wash
buffer C (80% ACN, 0.1% TFA) and then conditioned with 0.1% TFA.
Next, samples were resuspended in 30 �l of 10% TFA and loaded into
columns which were further washed with 30 �l of 10% TFA. Finally,
phosphopeptides were eluted with 30 �l of 80% ACN, 1% FA, dried
and stored at �80 °C.

(Phospho)proteomics Mass Spectrometry—(Phospho)peptides
were analyzed using an Agilent 1290 Infinity II LC system coupled to
a Q-Exactive mass spectrometer (Thermo Fisher Scientific, Bremen,
Germany). The LC system was equipped with a 2 cm Aqua C18

1 The abbreviations used are: MAPK, mitogen-activated protein
kinase; KO, knockout; RTK, receptor tyrosine kinase; CRC, colorectal
cancer; FDR, false discovery rate; GUI, graphical user interface; PC,
Principal component; RFI, rapid feedback inhibitor; IMAC, immobi-
lized metal ion affinity chromatography; LC, liquid chromatography;
HCD, higher energy collision induced dissociation.
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(Phenomenex, Dr. Maisch GmbH, Germany) trapping column (packed
in-house, i.d. 100 �m, resin 5 �m) and a 50 cm Poroshell 120 EC-C18
(Agilent Technologies, Netherlands) analytical column (packed in-
house, i.d. 50 �m; resin 3 �m). (Phospho)peptides were first trapped
at 5 �l/min in 100% solvent A (0.1% formic acid in water) for 10 min,
and then eluted with solvent B (0.1% formic acid in ACN) at a flow rate
of around 200 nL/min. Phoshoproteome analysis was performed in
120 min gradient as follows: 0–10 min 100% solvent A, 10–105 min
4% solvent B, 105–108 min 36% solvent B, 108–109 min 100%
solvent B, 109–120 min 100% solvent A. For the proteome analysis
instead a 180 min gradient was set as follows: 0–10 min 100%
solvent A, 10–10.1 min 13% solvent B, 10.1–165 min 40% solvent B,
165–168 min 100% solvent B, 169–180 min 100% solvent A. The
electrospray voltage was set to 1.7 kV using a coated SilicaTip P200P
capillary (Thermo Scientific). The mass spectrometer was operated in
data-dependent acquisition mode and was configured to perform a
Fourier transform survey scan from 375 to 1600 m/z (resolution
35,000) followed by higher collision energy dissociation (HCD) frag-
mentation of the 10 most intense peaks (25% normalized collision
energy at a target value of 50,000 ions, resolution 17,500). In total,
411 RAW spectra were collected: 168 for proteomics and 243 for
phosphoproteomics.

(Phospho)proteomics Data Processing—A preliminary quality anal-
ysis was performed for each dataset by MaxQuant (version 1.5.1.2)
selecting label-free quantification and using the integrated Androm-
eda search engine and Swiss-Prot Homo sapiens database (20,196
entries, released on 10_2014). A cut-off of R2 � 0.7 was applied on
both proteomics and phosphoproteomics correlation matrix (data not
shown) and, after this filtering step, 383 RAW phosphoproteomics
and proteomics files were selected for the final analysis and analyzed
by MaxQuant (version 1.5.2.8) with the integrated Andromeda search
engine. Phosphoproteomics RAW data were classified as Group 0,
whereas proteomics RAW data as Group 1. A mutant-modified
Swiss-Prot database Homo sapiens (24,126 entries, released on
05_2015) was used for the database search: for the variant identifi-
cation, all STAR aligned reads were merged into a single bam file,
subsequent variant calling was performed using VarScan (35) (v2.3.8)
with default settings; resulting variant positions were included in the
extended database when covered by at least 100 reads with at least
20% of reads harboring the variant. Trypsin was specified as enzyme
and up to two missed cleavages were allowed. Cysteine carbam-
idomethylation was set as a fixed modification, whereas methionine
oxidation and protein N-term acetylation were set as variable modi-
fications. Phosphorylation on serine, threonine and tyrosine was also
selected as variable modification for the phosphoproteomics analy-
sis. The mass tolerance was set to 4.5 ppm for precursor ions, and to
20 ppm (FTMS) for fragment ions. Fast Label free quantification (LFQ)
was performed and ‘match between runs’ was enabled. Peptide and
protein identification was set to 1% FDR, and the minimum score for
modified peptides was set to 40. The quantified output (protein-
Groups.txt, supplemental Table S7; phospho(STY)Sites.txt, supple-
mental Table S8) were processed using a custom in-house developed
Python package (PaDuA). Potential contaminants and reverse pep-
tides were removed. After filtering protein data for “only identified by
site” and phospho-data for localization probability � 75% (Class I
phosphosites), 6638 protein groups and 9055 phosphosites Class I
were identified. Next, normalization was performed by subtracting the
median of log2 transformed intensities from each column. For phos-
pho-data, the ‘expand side table’ function was applied before nor-
malization. Median of technical replicates was performed for each
dataset and the resulting values were filtered to ensure each protein
or phosphosite had valid measurements in at least one time point of
any of the six cell culture conditions. For the final dataset, 5692
protein groups and 7141 phosphosites Class I were quantified. En-

richment analysis was calculated using modificationSpecificPep-
tides.txt table (supplemental Table S9). The final processed outputs
were exported for subsequent analysis in R (https://bitbucket.
org/evertbosdriesz/cgc-multi-omics).

Transcriptomics—Quality and quantity of isolated RNA was
checked and measured with Agilent 2100 Bioanalyzer and RNA Nano
6000 chips (Agilent Technologies, Cat. 5067–1511). All samples had a
RNA integrity number (RIN) value � 9.5. After RNA purification, librar-
ies were generated from 500 ng of Total RNA using the Truseq
Stranded Total RNA kit with Ribo-Zero Human/Mouse/Rat set A and
B by Illumina (Cat. RS-122–2201 and RS-122–2202, San Diego, CA).
After the library preparation, libraries were checked with Bioana-
lyzer2100 DNA High Sensitivity chips (Agilent, Cat. 5067–4626) and
with Qubit (Qubit® dsDNA HS Assay Kit, Cat. Q32854, Thermo Fisher
Scientific). Libraries were equimolar pooled to 2 nM. Next, 0.8–1.4 pM

of these pooled libraries were sequenced on the Illumina NextSeq,
2 � 75bp high output, and 1.0–1.4 pM of library pools was loaded.
Mapping was performed using STAR_2.4.2a, read counting using
ht-seq count and the v74 gencode definition for coding regions.
Fragments were mapped against GRCh37 using STAR (36) (v 2.4.2a),
reads within coding regions (ENSEMBL release 74) were counted
using ht-seq count (37) (v0.6.1) and further normalized and analyzed
using the DeSeq2 package (38) (v1.6.3). Libraries were sequenced on
Illumina NextSeq to an average of 9.9 (�3.5) million reads per sample.
From these RNA depleted RNA-seq libraries, 7.9 (�4.9) million reads
mapped against the human reference genome (hg19), of which 36.6%
(�8.6) correspond to mRNA regions. Full details and workflows are
available online: https://github.com/UMCUGenetics/RNASeq (v.2.2.0
was used for this paper).

