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Abstract

Significance: Cytokines released in and around pancreatic islets during islet inflammation are believed to
contribute to impaired f cell function and f§ cell death during the development of diabetes. Nitric oxide,
produced by f cells in response to cytokine exposure, controls many of the responses of f§ cells during islet
inflammation.

Recent Advances: Although nitric oxide has been shown to inhibit insulin secretion and oxidative metabolism
and induce DNA damage in f cells, it also activates protective pathways that promote recovery of insulin
secretion and oxidative metabolism and repair of damaged DNA. Recent studies have identified a novel role for
nitric oxide in selectively regulating the DNA damage response in f§ cells.

Critical Issues: Does nitric oxide mediate cytokine-induced f§ cell damage, or is nitric oxide produced by /3
cells in response to cytokines to protect f§ cells from damage?

Future Directions: [5 cells appear to be the only islet endocrine cell type capable of responding to proin-
flammatory cytokines with the production of nitric oxide, and these terminally differentiated cells have a limited
capacity to regenerate. It is likely that there is a physiological purpose for this response, and understanding this
could open new areas of study regarding the loss of functional f cell mass during diabetes development.
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Introduction

IN MOST CASES, type-1 diabetes (T1D) is the result of
autoimmune-mediated progressive destruction of the
insulin-producing f cells found in the pancreatic islets of
Langerhans and this results in a chronic deficiency of insulin
in afflicted individuals (55). While genetic predisposition can
contribute to the susceptibility for the development of T1D, it
is not solely responsible for disease penetrance, as the con-
cordance rate of diabetes development between monozygotic
twins is only ~40-60% (106, 107, 114). Because of this low
concordance rate, environmental factors (such as viral infec-
tion) are hypothesized to initiate and contribute to disease onset
(104). Viral infection is one of the most effective mechanisms
to activate the immune system, and cytokines produced in
response to infection may contribute to f cell damage (104).
Nitric oxide is one effector molecule produced by f cells in

response to proinflammatory cytokines (interleukin-1 [IL-1],
tumor necrosis factor [TNF], and interferon [IFN]-y) that has
been shown to damage f5 cells (79, 105). Nitric oxide modifies a
number of physiological f cell processes, including the inhi-
bition of oxidative metabolism, inhibition of glucose-stimulated
insulin secretion, changes in target gene expression, induction
of endoplasmic reticulum (ER) stress, damage to DNA, and
activation of a variety of signaling cascades that culminates in
p cell death if exposure to nitric oxide is prolonged (14).

This review focuses on the mechanisms by which nitric
oxide modulates signaling pathways that control /5 cell fate
during cytokine exposure. Specific focus is placed on the
ability of nitric oxide to regulate intracellular signaling cas-
cades activated in response to DNA damage, such as the
DNA damage response (DDR) of the double-strand break
(DSB) repair pathway, and how nitric oxide plays a dual role
in the regulation of this pathway.
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Nitric Oxide Is the Mediator
of Cytokine-Induced Damage

IL-1 and B cell damage

In 1985, Mandrup-Poulsen ef al. found that the exposure of
islets to cytokine-rich supernatants derived from activated
monocytes resulted in an inhibition of insulin secretion and
islet cell death (92). The cytokine IL-1 was identified as the
primary damaging component of this conditioned superna-
tant (11, 91). IL-1 induces a time-dependent inhibition of
insulin secretion that is maximal following 18 h of exposure
(67). It is the ability of IL-1 to decrease oxidative metabolism
that results in reduced levels of adenosine triphosphate (ATP)
that are responsible for the inhibition of insulin secretion
(40, 48). Macrophages have been identified as one potential
intraislet source of IL-1. The activation of resident islet
macrophages results in the generation of IL-1 in islets to
levels sufficient to inhibit § cell function and cause islet
destruction (9, 36, 79). While most studies support macro-
phages as the primary source of IL-1 in the islet, o cells and
p cells have also been reported to be a potential source of
this cytokine and may contribute to intraislet IL-1 during
diabetes development (6, 22, 62). In support of local IL-1
release as a mediator of f§ cell damage, we have shown that
the IL-1 receptor antagonist attenuates the damaging actions
of intraislet macrophage action on the function and viability
of human, rat, and mouse islets (8, 9, 36).

Nitric oxide as a mediator of IL-1-induced damage

Nitric oxide was first implicated in the pathogenesis of
T1D in the early 1990s, when three groups discovered that the
inhibitory effects of IL-1 on f§ cell function were dependent
on the formation of this free radical (34, 129, 140) (Fig. 1).
The stable metabolite of nitric oxide, nitrite, was detected in
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the supernatant of cytokine-treated islets, and inhibitors
of nitric oxide synthase (NOS) attenuate the inhibitory ac-
tions of IL-1 on insulin secretion (34, 129, 140). Direct evi-
dence to support nitric oxide production in islets came from
the demonstration of iron—dinitrosyl complex formation in
cytokine-treated rodent and human islets by electron para-
magnetic resonance (34, 38). Three NOS isoforms can be
found in islets (endothelial, neuronal, and inducible (10, 112),
and in response to IL-1, it is the inducible isoform of NOS
(iINOS) that is responsible for generating micromolar levels
of nitric oxide (39, 40, 129, 140). Activation of the tran-
scription factor nuclear factor kappa B (NF-xB) is required
for the expression of iNOS in IL-1-treated rat islets (52, 76,
78, 119). While IL-1 alone is capable of stimulating iNOS
expression in rat f§ cells, mouse and human f cells require
IFNy in addition to IL-1 for iNOS expression (38). In rat f8
cells, IFNy primes the response to IL-1 and potentiates the
response by decreasing the concentration of IL-1 required
to stimulate iNOS expression and nitric oxide production by
10-fold (24, 63).

Nitric oxide is the mediator of the inhibitory actions of
IL-1 on insulin secretion. Inhibitors of NOS prevent the im-
pairment in insulin secretion in cytokine-treated islets and
purified f§ cells (34, 40, 129, 140), and nitric oxide donors
inhibit insulin secretion from rat islets and insulinoma cell
lines (43). The mechanism by which nitric oxide inhibits
insulin secretion is through impairment of mitochondrial
respiration (34, 40, 48, 129, 140). Nitric oxide inhibits mi-
tochondrial aconitase through displacement of iron from the
4Fe-4S center contained in this enzyme (54). Nitric oxide
also targets the electron transport chain by inhibiting com-
plex I through Fe-S disruption or S-nitrosation (16) and re-
versibly inhibits complex IV by occupying the oxygen
binding site in this complex (17, 29). The net effect is a
fivefold decrease in cellular ATP levels (39) and a loss in the
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ability of glucose to stimulate the closure of ATP-sensitive
potassium channels, membrane depolarization, calcium en-
try, and calcium-dependent secretion of insulin. The dam-
aging effects of IL-1 are not limited to inhibition of insulin
secretion, as f§ cells and islets exposed to IL-1 also experience
an inhibition of protein synthesis and induction of DNA
damage that occurs in a nitric oxide-dependent manner (105).

Reversibility of nitric oxide-induced damage

The cellular damage induced by nitric oxide during cy-
tokine exposure is reversible, as f§ cells have a temporally
limited capacity to recover from this damage (Fig. 2). Co-
mens et al. first showed that the inhibitory actions of a 15-h
incubation with IL-1 on insulin secretion can be reversed if
the cytokine is removed and the islets are cultured in the
absence of cytokine for 4 days (32). The time required to
recover can be reduced from 4 days to 8 h by inhibiting iNOS
(37). The addition of an NOS inhibitor to islets treated for
18 h with IL-1, followed by continued culture in the presence
of IL-1 and the NOS inhibitor, results in the time-dependent
recovery of islet secretory function that is maximal and
complete after 8h (32, 37). The recovery is not limited to
insulin secretion, as oxidative metabolism and protein syn-
thesis recover, and DNA is repaired, in a time-dependent
manner that is similar to the recovery of insulin secretion (37,
68, 117, 122). The ability of f cells to recover from cytokine-
induced damage is temporally limited, as exposures to IL-1
for 36 h or longer lead to an irreversible inhibition of insulin
secretion, mitochondrial aconitase activity, protein synthesis,
and DNA damage (37, 68, 122) (Fig. 2), and this irreversible
damage correlates with a commitment of islets to degenera-
tion (37, 68, 122). Caspase-3 cleavage and upregulation of
several proapoptotic factors, such as p53 upregulated mod-
ulator of apoptosis (PUMA), death protein 5, the BH3-only
sensitizer Bad, Bcl-2-interacting mediator of cell death (Bim),
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are associated with prolonged exposures to cytokines, sug-
gesting that when recovery is no longer possible, apoptotic
pathways are initiated (3, 58-60, 68, 87, 110) (Fig. 2).

Nitric oxide as the mediator of IL-1-induced cell death

Multiple studies suggest that nitric oxide production can
lead to f cell death during cytokine exposure (2, 35, 37, 45,
49, 72, 86, 94, 122, 130, 133). A 6-day treatment of mouse
islets with IL-1, IFNy, and TNF« leads to an 88% decrease
in viability in wild-type islets, yet iNOS™" islets are com-
pletely protected from cytokine-induced cell death (86).
Expression of iNOS under control of the insulin promoter
leads to spontaneous insulin-dependent diabetes develop-
ment in mice, and disease progression is delayed or prevented
by administration of the NOS inhibitor aminoguanidine
(133). Although the precise molecular events that trigger
nitric oxide-induced f§ cell death are unknown, it is likely
mediated by a combination of factors, including nitric oxide-
dependent inhibition of mitochondrial metabolism and ATP
generation, DNA damage, inhibition of protein synthesis, and
the induction of ER stress (31, 47, 50, 68, 90, 103, 105, 117,
122). While there are a number of pathways involved in the
p cell response to cytokines, the remainder of this review
focuses on DNA damage and the pathways activated in re-
sponse to this DNA damage that contribute to the regulation
on f3 cell fate in response to cytokine treatment.