Western Blots—For both quality control and validation analysis,
total cell extracts were quantified using the Pierce BCA Protein Assay
(23227, Thermo Scientific) and the colorimetric reaction evaluated at
562 nm using the EnVision 2014 Microplate Reader (Perkin Elmer,
Massachusetts). Equal amount of proteins was prepared for all sam-
ples adding 10� NuPage Sample Reducing Agent (NP0004, Thermo
Scientific) and 4X NuPage LDS Sample Buffer (NP0007). Samples
were subsequently incubated at 95 °C for 5 min to allow protein
denaturation. Lysates were resolved by SDS-PAGE using NuPage
4–12% Bis-Tris precast gels and NuPAGE Gel Electrophoresis Sys-
tems (Thermo Scientific). The gels were run in 1� MOPS buffer (50
mM MOPS, 50 mM Tris base, 0.1% SDS, 1 mM EDTA) at a constant
voltage of 165 V. Proteins were transferred on a methanol-activated
PVDF membrane. Transfer was performed in 1X Transfer Buffer (25
mM Tris base, 122 mM glycine, 0.01% SDS, 10% methanol) using a
Trans-Blot Cell apparatus (Bio-Rad) and applying a constant amper-
age of 70 mA. Blocking was performed by incubating the membranes
in 5% BSA in TBS-T (0.1%) for 1 h. Primary antibodies were typically
diluted 1:1000 in 5% BSA in TBS-T and incubated at 4 °C overnight
while shaking. Membranes were washed 3 times during 10 min with
TBS-T (0.1%). HRP-coniugated secondary antibodies (Bio-Rad) were
diluted 1:10,000 in 5% BSA in TBS-T and incubated for 1 h at room
temperature while shaking. Subsequently, membranes were washed
additional 3 times during 10 min with TBS-T (0.1%). Final protein
detection was performed using Clarity ECL Western blotting sub-
strate (Bio-Rad) and blot imaging was performed using the Chemidoc
Touch Imaging System (Bio-Rad).

Differential Expression Analysis—All differential expression analy-
ses were performed using the limma R package (39). mRNA read
counts were first transformed using voom (40). The transformed
mRNA read counts and the log-normalized intensities of proteins and
phosphosites were checked to be normally distributed. For the com-
parison of BRAFi�EGFRi to control samples, a linear model was fitted
for each gene/protein/phosphosite with each condition (treatment
and time point pair) as a separate variable. The contrast between the
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BRAFi�EGFRi and control samples at 48 h conditions was used for
enrichment analysis. For the comparison of the PTPN11 KO cell line
to the PTPN11 WT cell line, a linear model was fitted for each
gene/protein using cell line, time point and treatment as variables, and
subsequently contrasting the cell line coefficients. Because PTPN11
KO and EGFRi treatment are expected to have a similar biological
effect, the treatment coefficient of PTPN11 KO controls and EGFRi-
only treated samples were equated. Similarly, the treatment coeffi-
cient of PTPN11 KO cell line treated with BRAFi and BRAFi�EGFRi
samples were equated.

Clustering—Hierarchical clustering was performed on the 1500
phosphosites, proteins, or mRNAs with the highest variance within
each data set, calculated over all conditions. The mRNA expression
data was first log-transformed and filtered for mRNAs that were
differentially expressed compared with the T � 0 h Control at a false
discovery rate (FDR) of 10�6. The pairwise distance between two
phosphosites, proteins, or mRNAs i and j was calculated as (1-�i,j)/2,
where �i,j is the Pearson correlation between the two. The obtained
distances were used for hierarchical clustering using Ward’s mini-
mum variance method. For each data type, the resulting trees were
cut into 8 groups, because consensus clustering (41) indicated that to
be a reasonable number. Enrichment analysis of the clusters were
done using Fisher’s exact test, with all measured genes, proteins, or
phosphosites as background. For the phosphoproteomic data, the
enrichment for each kinase in each cluster was calculated based on
its predicted substrates. Predicted kinase-substrate relations were
obtained using KinomeXplorer (42). Similarly, for the mRNA expres-
sion data, enrichment of transcription factors in each cluster was
calculated based on its known target genes. Transcription factor-
target gene relations were obtained from the TransFac database (43,
44) (version 2_2016). Enrichment analysis of biological processes was
done using the hallmarks gene sets from MSigDB (45). Multiple test-
ing correction was performed using Benjamini and Hochberg’s
method.

Transcriptomics of Multiple BRAF(V600E) CRC Cell Lines—For this
validation experiment, SNU-C5, VACO432 and KM-20 cell lines were
plated in 10-cm dishes at a confluence of 2 � 106 cells per dish. All
cell lines were cultured in RPMI 1640, supplemented with 10% FCS,
1% L-Glutamine and 1% Penicillin/Streptomycin. Cells were first in-
cubated for 24 h, and subsequently starved for 24 h in serum-free
media. Next, all plates were supplemented with serum-free media
containing either no drugs (untreated) or 3 �M PLX4032 (BRAFi) or the
combination of 3 �M PLX4032 and 3 �M gefitinib (BRAFi�EGFRi).
Following 30 min incubation, both untreated (n � 3) and treated cells
(n � 6) were stimulated with 10% FCS, and then collected after 48 h.
Controls at T � 0 (n � 3) were instead collected immediately after
starvation. Total RNA was extracted by adding 400 �l RLT buffer
containing �-mercaptoethanol from the Qiagen RNaesy kit (Qiagen,
Germany) and collected the cells by scraping. Cell lysates were
stored in 2 ml tubes at �80 °C until time of total RNA isolation with the
QIAsymphony machine (Qiagen), using the Qiasymphony RNA kit
(Qiagen, Cat. 931636) and the miRNA CT400 workflow. For the dif-
ferential expression analysis, a linear model using cell line (SNU-C5,
VACO432, and KM-20) and treatment (T � 0 h, Control, BRAFi and
BRAFi�EGFRi) was fitted. The contrast between BRAFi�EGFRi ver-
sus Control and BRAFi versus Control were used for the differential
expression analysis. The contrast between T0 and all other treat-
ments were used for the Rapid Feedback Inhibitor analysis.

Cell Proliferation Assays—All experiments were carried out cultur-
ing WiDr cells in RPMI 1640 supplemented with 10% fetal bovine
serum (FBS), 1% Penicillin/streptomycin and 1% L-Glutamine, at
37 °C, 5% CO2.

WiDr cells were seeded in five 96-well plates at a density of 5000
cells/well. After 24 h of incubation (37 °C, 5% CO2), media was

removed from all plates and replaced with media containing drugs. In
three 96 wells plates, gefitinib, lapatinib or sapitinib were serially
diluted to a final concentration range of 120 nM to 30 �M as a single
treatment and in combination with PLX4032 at a fixed concentration
of 3 �M (n � 4). In the fourth 96-well plate, PLX4032 was serially
diluted to a final concentration range of 30 nM to 30 �M in combination
with gefitinib at a fixed concentration of 3 �M and with either 1 mM

DCA (n � 4) or 10 �M etomoxir (n � 4) respectively. In the last 96-well
plate, PLX4032 was serially diluted to a final concentration range of
30 nM to 30 �M in combination with gefitinib at a fixed concentration
of 3 �M (n � 8). After 96 h of treatment, 1 mM DCA was added to four
replicates and 10 �M etomoxir was added to other four replicates. All
plates contained a column with untreated cells as a reference sample
and were treated for 7 days (37 °C, 5% CO2). Media containing the
drugs was replaced after 72 h.

IC50 of single treatments was determined seeding WiDr cells in
three 96-well plates at a density of 10,000 cells/well. After 24 h of
incubation (37 °C, 5% CO2), media was removed from all plates and
replaced with media containing either PLX4032 or etomoxir or DCA
serially diluted in four replicates to a final concentration range 30
nM-30 �M, 200 �M-0.2 �M and 100 mM-0.1 mM, respectively. All plates
contained a column with untreated cells as a reference sample and
were treated until 72 h (37 °C, 5% CO2).

Cell growth inhibition was monitored in all assays using the
IncuCyte™ automated microscope (Essen Bioscience, Ann Arbor, MI)
and phase-contrast images were collected every 2 h using a 10x
Nikon objective. Phase confluence percentage from each well at
each time point was exported into GraphPad Prism 7.0 software.
The area under the curve (AUC) was calculated for each concen-
tration (n � 4), normalized in respect to untreated cells and fitted
using a four-parameter logistic curve. Percentage of growth in
single and combination treatments were visualized as dose re-
sponse curves.

Drug Off Assays—All experiments were carried out culturing WiDr
cells in RPMI 1640, supplemented with 10% FBS, 1% penicillin/
streptomycin and 1% L-glutamine at 37 °C, 5% CO2.

For long-term assay, WiDr cells were seeded in one 6-well plate
(200,000 cells/well) and grown to around 60% confluence. After 24 h
starvation in serum-free media, cells were treated with PLX4032 and
gefitinib both at a fixed concentration of 3 �M, in complete medium.
Media was replaced two times per week and treatment was inter-
rupted after 78 days. Pictures were acquired using an ECLIPSE Ti-e
inverted microscope (Nikon, Tokyo, Japan) at a magnification of 10x.
Cell confluence was measured using Fiji plugin in ImageJ software.

For short-term assay, WiDr cells were seeded in one 96-well plate
at a density of 5000 cells/well. After 24 h of incubation (37 °C, 5%
CO2), media was removed from all plates and replaced with media
containing PLX4032 and gefitinib at fixed concentration of 3 �M.
Media was replaced (once/twice) per week and treatment was inter-
rupted after 5 days. Cell growth was monitored in the IncuCyte™
automated microscope and phase-contrast images were collected
every 2 h using objective Nikon 10x.

Antibodies and Reagents—WiDr cells were purchased from Amer-
ican Type Culture Collection (ATCC) (13) and WiDr cells clone #B32
were used as knockout of PTPN11 (WiDr PTPN11KO) (16). Both RPMI
1640 medium (#12–167F), penicillin/streptomycin (#17–602E) and L-
Glutamin (#17–605C) were purchased from Lonza, (Basel, Switzer-
land), whereas FBS (#16000044) was purchased from ThermoFisher.

PLX4032 (#S1267), gefitinib (#S1025) and Scientific sapitinib
(#S2192) were purchased from Selleck Chemicals (Houston, TX),
and lapatinib (#S1028) from MedKoo Bioscences Inc. (Chapel Hill,
NC). Etomoxir (#11969) was purchased from Bio-Connect B.V. (TE
Huissen, Netherlands), whereas dichloroacetic acid sodium salt (DCA)
(#2156-56-1) from Sigma-Aldrich Chemie (Zwijndrecht, Netherlands).
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Antibodies against HSP-90 (H-114), PTPN11 (SH-PTP2 C-18),
ERK1 (C-16), ERK2 (C-14), and p-ERK1/2 (E4) were purchased from
Santa Cruz. p-EGFR (Y1068, ab5644), p-SHP2 (Y542, ab62322) were
purchased from Abcam. p-ERBB3 (Y1197, #4561), p-IGF1R (Y1135/
1136, #3024), IGF1R (#3027), p90RSK (#8408), AKT 1/2 (#2920),
p-AKT (S473, #4060) were purchased from Cell Signaling Technol-
ogy. Anti-EGFR (#06–847), p-ERBB2 (Y1248, #06–229), ERBB2
(#OP15L), ERBB3 (#05–390) and p-p90RSK (T359/S363, #04–419)
antibodies were from Millipore.

RESULTS

A Multi-omics Overview of BRAF Mutated Colorectal Can-
cer Cell Response to Targeted Drug Treatment—We selected
the WiDr CRC cell line harboring the BRAF(V600E) mutation
as a model system for our analyses (30, 31). To study the
differences in signaling we treated the WiDr cells with either
vemurafenib (BRAFi) or gefitinib (EGFRi), or with the combi-
nation treatment BRAFi�EGFRi. Additionally, we employed a
WiDr PTPN11 knockout (KO) cell line treated with BRAFi
(BRAFi in PTPN11 KO) to investigate if there are functional
differences between PTPN11 KO and EGFRi when applied in
combination with BRAFi (Fig. 1A). To reduce the signal back-

ground, cell growth was synchronized by serum starvation for
24 h (h), followed by 30 min (min) incubation with or without
drugs before serum stimulation (Experimental Procedures).
Unstimulated control and PTPN11 KO control cells were im-
mediately harvested—indicated as T � 0 h throughout this
study—whereas stimulated samples were collected in a time
course at 2, 6, 24, and 48 h after treatment (Fig. 1B). We
performed transcriptomic (RNA-seq) and (phospho)proteomic
profiling at each of the time points as indicated in Fig. 1C. Our
study was designed to capture the initial responses to the
different drug treatments and the elicited RTK signaling, mon-
itoring their effects on gene and protein expression, and the
onset of feedback mechanisms. We therefore generated a
customized protein sequence database using RNA-seq data
to account for WiDr-specific non-synonymous variants (Ex-
perimental Procedures).