Nitric Oxide-Induced DNA Damage in p Cells

Nitric oxide-induced DNA damage and the role
of DNA damage in cytokine-induced B cell death

Cytokines were first shown to induce islet cell DNA
damage in a study by Delaney et al., who found that exposure
of rat islets to IL-1 leads to the induction of DNA damage
detected using the comet assay (47, 50). The DNA damage
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FIG. 2. Temporal effects of cytokines on function and viability of f cells. Cytokines (IL-1 in rat, IL-1 4+ IFNy in mouse
and human) cause nitric oxide-dependent inhibition of insulin secretion, mitochondrial oxidative metabolism, protein
synthesis, and damage to DNA. Cytokine-induced damage is reversible for up to 24 h of exposure if nitric oxide generation
is prevented and f3 cells are allowed to repair and recover from this damage. After prolonged exposures of 36 h and longer,
cytokine-induced damage becomes irreversible and f§ cells are committed to cell death by apoptosis. The molecular events
that occur between 24 and 36h of cytokine exposure and are responsible for “‘switch” from reversible to irreversible

damage are currently unknown. H2AX, histone H2A.X.
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induced by IL-1 was completely prevented by inhibition of
NOS (47, 50). Nitric oxide-induced DNA damage also takes
place in human and rodent islet cells treated with cytokines or
with nitric oxide donor compounds (46, 49, 50). Nitric oxide-
induced DNA damage occurs in the form of oxidation and
deamination of DNA bases, DNA strand breaks, or inter-
strand crosslinks (21, 134). Evidence suggests that DNA
damage contributes to f§ cell death during IL-1 exposure (47,
50, 68, 103), as the induction of DNA damage in cytokine-
and nitric oxide-treated f§ cells precedes cell lysis (50). While
DNA damage contributes to f§ cell death, f§ cells also have a
limited capacity to repair this damage (68, 117). Hughes et al.
found that rat and human islets could repair cytokine-induced
DNA damage for up to 24 h of exposure if nitric oxide pro-
duction was inhibited using L-NG-monomethy] arginine, and
the islets were cultured for 8 additional hours in the presence
of the NOS inhibitor without removal of the cytokines (68).
After 36 h of cytokine exposure, DNA damage becomes ir-
reversible and apoptosis ensues, as evidenced by the activa-
tion of caspases (68, 125). Thus, when IL-1-induced DNA
damage can no longer be repaired and f cells cannot recover,
apoptotic pathways are activated (68).

Mechanisms by which B cells repair damaged DNA

Base excision repair (BER) appears to be a primary path-
way used to repair cytokine- and nitric oxide-induced DNA
damage in f cells (69, 125). In this pathway, growth arrest
and DNA damage (GADD) 45« interacts with proliferating
cell nuclear antigen, p21, polymerase beta, and apurinic/
apyrimidinic endonuclease 1/redox factor 1 (69, 71). This
complex then binds to damaged chromatin to facilitate BER
(71). We have shown that GADD450 plays an essential role
in the repair of damaged f cell DNA (69). In a nitric oxide-
dependent manner, cytokines stimulate GADD45¢ mRNA
accumulation, and siRNA knockdown of this factor inhibits
the repair of nitric oxide-induced DNA damage in f cells
(69). The signaling cascade by which nitric oxide induces
GADD450. expression requires c-Jun N-terminal kinase
(JNK) activation, as pharmacological inhibition of JNK
prevents both GADD450 expression and DNA repair fol-
lowing nitric oxide exposure (69). These findings describe a
protective role for JNK, contrary to several reports, sug-
gesting that this mitogen-activated protein kinase promotes f§
cell apoptosis during cytokine exposure (1, 4, 18, 19, 60).
JNK may play a dual role in the response to cytokines, reg-
ulating the induction of pathways leading to the repair of
nitric oxide-induced damage, and, when this damage is no
longer repairable, stimulating apoptosis.

The transcription factor forkhead box O1 (FOXO1) also
participates in the repair of nitric oxide-induced DNA dam-
age through regulation of GADD45« expression (70). Under
basal conditions, FOXO1 is phosphorylated by Akt and se-
questered in the cytosol (66). Nitric oxide decreases Akt
activity as evidenced by decreased Akt and FOXOI1 phos-
phorylation, allowing FOXO1 to translocate to the nucleus
to control gene expression in f cells (70). Overexpression of
nonfunctional mutants of FOXO1 results in an inhibition
in nitric oxide-stimulated GADD45x expression and DNA
repair in INS832/13 cells (70). The transcriptional activity
of FOXO1 is controlled by the actions of sirtuins, a family of
NAD*-dependent deacetylases. Inhibitors of SIRT1 attenuate
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the repair of damaged DNA, while the sirtuin activator re-
sveratrol accelerates DNA repair in f cells (70). Consistent
with the role of sirtuins in f§ cell protection, Lee ef al. have
shown that cytokine-induced RINmSF insulinoma cell and
rat islet death is attenuated by SIRT1 overexpression and
resveratrol treatment (82). While it is yet to be fully eluci-
dated, it is likely that sirtuin activity regulates DNA repair in
p cells by controlling the acetylation status of FOXO1 (70).
When deacetylated, FOXO1 directs a transcriptional program
that is associated with enhanced expression of free radical
scavenging enzymes and DNA repair genes such as GADD45«
(70). When in the acetylated state, FOXO1 instead directs a
proapoptotic program that results in the expression of PUMA,
phorbol-12-myristate-13-acetate-induced protein 1, and other
factors that contribute to apoptotic cell death (70).