The phosphorylation profile of ERK (MAPK1) (Fig. 2A, top
panel) was used as a positive control to verify the drug-
induced regulation and overall quality of the label-free quan-
titative (phospho)proteomics approach. In concordance with

FIG. 1. Study design. A, Biological model. Schematic representation of the MAPK signaling pathway whereby BRAF(V600E), the drugs and
KO target sites are highlighted. B, Experimental design. WiDr and WiDr PTPN11 KO cells were cultured for transcriptome, proteome and
phosphoproteome analysis. For each of the six treatments the time-course of events is indicated (Experimental Procedures). Color codes are
utilized to differentiate the effect due to drug inhibition in PTPN11 WT with respect to the knock-out of PTPN11 KO by distinguishing
BRAFi-treated samples (red and shades of purple) from not BRAFi-treated samples (gray and shades of blue). C, Workflow employed in this
study. For the transcriptomics analysis, mRNA libraries were prepared and sequenced using Illumina NextSeq. Quantitation in proteomics and
phosphoproteomics analysis was done by label-free quantitation. Phosphoproteomics was performed after Ti4�-IMAC phosphopeptide
enrichment. For the integration of transcriptome, proteome and phosphoproteome approach, a customized protein database was developed
to include identified missense mutations for peptide identification and quantification (Experimental Procedures).

System-wide Responses to Combination Treatments in Cancer

1896 Molecular & Cellular Proteomics 17.10



previous studies (16), pERK is downregulated upon BRAFi,
and this effect is enhanced by addition of EGFRi or in the
PTPN11 KO cell line. Complementary Western blots (Fig. 2A,
bottom panel) show excellent correlation with the label-free
phosphoproteomics data. Further quality analysis demon-
strates high correlation between respective biological repli-
cates, with median Pearson correlation coefficients of 0.99,
0.93, and 0.83 for the transcriptomics, proteomics and phos-
phoproteomics data, respectively (Fig. 2B). As expected, the
quantified proteomics data shows a slightly higher variability
than the RNA-seq data (48), whereas phosphoproteomics
data exhibits an even higher variability. The final (phospho)
proteomics data set consisted of 5692 quantified protein
groups and 7141 quantified Class I phosphosites (localization
probability � 0.75), both of which were measured in at least
one time point of any of the six applied conditions. The

transcriptome dataset contained a final list of 21,446 genes
(supplemental Fig. S1). We developed a Graphical User Inter-
face (GUI) to facilitate rapid data comparison. The GUI en-
ables selection of a specific gene to immediately visualize a
comparison of its expression profile at transcriptomic and
(phospho)proteomic levels (Fig. 2C).

Finally, we tested for potential off-target effects by looking
at the substrates of kinases that had a dissociation constant
for gefitinib or vemurafenib below the concentrations we used
(ZAK, RIPK2, MAP2K5, PTK6, FECH, MAP4K5, RIPK3, GAP)
(49). For all these kinases, we either did not observe any
substrates, or their substrates did not show any coordinated
dephosphorylation in response to the inhibitors (supplemental
Fig. S2), providing no evidence of off-target effects.

EGFR Inhibition Amplifies Response to BRAFi in CRC
Cells—To extract an overview of the effect of the different

FIG. 2. High data quality enables reliable overview of gene-level response across omics datasets. A, Label-free phosphoproteomics
and phosphoWB provide similar regulation patterns. The LC-MS/MS quality control was assessed by quantification of ERK phosphorylation
(top panel) in all three biological replicates (R1, R2 and R3), and subsequent validation was done via western blots by using pERK1/2 (bottom
panel) which confirmed down-regulation of pERK1 on Y187 as measured by mass spectrometry. B, Quality analysis of reproducibility at each
omics level. Replicate consistency was assessed by inter-replicate Pearson correlation. In the phosphoproteomic analysis, selection of
technical replicates involved discarding the poorest replicates before quantification. Median of technical replicates was performed for both
phospho- and proteomics dataset, and the resulting processed data were further filtered to only include data that was quantified in at least
one time point of any condition. Analysis indicates good median correlation (R � 0.8) among the three biological replicates for all three omics
datasets. C, Cross-omics Graphical User Interface output. The GUI enables exploration of the multi-omics data for specific genes under all the
tested conditions. Users can select a measured gene of interest from a dropdown menu, and visualize complete data at the transcript, protein,
and phosphosite level, over the time-course and over all experimental conditions. An example output for the gene PTPN11 is shown.
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treatments, we performed Principal Component Analysis
(PCA) on each omics data type (Fig. 3A, supplemental Table
S1). The trend along the first two principal components is
similar for all data types. Principal Component 1 (PC1) repre-
sents the variation over time in the BRAFi treated samples
(BRAFi, BRAFi�EGFRi, and BRAFi in PTPN11 KO). This var-
iation is greater in BRAFi�EGFRi and BRAFi in PTPN11 KO
samples compared with the samples treated with BRAFi only.
Notably, the onset of the variation in the direction of PC1
occurs earlier in the transcriptomic data (after 6 h) than in the
proteomics data (after 24 h), reflecting the delay from tran-
scription to translation. Principal Component 2 (PC2) reflects
the variation in the measurements over time in non-BRAFi
treated samples (Control, EGFRi and PTPN11 KO control). In
the proteomics data, PC2 also clearly separates the PTPN11
KO and WT samples.

To further investigate the additional effect conferred by
EGFRi in addition to BRAFi, we plotted log2(BRAFi�EGFRi/
Control) against log2(BRAFi/Control) values for each gene/
protein/phosphosite-time point pair that is significantly differ-
entially expressed compared with untreated controls in at
least one of the two treatments. The responses to BRAFi and
BRAFi�EGFRi are highly correlated, as evidenced by Pear-
son correlation coefficients of 0.95, 0.86 and 0.82 for the
transcriptomic, proteomic, and phosphoproteomic data, re-
spectively (Fig. 3B). Interestingly, for both transcriptomic
and phosphoproteomic data, the log2-fold-changes of the
BRAFi�EGFRi treatment are larger, on average, than those of
the BRAFi alone. This is clear from the linear regression line
(blue) whose slope is steeper than the line with slope of 1 (gray
line). This effect is statistically highly significant, because the
95% confidence intervals of these slopes are 1.14–1.15 and
1.14–1.25 for the mRNAs and phosphosites, respectively.
This observation was further confirmed by analyzing mRNA
expression data in three additional BRAF(V600E) CRC cell
lines (SNU-C5, VACO432, KM-20) (supplemental Fig. S3A,
supplemental Table S2). Furthermore, a similar trend is ob-
served when correlating BRAFi in PTPN11 KO and BRAFi only
treated samples in WiDr cell line (supplemental Fig. S3B), with
the exception of a few proteins whose expression decreases
in the PTPN11 KO cells but not upon EGFRi. Taken together,
our data demonstrates that addition of EGFRi or the knockout
of PTPN11 enhances the effect of BRAFi but does not pro-
duce qualitatively different molecular responses.

PTPN11 Knockout Induces Post-transcriptional Downregu-
lation—Although the effect of PTPN11 KO and EGFRi mostly
appears to be similar in our study, both the PCA (Fig. 3A) and
the correlation of BRAFi in PTPN11 KO and BRAFi only
(supplemental Fig. S3B) highlighted an effect of the PTPN11
KO on the proteomics data that was not observed in the
transcriptomic data. To further investigate how PTPN11 KO
affects proteins and mRNAs differently, we performed differ-
ential protein and mRNA expression analyses using a linear
model to compare PTPN11 KO and wild type (WT) EGFRi

treated cells overall, where the PTPN11 status (KO and
WT�EGFRi), the drug treatment (BRAFi or not) and the time-
points (0, 2, 6, 24 and 48 h) were used as variables (supple-
mental Table S3).

At the protein level, we identified 77 proteins that have (1)
significant differential protein expression (FDR � 0.05) be-
tween PTPN11 KO and PTPN11 WT�EGFRi, (2) a large neg-
ative log2-fold-changes of � �1 at the protein level, and (3) a
small absolute log2-fold-changes of � 1 at the mRNA level
(Fig. 3C). The most disparate difference is observed in crea-
tine kinase brain-type (CKB), with a log2-fold-change of �6.3
in PTPN11 KO cell line compared with PTPN11 WT�EGFRi
and a remarkable minimal difference on average in mRNA
expression (log2-fold-change � �0.65) (supplemental Fig.
S4A).

These 77 proteins also demonstrate a consistent time-
course profile in which expression at both the protein level
and the mRNA level is downregulated in BRAFi treated con-
ditions at T � 24 h (Fig. 3D, supplemental Fig. S4B, supple-
mental Fig. S4C). This observation suggests that expression
of these 77 proteins still responds to mRNA expression level
dynamics, despite an overall downregulation in an mRNA-
expression independent manner upon PTPN11 KO.

We next investigated whether these 77 proteins are func-
tionally related by performing an enrichment analysis using
the MSigDB Hallmarks (45). Our analysis reveals a strong
enrichment of the interferon alpha (IFN-�) and gamma (IFN-�)
response gene-sets (enrichment � 15-fold, p � 10�12, sup-
plemental Table S3) which are known to suppress cell viability
through the JAK/STAT pathway (50). Interestingly, PTPN11
negatively regulates the IFN-induced JAK/STAT pathway by
dephosphorylating STAT1 on both residue Y701 and S727
(51). In line with this observation, STAT1 is also significantly
downregulated at the protein level in the PTPN11 KO cells
(FDR � 10�8) in our dataset and shows a time-course profile
like the aforementioned 77 genes (supplemental Fig. S4D).

System-wide Propagation of Drug Perturbation—A key goal
of our study was to provide a system-wide understanding of
the propagation of cellular responses from signaling (phos-
phoproteomics) to gene transcription (transcriptomics) and
then translation and protein expression (proteomics) in re-
sponse to BRAF and/or EGFR inhibition. We therefore per-
formed correlation-based hierarchical clustering on the 1500
phosphosites, mRNAs and proteins exhibiting the highest
variance within each dataset and divided each omics dataset
in eight clusters (supplemental Fig. S5). We observed that in
the transcript-, phosphosite- and protein clusters, all BRAFi
treated samples (BRAFi, BRAFi�EGFRi, and BRAFi in
PTPN11 KO) exhibit similar clustering profiles, often distinct
from non-BRAFi treated samples.

To investigate the biological function of all the clusters, we
performed enrichment analysis based on transcription factor-
target gene (transcriptomic clusters) and kinase-substrate
(phosphoproteomics cluster) relationships, and using the hall-
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FIG. 3. Comparisons between drug treatments and omics data types. A, Principal Component Analysis (PCA) of transcriptomics,
proteomics and phosphoproteomics data elucidates similar global trends in the data. B, Correlation plots of log2-fold-changes in BRAFi and
BRAFi�EGFRi compared with Control, for each data set. The gene/protein/phosphosite-time point pairs selected are significantly differentially
expressed for at least one of the two treatments. C, Scatterplot of log2-fold-changes of protein (x axis) and mRNA (y axis) levels in PTPN11
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marks gene-sets from MSigDB (all data types) (45) (supple-
mental Table S4): Two clusters, corresponding to an early
treatment response within 2–6 h and late treatment response
after 24–48 h at both the gene expression (transcriptomic)
and signaling (phosphoproteomic) level are downregulated
upon BRAFi (either alone or in combination with EGFRi or in
PTPN11 KO) (Fig. 4A and 4B). In contrast, four clusters exhibit
a distinct upregulation of proteins, phosphosites or tran-
scripts in all BRAFi treatments, starting after 2 h and increas-
ing throughout the time-course.

MAPK and PI3K-AKT Signaling Are Involved in Early Re-
sponse—The early response phosphoproteomics cluster is
enriched for substrates of kinases belonging to the MAPK and
PI3K-AKT pathways (Fig. 4A, right panel). An immediate de-
crease in phosphorylation of the canonical MAPK-pathway
members MAP2K1 (MEK1) and MAPK1 (ERK2) substrates
occurs in all BRAFi treated samples, which is consistent with
the immediate dephosphorylation of Y187 on MAPK1 and
Y204 on MAPK3 (ERK1) (Fig. 2A and supplemental S6A). The
early response cluster also includes substrates of p70S6K
(RPS6KB1), a kinase downstream of AKT. Its reduced phos-
phorylation on S427 (supplemental Fig. S6B) is consistent
with the dephosphorylation of AKT after 2–6 h upon BRAFi,
and more strongly so in combination with EGFRi. Although we
did not detect the relevant phosphosites of AKT1 and AKT2 in
our dataset, the deactivation of AKT signaling is confirmed by
Western blotting at later time points in the combination treat-
ment (supplemental Fig. S7).

Consistent with the early deactivation of MAPK and AKT
signaling observed in the phosphoproteomics cluster, the
transcriptomics early response cluster is enriched for tar-
gets of transcription factors downstream of the MAPK and
AKT pathways (Fig. 4B, right panel), such as CREB1, FOS,
MYC, AP-1, and JUN. This is further corroborated by down-
regulation of most of these transcription factors upon BRAFi
(Fig. 4C and supplemental Fig. S6C). The early response
cluster is absent in the proteomics data (supplemental Fig.
S5), possibly reflecting a lag between transcription and
translation.