In addition to the pathways known to participate in the f
cell response to nitric oxide-induced DNA damage, a number
of known DNA repair pathways do not participate in the
repair of cytokine-induced DNA damage in [ cells. The tumor
suppressor p53 is known to regulate GADD45« expression and
stimulate BER pathways (111, 127), but in response to cyto-
kines or nitric oxide, p53 expression is not stimulated (69).
Furthermore, knockdown of p53 does not modify the f cell
responses to cytokines nor does it affect DNA repair (69).
Early studies suggested that cytokine-induced f3 cell death is
mediated by protein poly(ADP-ribose) polymerase (PARP)
overactivation due to peroxynitrite production in islets (20,
53). PARP is a component of the BER that is activated in
response to DNA damage (88). Once active, PARP catalyzes
the NAD*-dependent ADP-ribosylation of proteins near DNA
damage to facilitate opening of damaged chromatin for repair
(88). Overactivation of PARP results in the depletion of cel-
lular levels of NAD" and ATP leading to PARP-dependent
necrosis (61). This process was proposed by Okamato in the
1980s to explain how f cells might be killed during T1D
development (27, 141). However, PARP overactivation does
not occur in cytokine-treated f3 cells and does not play a role in
p cell death following exposure to nitric oxide (5, 97).

The DDR

The DDR is the collective network of signaling cascades
that coordinate cellular responses to DNA damage (Fig. 3)
(28). DSBs are the most severe type of DNA lesion and can
arise from overlapping single-strand breaks, strand breaks
generated during DNA repair or cell division, and can be
induced by genotoxic agents (64). Following formation of
a DSB, chromatin remodeling allows access of DDR sen-
sor complexes, such as Mrel1-Rad50-Nbs1 (MRN), ataxia
telangiectasia, and Rad3-related protein (ATR)-interacting
protein, or Ku70/80 heterodimers, to the site of the DNA lesion
(23). Active sensor complexes recruit apical DDR kinases
[e.g., ataxia telangiectasia mutated (ATM) by the MRN com-
plex (81)] leading to DDR kinase autophosphorylation and
activation (126). ATM is a primary DDR kinase that, when
active, phosphorylates an array of substrates, estimated to in-
clude more than 1000 proteins (126). The fundamental ob-
jective of the DDR is to arrest cell cycle and promote pathways
responsible for DNA repair (28). Under conditions where DNA
repair fails or DNA damage is too extensive for repair, path-
ways that result in cellular senescence or programmed cell
death are activated (116). Histone variant H2A. X (H2AX) is
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FIG. 3. The DDR. DNA damage is detected by the DNA
damage sensor complexes MRN (double-strand break detec-
tion) or by a complex comprising ATRIP and RPA (ssDNA
associated with replication stress). The transducer kinases
ATM, ATR, and DNA-PK are activated and localize to the
site of the assembled sensor complexes. Activated ATM,
ATR, and DNA-PK then phosphorylate many downstream
mediators to promote a variety of cellular outcomes, includ-
ing cell cycle arrest and activation of DNA repair mecha-
nisms. If DNA damage is not able to be repaired, the DDR
initiates programs promoting cell senescence or apoptosis.
53BP1, p53-binding protein 1; ATM, ataxia telangiectasia
mutated; ATR, ataxia telangiectasia and Rad3-related
protein; ATRIP, ataxia-telangiectasia-and-RAD3-related-
ATR-interacting-protein; BRCA1, breast cancer type 1
susceptibility protein; CHK1/2, checkpoint kinase-1/2; DDR,
DNA damage response; DNA-PK, DNA-dependent protein
kinase; KAP1, KRAB-associated protein-1; MDC1, mediator
of DNA damage checkpoint 1; MRN, MRE11-Rad50-Nbsl1;
RPA, replication protein A.

one DDR substrate that undergoes rapid phosphorylation
within minutes of DSB lesion formation (109, 115). H2AX
is phosphorylated by ATM (and by related kinases, ataxia
telangiectasia and Rad3-related protein [ATR] or DNA-
dependent protein kinase [DNA-PK]) on Ser139, and when
H2AX is phosphorylated on this residue it is termed yYH2AX
(115). The phosphorylation of H2AX initiates a positive
feedback loop, leading to the spreading and amplification of the
yH2AX signal to promote recruitment and retention of down-
stream repair factors to the site of DNA strand breaks and to
facilitate DNA repair (108, 115). It is due to the rapid and
amplifying nature of yH2AX formation that this signaling
event is regarded as one of the most sensitive markers of DDR
activation and thus is commonly used as experimental evidence
to indicate DDR activation and DSB formation (115, 118).
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Potential significance of DDR proteins in diabetes