BRAF(V600E) Inhibition Affects Cell Cycle and Cell Prolifer-
ation at Later Time Points—The late response cluster reflects
the effect of drug treatment on cell cycle and proliferation. The
phosphoproteomics late response cluster is highly enriched
for substrates of the cell cycle regulators CDK1 and CDK2
(Fig. 4A, right panel). This finding is corroborated by de-
creased CDK1 (supplemental Fig. S6D) and CDK2 (supple-
mental Fig. S6E) protein expression. Similarly, the transcrip-
tomic late response cluster is enriched for target genes of the
cell cycle regulators E2F1, E2F4, and E2F3 (Fig. 4B, right

panel). The connection between late response phospho-sig-
naling and gene expression is mediated by down-regulation
of the phospho-residue T821 on RB1 (Fig. 4D), a substrate of
CDK2, whereas total RB1 protein expression remains rela-
tively constant (supplemental Fig. S6F). This down-regulation
induces binding of RB1 to E2F1 thereby inhibiting E2F1 ac-
tivity (52) and promoting cell cycle arrest (53) in all BRAFi
conditions at the late timepoints. Further enrichment analysis
of the MSigDB hallmarks gene-sets revealed enrichment of
proliferation-related gene sets including E2F targets, genes
involved in the G2M checkpoint, and mitotic spindle genes
(supplemental Table S4).

We also observe a late response cluster in the proteomics
data (cluster 4), which is strongly enriched for targets of MYC
and E2F (supplemental Table S4). MYC and E2F targets are
also enriched in the transcriptome early response cluster,
again indicative of the delay between transcription and
translation.

Inhibition of BRAF(V600E) Induces Distinct Metabolic Re-
sponse—In addition to the early and late response clusters,
which show down-regulation upon BRAFi, we also observe a
set of transcripts, proteins and phosphosite clusters that are
up-regulated in all BRAFi treated samples compared with
Control and EGFRi-only treated samples. These clusters in-
clude phosphoproteomics cluster 5, and transcriptomics
clusters 5 and 7 (supplemental Fig. S5) and exhibit the strong-
est regulation at 48 h. Cluster 5 of the phosphoproteomics
data was enriched for substrates of pyruvate dehydrogenase
kinases (PDKs), which are known to regulate glucose and
mitochondrial metabolism by phosphorylating pyruvate dehy-
drogenase E1 component subunit alpha (PDHA1) on serine
residues (54, 55). Both clusters 5 and 7 of transcriptomics did
not show any significant statistical enrichment.

Thus, to further interrogate which processes are up-regu-
lated in BRAFi�EGFRi or BRAFi treated samples, we per-
formed differential expression and subsequent enrichment
analysis of transcripts and proteins that were significantly
up-regulated at 48 h with respect to Control (log2-fold-
changes � 0, FDR � 0.05), using the MSigDB Hallmarks,
KEGG, and Reactome genesets. Our proteomics data dem-
onstrates up-regulation of metabolic processes including the
peroxisome, the TCA cycle and the fatty acid metabolism
upon BRAFi and BRAFi�EGFRi, (supplemental Table S5,
supplemental Table S6, respectively). Activation of the TCA
cycle is corroborated by significant up-regulation of TCA cy-
cle enzymes IDH1, IDH2 and SUCLG2, whereas the observed
enrichment of the mitochondrial proteins involved in the �-ox-
idation of long chain fatty acids as CPT2, HADHA and HADHB
suggests fatty acids may be used as energy source under the

KO compared with PTPN11 WT cells reveals set of 77 genes downregulated at protein level but with no expression difference at RNA level.
D, Average expression profiles of the 77 proteins (red dots in B) that are downregulated at the protein but not at the mRNA level. The expression
of each mRNA/protein is mean-centered. The solid lines indicate mean expression of the 77 mRNA/proteins and the shaded area indicates the
95% confidence interval of the mean.
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FIG. 4. Clustering reveals a MAPK mediated early and CDK mediated late response to BRAF inhibition. A, Selected phosphoproteom-
ics clusters show an early and late response of phosphosites in which phosphorylation decreases upon BRAF inhibition within 2–6 h (left panel)
and after 24–48 h (middle panel). Enrichment analysis (right panel) indicates that the early response cluster is enriched for substrates of kinases
located downstream of BRAF in the MAPK pathway, whereas the late response cluster is enriched for substrates of cyclin-dependent kinases.
B, Selected transcriptomics clusters show a similar early (left panel) and late (middle panel) response. Enrichment analysis (right panel) reveals
that the early response cluster is enriched for target genes of transcription factors that are downstream of the MAPK pathway, and the late
response cluster is enriched for targets of the E2F-transcription factor. C, Deactivation of MYC is a consequence of MAPK pathway
deactivation and corroborates the early-response TF-target gene enrichment analysis. D, Downregulation of RB1 at phosphosite T821 inhibits
E2F1 activity and induces cell cycle arrest at late timepoints in BRAFi treated cells.
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drug treatment inducing stress conditions (56) (supplemental
Fig. S8 and supplemental Fig. S9A–S9D). These pathways are
not significantly enriched in the transcriptomic differential ex-
pression analysis (supplemental Table S5 and S6), and the
up-regulation of the RNA levels is much less pronounced or
inconsistent in most cases (supplemental Fig. S9A–S9D).
Nonetheless, the average mRNA log2-fold-changes of the
genes in most of these genesets is significantly greater than 0
(supplemental Table S5 and S6), and similar outcomes were
obtained from the analysis on transcriptome data of three
additional BRAF(V600E) CRC cell lines (SNU-C5, VACO432,
KM-20) (supplemental Table S2, supplemental Fig. S9E).
Taken together, our omics data suggest that upon
BRAF(V600E) inhibition, CRC cells activate a broad set of
metabolic processes, mainly on the proteomic level, which
may increase mitochondrial oxidative activity through fatty
acid synthesis and uptake, suggesting a new possible mech-
anism as defensive response.

Feedback Responses Aim to Compensate for MAPK Path-
way Inhibition—Next, we set out to find more specific feed-
back responses to drug inhibition and serum stimulation by
focusing on known regulators of the major signaling pathways
(MAPK, PI3K, cAMP, TGF�, JAK/STAT). To achieve this, we
obtained a data set compiled by Legewie et al., who collected
mRNA half-lives and expression profiles in response to path-
way stimulation of known signal transducers and inhibitors of
the major signaling pathways (57). From plotting the expres-
sion changes against the half-lives, Legewie et al. observed
that all regulators that changed expression upon pathway
stimulation were short-lived signal inhibitors. They named
these Rapid Feedback Inhibitors (RFIs), which constitute a
fast, homeostatic response mechanism to pathway perturba-
tion. To investigate if the responding signaling regulators in
our data are also RFIs, we similarly plotted the log2-fold-
changes in mRNA expression after 2 h—compared with Con-
trol T � 0 h in each condition—against the mRNA half-lives
obtained by Legewie et al. (Fig. 5A). We observe four inter-
esting features in this plot. Firstly, all responding regulators
(DUSP1, DUSP4, DUSP6, DUSP8, DUSP10, and SPRY1) are
indeed RFIs (i.e. short lived negative regulators). Secondly,
only genes regulating MAPK pathway signaling show re-
sponse, suggesting that no other signaling pathways are af-
fected by either growth factor stimulation or BRAFi. Thirdly, all
samples show strong up-regulation of DUSP1, DUSP8, and
DUSP10; presumably in response to the serum stimulation at
T � 0 h. Finally, all BRAFi treated samples exhibit strong
downregulation of DUSP4, DUSP6, and SPRY1, demonstrat-
ing that RFIs can also be downregulated in response to path-
way inhibition, to counteract pathway inhibition. Similar re-
sults are observed at the 48-h time point (supplemental Fig.
S10A), and further corroborated in three other BRAF(V600E)
CRC cell lines (SNU-C5, VACO432, KM-20) (supplemental
Fig. S10B)—with the downregulation of RASGRF1 upon
BRAFi in both WiDr and the validation cell lines as notable

addition—indicating that the absence of in long-lived mRNAs
is not due to their low degradation rates.

To examine how RTKs upstream of the major signaling
pathways responded to drug treatment, we performed hier-
archical clustering of the mRNA expression of all RTKs based
on Pearson correlation. This analysis revealed strong up-
regulation of a subset of RTKs upon BRAF inhibition from the
mid-timepoints (T � 6–24 h) onward. Of the 35 RTKs ex-
pressed in WiDr cells, 16 were up-regulated (Fig. 5B), includ-
ing ERBB2 and ERBB3 (Fig. 5C and 5D). Selected targets
were further quantified by performing western blots on the
same WiDr and WiDr PTPN11 KO lysates used for omics
analysis, confirming up-regulation of total ERBB3 upon BRAFi
whereas the results for ERBB2 were less consistent (supple-
mental Fig. S7). To establish if transcriptional RTK up-regula-
tion is a general response mechanism, we quantified their
mRNA expressions in three additional BRAF(V600E) CRC cell
lines. Up-regulation of several RTKs upon BRAFi�EGFRi was
confirmed in all three cell lines (SNU-C5, VACO432 and KM-
20) including ERBB2 which was consistently upregulated in all
three lines, whereas ERBB3 was upregulated in KM-20
(Fig. 5E). Interestingly, in addition to the ERBB2/ERBB3 up-
regulation, the regulator ERBB receptor feedback inhibitor 1
(ERRFI1), which interferes with ERBB family member homo-
and hetero dimer formation (58), is downregulated in all BRAFi
treated samples (Fig. 5F). Altogether, our data suggests the
existence of an additional mechanism through which WiDr
CRC cells might try to activate ERBB signaling to compensate
for MAPK pathway inhibition.

ERBB Inhibitors Provide Limited Benefit in BRAF(V600E)
CRC Treatment—Next, we sought to determine if the ob-
served up-regulation of ERBB2 and ERBB3 upon BRAFi�
EGFRi treatment could be further exploited. We first studied
whether inhibition of ERBB2 and ERBB3 in combination with
BRAFi and EGFRi may lead to complete cell death by using
gefitinib, lapatinib and sapitinib as known tyrosine-kinase in-
hibitors of EGFR, EGFR/ERBB2 and EGFR/ERBB2/ERBB3,
respectively. We then explored if there was an optimal drug
concentration, which would be synergistic with the maximum
tolerated dose of PLX4032 (BRAFi) (Experimental Proce-
dures). As expected (13), WiDr CRC cells are resistant to
monotherapy of either gefitinib, lapatinib or sapitinib, with
decreasing viability only at very high, i.e. cytotoxic, concen-
trations (Fig. 6A). All three viability curves depict a 60% de-
crease in cell viability upon addition of 3 �M PLX4032, with
limited benefit from the combination with EGFRi. We did not
observe a significant difference in growth inhibition across the
different double treatments, suggesting that additional inhibi-
tion of ERBB2 and ERBB3 does not provide further synergy
with BRAFi.

Inhibiting Metabolic Enzymes Provides Limited Benefit in
BRAF(V600E) CRC Treatment—We further evaluated combi-
nation treatments to target MAPK pathway together with the
TCA cycle or with the fatty acid �-oxidation. For this purpose,
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FIG. 5. Feedback mechanisms aimed at restoring MAPK signaling activity. A, Log2-fold-changes of mRNA expression plotted against
mRNA half-life of regulators of major signaling pathways at 2 h. Only short-lived negative regulators of MAPK signaling respond to growth factor
stimulation or BRAF inhibition. In all conditions, DUSP1, DUSP8 and DUSP10 are up-regulated in response to serum stimulation at T � 0 h.
DUSP4, DUSP6 and SPRY1 are downregulated only in BRAFi treated samples, in response to BRAF inhibition. B, Scaled mRNA expression
levels of a cluster of RTKs. Of the 35 RTKs, 18 are up-regulated (INSRR, ROS1, STYK1, ERBB3, FGFR2, PTK7, EPHA4, TEK, EPHB2, ERBB2,
LMTK3, MERTK, INSR, EPHA10, NTRK1, DDR1). C, mRNA expression of ERBB2. D, mRNA expression of ERBB3. E, mRNA expressions of
ERBB2 and ERBB3 in SNU-C5, VACO432, and KM-20 BRAF(V600E) CRC cell lines. F, Phosphorylation expression of the negative regulator
ERRFI1 is downregulated at residue S251 in BRAFi samples.
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we used two readily available metabolic drugs: etomoxir, a
CPT1 inhibitor, and dichloroacetate (DCA), a pan-inhibitor of
PDKs, to determine if inhibition of CPT1 or PDKs enhances
sensitivity to therapy with PLX4032 and gefitinib (EGFRi).
CPT1 is a site for intracellular regulation of lipid metabolism,
transporting long-chain fatty acids into mitochondria for �-
oxidation together with CPT2 (59, 60). CPT2 is significantly
up-regulated in our experiments, nevertheless, to the best of
our knowledge, a direct inhibitor of CPT2 has not been pre-
viously reported. PDKs are responsible for deactivation of
PDHA1 through phosphorylation of serine residues in PDHA1
(54, 55) (supplemental Fig. S11). We hypothesized that inhi-
bition of PDKs can increase the mitochondrial oxidative state
and consequently the amount of reactive oxidative species
(ROS) in the cytoplasm causing apoptosis due to high toxicity.
We therefore evaluated the combination treatment of each
metabolic inhibitor (etomoxir and DCA) with BRAFi and EGFRi
on WiDr cell viability. After assessing IC50 concentrations of
both metabolic drugs (supplemental Fig. S12A), we selected
the clinical doses of 10 �M etomoxir (61–63) or 1 mM DCA (64,
65) and determined two dose-response curves in the pres-
ence of 3 �M gefitinib and increasing concentrations of
PLX4032. The first curve was obtained by adding the meta-
bolic drug simultaneously to the BRAFi and EGFRi (T � 0 h)
(supplemental Fig. S12B), and the second by adding it 96 h
after BRAFi and EGFRi (T � 96 h) (Fig. 6B), when metabolism
is expected to be significantly up-regulated according to our

data. In both cases, we do not observe any significant differ-
ences in the viability curves of the triple treatments compared
with the double treatments. These findings suggest that inhi-
bition of CPT1 or PDKs does not increase sensitivity to ther-
apy with PLX4032 and gefitinib.