While few studies have examined the role of DDR in f
cell, there is evidence from animal models suggesting that
defects in DDR signaling may contribute to diabetes devel-
opment. There is an increased incidence of diabetes in pa-
tients with ataxia telangiectasia, a disease caused by mutation
in and subsequent loss of function of ATM (100). Miles et al.
found that young ATM "~ mice had impaired insulin secretion
before the onset of spontaneous diabetes, suggesting that
ATM may be important for proper regulation of /3 cell insulin
secretion (98). Schneider et al. found that a number of fea-
tures of metabolic syndrome are more severe in mice het-
erozygous or deficient in ATM, although f§ cell function
specifically was not examined in this study (124). Defects in
ATM substrates have been associated with diabetes as well.
Mice with a p53 Serl5 mutation, a site phosphorylated by
multiple kinases, including ATM, were found to have im-
paired glucose tolerance and insulin resistance (7). Accu-
mulation of DNA damage has been shown to lead to f§ cell
death and spontaneous induction of diabetes due to the loss
of insulin-producing f cells (136). Islets from mice deficient
in DNA ligase 1V, a crucial component of the nonhomolo-
gous end-joining pathway, show a progressive accumulation
of DNA damage and accumulation of p53 and p21 (136).
When these mice also contain a hypomorphic mutation in p53
that selectively prevents pS3-dependent apoptosis, the accu-
mulated DNA damage drives f cells into senescence, ulti-
mately leading to a decrease in f§ cell mass and induction of
diabetes (136).

Dual Role of Nitric Oxide in the Regulation of DDR

Nitric oxide-induced DNA damage
and activation of DDR

While nitric oxide is not considered a direct inducer of
DSBs, it is likely that single-strand breaks induced by nitric
oxide accumulate over time and eventually lead to DSB for-
mation when they are in close proximity to one another (21).
Indeed, accumulation of yH2AX has been documented in
several cell types exposed to nitric oxide (30, 101, 135, 142). In
ratislets, IL-1 and IFNy exposure leads to formation of yH2AX
that is prevented by inhibitors of NOS, indicating that cyto-
kines stimulate DSB formation in a nitric oxide-dependent
manner (103). Cytokine-induced yH2AX formation occurs
exclusively in insulin-containing cells and is not observed in
other islet endocrine or nonendocrine cells (103), a finding
consistent with f cells as the islet cellular source of iNOS in
response to cytokine treatment (36, 40). In addition, nitric
oxide donor compounds Diethylamine NONOate (DEA/NO)
and Dipropylenetriamine NONOate (DPTA/NO) stimulate
yH2AX in rat islets and insulinoma cell lines (103). ATM
appears to be the primary kinase responsible for the formation
of yH2AX in nitric oxide-treated f§ cells (103). Pharmacolo-
gical inhibition and siRNA knockdown of ATM attenuate
nitric oxide-induced yH2AX (103), and islets isolated from
ATM ""mice do not accumulate yH2AX in response to a nitric
oxide donor (103). These findings are consistent with other
studies reporting ATM activation following nitric oxide expo-
sure (56, 65, 95, 135, 137). Despite the classical role for ATM in
DNA repair, f§ cells do not require this kinase for the repair of
nitric oxide-induced DNA damage (103). Cytokine-induced
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DNA damage in rat islets is repaired in the presence of an ATM
inhibitor, and ATM inhibition does not modify JNK activation
or GADD45« expression in response to nitric oxide (103). As
described above, INK and GADD45¢ are two factors required
for the repair of nitric oxide-induced DNA damage in f3 cell (69).

Several observations indicate that the primary role of ATM
in cytokine-treated f cells is the activation of apoptotic
pathways. In cytokine-treated islets, ATM activation (as
measured by yH2AX formation) is a late event with maximal
activation occurring following exposure lengths of 36h or
longer (103). Incubation of islets for 36 h or longer with IL-1
results in the irreversible inhibition of oxidative metabo-
lism, insulin secretion, and DNA damage, correlating with
caspase-3 cleavage activation (103). ATM inhibitors prevent
cytokine-induced caspase-3 cleavage following this 36-h
exposure to IL-1 (103). Furthermore, the pan-nuclear local-
ization pattern of yH2AX, observed in cytokine-treated f3
cells following 36-h exposure (103), has been reported to
occur during apoptosis and functions as a preapoptotic signal
(44). These findings suggest that DSB formation in cytokine-
treated f§ cells may function as an initiating event committing
B cells to apoptotic cell death. Temporally, yH2AX formation
is a late event that occurs when the inhibition of islet func-
tion and DNA damage become irreversible (Fig. 2) (103).
While these findings describe a role for ATM in the regula-
tion of cytokine-induced apoptosis, the pathways activated

A + DPTA/NO (400 uM) =

1437

downstream of ATM that mediate this apoptotic signaling are
unknown. The tumor suppressor protein p53 has been shown
to mediate ATM-regulated apoptosis pS3 (116); however, it
is not likely that the p53-dependent pathway participates in
cytokine-induced f cell apoptosis. The ATM-dependent
phosphorylation of p53 at Serl5 in response to DNA damage
(26) is considered a priming modification that promotes the
proapoptotic signaling of p53 (138). Despite the presence of
DNA damage and stabilization of total p53, Serl5 is not
phosphorylated in insulinoma cell lines or rat islets during
cytokine exposure (69). Also, cytokine-induced caspase-3
cleavage and f cell death can occur under these conditions
in the absence of p53 phosphorylation (69). Thus, ATM-
dependent apoptosis in a cytokine-treated f§ cell likely occurs
via a process independent of p53 activation.

Nitric oxide as an inhibitor of the DDR

Although DNA damage in response to nitric oxide is suf-
ficient to lead to DSB formation and DDR activation in f§
cells, we have recently shown that nitric oxide, when present
at micromolar levels, is an effective inhibitor of the DDR
(Fig. 4) (102). The phosphorylation of H2AX, p53, and the
ATM substrate KRAB-associated protein-1 (KAP1) in rat
islets and f3 cell lines treated with genotoxic agents such as
camptothecin or hydrogen peroxide is prevented by nitric

B + Camptothecin (24 h)

Cleaved Caspase-3 ‘ — —

——— — —

phospho-KAP1 (S824) [

100

—_—— ——

phospho-p53 (S15) ‘

200

yH2AX |

phospho-elF2a ‘

phospho-AMPK L e

DPTA/NO (uM)
300

400

500

phospho-ERK1/2 @ &
LTV, T [P ——
Camptothecin (h) 12 46 - 12 46
C NO

i T
-

;77 AM
DNA damage —> | kap1
~ . P

-

DNA damage response

:HW ) —> Apoptosis

600

Camptothecin Camptothecin
+ DPTA/NO

FIG. 4. Nitric oxide prevents camptothecin-induced cell death. (A) Camptothecin-treatment of INS 832/13 cells leads to
the rapid phosphorylation of DDR substrates KAP1, p53, and H2AX and caspase-3 cleavage at later time points. In the presence of
the nitric oxide donor DPTA/NO, the activation of these signaling processes is prevented. (B) Camptothecin-induced cell death
(measured by SYTOX fluorescence) following camptothecin treatment is prevented by DPTA/NO in a concentration-dependent
manner, with maximal protection afforded at 300 M. Nitric oxide alone becomes toxic at higher donor concentrations. Morphology
of SYTOX-positive cells in camptothecin = DPTA/NO (400 uM) conditions is shown in 40 X fluorescent images in the lower portion
of (B), showing the loss of morphological changes consistent with apoptosis in the presence of DPTA/NO. Cell borders are denoted
by the dashed circles. (C). Schematic depicting the dual role of nitric oxide in the regulation of DDR in f cells. Reprinted with
permission from Oleson et al. (102). AMPK, AMP-activated protein kinase; DPTA/NO, Dipropylenetriamine NONOate.
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oxide supplied by chemical donors or produced endoge-
nously following cytokine-induced iNOS expression (102).
These findings temporally dissociate nitric oxide-induced
DNA damage from DDR activation, raising the possibility
that the production of nitric oxide by f cells may serve to
inhibit DDR signaling and attenuate DDR-induced apoptosis
(102). This interpretation is consistent with our observations
that there is a sixfold decrease in the rates of IL-1-induced
nitric oxide production by f cells between 24 and 36h of
incubation, such that when f cells are making micromolar
levels of nitric oxide (24-h IL-1 exposure), the damaging
actions of this free radical are reversible (68). In contrast,
when nitric oxide production is diminished (after 36-h IL-1
exposure), islet function is irreversibly damage and the f§
cells are committed to death by apoptosis (68). Even though
DDR signaling is inhibited by nitric oxide, the extent of DNA
damage is unaffected, indicating that nitric oxide does not
prevent induction of DNA damage but uncouples the sig-
naling response from the damage (102).

The inhibitory actions of nitric oxide on DDR signaling
appear to be restricted to the DSB response. Under conditions
in which nitric oxide attenuates the phosphorylation of
multiple ATM substrates, including H2AX, p53, and KAP1,
nitric oxide-stimulated phosphorylation of eukaryotic trans-
lation initiation factor 2 alpha, AMP-activated protein kinase
(AMPK), and extracellular signal-regulated kinases 1/2 is not
effected (102). These findings suggest that the inhibitory
actions of nitric oxide are selective for DDR signaling, and
are not a consequence of reduced cell viability or global
attenuation in cell signaling (102). In addition to ATM sub-
strates, nitric oxide also inhibits signaling from other phos-
phatidylinositol 3-kinase-related kinase signaling cascades
that include Akt phosphorylation in /5 cells (70), and the ATR
substrate checkpoint kinase 1 in f§ cells treated with the rep-
lication stress inducer hydroxyurea (BJO and JAC, unpub-
lished observations). In addition, the ability of nitric oxide,
but not ATM inhibitors, to completely prevent H2AX phos-
phorylation in response to camptothecin indicates that kina-
ses in addition to ATM are activated under these conditions,
and that nitric oxide can suppress signaling from these ki-
nases (BJO and JAC, unpublished observation). These find-
ings indicate that nitric oxide has broad inhibitory effects
on signaling from ATM, ATR, and DNA-PK in the DSB
response.