DISCUSSION

In this study we performed an integrated, quantitative,
multi-omics analysis to obtain a system-wide molecular char-
acterization of signaling perturbation over time in WiDr CRC
and WiDr PTPN11 KO cell lines, after drug inhibition targeting
either BRAF(V600E) and/or of EGFR. Our data reveal that all
samples treated with BRAFi show similar response, with a
more pronounced but qualitatively similar effect when BRAFi
is combined with EGFRi or PTPN11 KO. This indicates that
the main signaling responses depend on the inhibition of
BRAF(V600E), and that additional inhibition of EGFR further
amplifies the effect. Additionally, EGFRi-only treated cells ex-
hibit similar responses to PTPN11 KO samples, confirming
that suppression of this secondary signaling pathway confers
sensitivity to BRAFi in CRC (16).

By comparing proteomics and transcriptomics data, we
identified a set of genes that are exclusively downregulated at
the protein level upon PTPN11 KO. These proteins are nega-
tive regulators of the interferon pathway (66), involved in con-
trolling immune response. Down-regulation of negative regu-
lators may support the immune response elicited by PTPN11

FIG. 6. Assessment of WiDr CRC cell growth by combination treatments of BRAFi and ERBB or metabolic inhibitors. A, Comparison
of mono- and double therapy on WiDr CRC cells growth. All three graphs show inhibition of either EGFR, EGFR/ERBB2 or EGFR/ERBB2/
ERBB3 is ineffective as a monotherapy. Moreover, concomitant inhibition of ERBB2 and ERBB3 does not provide further benefit to the
synergistic effect of BRAF(V600E) and EGFR inhibitors. B, WiDr cell confluence is measured comparing double and triple treatments. The
addition of etomoxir or DCA as third metabolic inhibitors after 96 h does not show additional benefit to the BRAFi�EGFRi treatment.
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in vivo (67). This finding might be relevant for the development
of therapeutic approaches that aim to inhibit PTPN11 activity.
More generally, we have observed how mRNA expression
levels do not always reflect protein dynamics and vice versa,
underscoring the different but complementary information
these data types can capture.

The integrated omics analysis enabled us to track the sys-
tem-wide drug response upon treatment, from signaling -
inactivation of kinases downstream of the MAPK pathway -
through transcription - inhibition of genes downstream in the
MAPK pathway. Shutting down MAPK signaling results in
down-regulation of CDK signaling, inducing cell cycle arrest at
a later stage. Besides the inactivation of the MAPK pathway,
all three datasets show an increase of oxidative metabolic
processes, with significant up-regulation of enzymes involved
in lipid metabolism and the TCA cycle. We further observed
that treatment with BRAFi induces up-regulation of RTKs, in-
cluding ERBB2 and ERBB3, which was found to be more pro-
nounced when co-treated with EGFRi or in PTPN11 KO cells.

We found evidence of metabolic rewiring in the proteomics
data. One possible explanation of this finding is that these
cells survive by utilizing different metabolic regimes, pointing
at potential future avenues on how to target these cells.
Although in our work combining inhibition of the MAPK path-
way and specific metabolic processes did not result in any
significant difference in cell viability within a 48 h time scale,
this combination might still be relevant to therapy as demon-
strated in two recent melanoma studies whereby resistant
cells were found to be dependent on mitochondrial respiration
(68, 69). Therefore, we further investigated the response of
BRAF(V600E) mutant cells upon experimental BRAFi�EGFRi
withdrawal. Similar approaches indeed has shown to induce
massive cell death in melanoma and lung cancer cells (70).
We observed that a subset of cells survived the combination
treatment and could resume proliferation after stopping drug
treatment (supplemental Fig. S13). However, the precise
protective role of metabolic adaptation in the ability of cells to
tolerate drug treatment remains elusive, and further studies
are required. Although there is some evidence for transcrip-
tional upregulation of these metabolic processes in our study,
this finding would not have been evident from a transcriptom-
ics-only analysis, highlighting the importance of studying the
complete omics landscape.

Apart from the up-regulation of metabolic processes, all the
adaptive responses we observed appear to be homeostatic
responses aimed at compensating the MAPK pathway inhibi-
tion, but do not succeed in doing so within the 48 h time range
of our study. Despite transcriptional up-regulation of ERBB
family members, we do not observe additional benefit of
inhibiting ERBB2 and/or ERBB3 in combination with EGFRi
and BRAFi, suggesting that these homeostatic responses are
not functional under the tested conditions. Activation of HER-
family members has been recently reported in response to
BRAFi in multiple CRC BRAF(V600E) cell lines (71), and in-

creased expression of ERBB2 and ERBB3 is already known to
confer acquired resistance (5, 72–74). In this regard, we hy-
pothesize cells attempt to upregulate RTKs to overcome the
inhibition of the MAPK pathway. Nevertheless, further studies
are required to establish the more general implications of
these findings, preferably by investigating different cell lines
and several medium conditions that mimic physiological en-
vironments more closely. Importantly, we do not find any
evidence of parallel signaling pathways being activated in
response to drug treatment.

Taken together, we hypothesize that reactivation of the
MAPK pathway is necessary for BRAF(V600E) mutation CRC
cells to acquire resistance to BRAF inhibition. This view is
supported by observations both in vivo and in the clinic
whereby resistance to MAPK pathway inhibitors is typically
mediated by mutations or amplification in the MAPK pathway
in CRC patients (17, 75, 76).

The integrative multi omics approach employed here pro-
vides a time based in-depth view of the signaling mechanisms
involved in drug response. Our findings highlight the impor-
tance of measuring these different levels simultaneously as
exemplified by the RTKs regulation and PTPN11 specific sig-
nals. We expect our contribution to enable and accelerate
future research into these mechanisms by making the data
resource available.
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