Inhibition of the DDR by nitric oxide is a protective re-
sponse that attenuates DNA damage-dependent apoptotic
signaling in f cells (102). Camptothecin, a topoisomerase
inhibitor that induces apoptotic cell death through the in-
duction of DSBs (113, 128), induces a rapid activation of the
DDR that is followed by caspase activation and f3 cell death
after 6-12h of exposure. Nitric oxide not only inhibits the
rapid, initial DDR signaling but also attenuates downstream
caspase-3 cleavage and f cell death resulting from DNA
damage [Fig. 4, (102)]. Importantly, camptothecin induces
morphological changes that are consistent with f§ cell apo-
ptosis, including condensation of nuclei and formation of
apoptotic bodies (77). While nitric oxide attenuates the de-
velopment of these morphological changes consistent with
apoptosis, DNA damage remains and the morphology of
these cells appears to be more consistent with necrosis [(77),
Fig. 4B, lower]. This protective action of nitric oxide appears
to be selective for apoptosis resulting from DNA damage, as
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PARP-dependent f cell death in response to hydrogen per-
oxide exposure is not modified in the presence of nitric oxide
(102). In addition to other antiapoptotic actions of nitric
oxide, such as direct suppression of caspase activity by S-
nitrosation (75, 85, 99), these exciting findings describe a
new mechanism by which nitric oxide can attenuate apo-
ptosis through inhibition of DDR activation (102).

B cell selectivity of nitric oxide-induced DDR inhibition

The ability of nitric oxide to suppress DDR signaling does
not occur in all cell types, and to date has only been observed
in pancreatic f cells (102). Nitric oxide does not inhibit
camptothecin-induced p53, KAP1, and H2AX phosphory-
lation in RAW264.7 macrophages, mouse embryonic fi-
broblasts, HepG2 hepatocytes, HEK293 cells, or SH-SY5Y
neuroblastoma cells [(102) and unpublished observations].
Given that f§ cells are terminally differentiated with a lim-
ited capacity to divide (41), it is tempting to speculate that
DNA damage may be an ideal mechanism to control the f
cell response to inflammation, such that when DNA damage
is too extensive and DSB formation occurs, DDR-dependent
apoptosis is triggered. Under these conditions, nitric oxide
affords protection to f cells by activating pathways that pro-
mote repair of damage (e.g., GADD45a for damaged DNA)
and to limit DDR activation and thereby attenuate induction
of an ATM- and caspase-dependent proapoptotic cascade
(103). If DNA damage is too extensive and nitric oxide
production diminishes, ATM becomes active and triggers an
apoptotic cascade. In this context, the response of f cells to
cytokines in vivo may be protective. Similar to DNA dam-
age, nitric oxide inhibits insulin secretion and oxidative
metabolism, while also activating protective pathways to
repair this damage. However, when damage is too extensive
and nitric oxide is no longer produced at levels sufficient to
attenuate apoptotic signaling via the DDR, the DDR-induced
apoptotic cascade is activated to remove the damaged f cell
by apoptosis, potentially avoiding islet inflammation and
thereby protecting remaining f cells in islet from further
damage (Fig. 5).

B cell resistance to peroxynitrite

While the damaging effects of cytokines are clearly de-
pendent on iNOS activity and nitric oxide production, there
has been much debate on the identity, or chemical form, of the
reactive nitrogen species responsible for cytokine-induced /3
cell damage (13, 15, 57, 80, 83, 131). Many consider perox-
ynitrite, a highly reactive product of the diffusion-controlled
reaction of nitric oxide and superoxide, to be the reactive
species responsible for mediating the damage in cells gen-
erating nitric oxide, including f cells (21, 80, 131, 132).
Furthermore, f3 cells have been regarded as being particularly
susceptible to reactive oxygen and nitrogen species due to
the relatively low levels of antioxidant enzymes superoxide
dismutase, glutathione peroxidase, and catalase when com-
pared with the levels expressed in the liver (83,84). Recently,
we have shown that f§ cells are markedly resistant to perox-
ynitrite, and instead of inducing damage through the pro-
duction of peroxynitrite, superoxide scavenges nitric oxide
and protects against nitric oxide-mediated damage [Fig. 6,
(13)]. Broniowska et al. showed that peroxynitrite is not
generated in cytokine-treated 5 cells due to an absence of
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FIG. 5. Proposed model for the dual
regulation of DDR by nitric oxide during
cytokine exposure. During short exposure
to cytokines (024 h), the high rates of nitric
oxide production suppress DDR signaling
despite causing DNA damage. Under these
conditions, the DDR cannot initiate apo-
ptosis and f§ cells are able to recover and
survive. When cytokine exposure lengthens
(>36h) and cellular damage increases, the
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superoxide production (13, 15). When chemically produced
in f§ cells, using nitric oxide and superoxide generating sys-
tems, or when supplied using the donor SIN-1, peroxynitrite
does not induce f cell damage (13, 15), even though the same
conditions are highly toxic to other cell types such as endo-
thelial cells (12). In f§ cells, superoxide effectively neutral-
izes nitric oxide and thereby prevents the inhibitory effects of
nitric oxide on aconitase activity, the reductions in ATP
levels, and the loss of cell viability (13, 15). Superoxide also
attenuates the inhibitory actions of nitric oxide on the DDR
and the protective actions of nitric oxide on DNA damage-
induced apoptosis (102). Collectively, these findings chal-
lenge a number of hypotheses regarding reactive oxygen and
nitrogen species and cytokine-induced /5 cell damage. First, f§
cells do not produce superoxide when treated with cytokines
and as such cytokine induced damage cannot be attributed to
the formation of this radical (13). Second, f cells are resistant

e vicbilty Viability maintained
e o, Aconitase activity
Aconitase inhibition NO —>» ONOO maintaiiee
Decrease of ATP ATP levels maintained
DNA damage No damage to DNA
Damage Protection

FIG. 6. Peroxynitrite formation in f cells and protection
from nitric oxide. /5 cells do not generate superoxide (O,")
and thus peroxynitrite (ONOO™) during cytokine treatment.
Chemical generation of superoxide leads to the scavenging
of nitric oxide, formation of peroxynitrite, and loss of nitric
oxide-dependent effects. Thus, f cells are resistant to
peroxynitrite, and under conditions where peroxynitrite is
formed, f cells are protected from nitric oxide-induced
damage. ATP, adenosine triphosphate.

to peroxynitrite, and peroxynitrite formation in f§ cells is
associated with a loss of the inhibitory effects of nitric oxide
(13, 15). Third, while nitric oxide inhibits oxidative metab-
olism and induces DNA damage, it also stimulates repair
pathways that are associated with reconstitution of oxidative
metabolism (AMPK) and repair of DNA damage (JNK and
GADD45a) (69, 96). Taken together, the resistance to per-
oxynitrite, the lack of superoxide production, and the ability
of superoxide to scavenge nitric oxide and modify nitric
oxide signaling suggest that f§ cells have developed path-
ways to limit toxicity to reactive species other than nitric
oxide.

Is It Time to Reconsider the Role of Nitric
Oxide in Cytokine-Mediated f Cell Damage?

Protective actions of nitric oxide in B cells

Since the initial studies showing that nitric oxide me-
diates cytokine-induced f cell damage, the generation of
this free radical during cytokine exposure has been thought
of as a pathway that causes f cell damage (Fig. 2). Con-
versely, nitric oxide has many protective functions that
promote f3 cell health and survival. These pathways include
the following: (i) AMPK, which functions to augment mito-
chondrial oxidative metabolism (69, 96), (ii) JNK, which is
required for the recovery of aconitase activity and the ex-
pression of DNA repair gene GADD45a (69, 123), (iii) per-
oxisome proliferator-activated receptor gamma coactivator-1o
expression, which promotes the expression of enzymes in-
volved in mitochondrial oxidative metabolism (74, 96), (iv)
unfolded protein response activation, a protective pathway
designed to resolve and limit ER stress (25), and (v) the
induction of the heat shock response, which limits cytokine
signaling when active (89, 121, 139). Nitric oxide is also
an effective inhibitor of caspase activity through direct
S-nitrosation of the active site cysteine (75, 85, 99), and
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suppresses ATM activation and thereby limits ATM-
dependent f3 cell apoptosis in response to DNA damage (68,
102). These findings suggest that nitric oxide functions to
enhance protective pathways leading to restoration of met-
abolic function and insulin secretion, while at the same time
opposing apoptotic signaling to delay and attenuate f cell
death during cytokine exposure.

Why do B cells respond to cytokines
with the production of nitric oxide?

When considering that the actions of cytokines on islets are
selective for f cells (8, 36), and that the product of IL-1 (or
IL-1 + IFNy in mouse and human islets) actions includes
iNOS expression and nitric oxide production, it is tempting to
speculate on why f cells produce nitric oxide in response to
cytokines. Indeed, other endocrine cells in islets do not re-
spond to IL-1 and do not generate nitric oxide; it is only the f§
cell that responds to cytokines such as IL-1 and this results in
the generation of micromolar levels of nitric oxide (33). Since
f cells are terminally differentiated with a limited capacity to
regenerate (41), the ability of 5 cells to respond to IL-1 and
produce high levels of nitric oxide likely serves a physio-
logical purpose. Could it be that the damage associated with
the generation of nitric oxide following cytokine stimulation
is collateral and a consequence of the activation of protective
pathways that are designed to limit damage from more seri-
ous threats, such as infection with a pathogen? Indeed, sev-
eral studies have shown that nitric oxide attenuates the ability
of pathogens, such as viruses, to replicate (42, 51, 73, 93,
120). Few studies have examined the role of IL-1 and nitric
oxide in the response of f3 cells to a viral infection where IL-1
production in islet would be anticipated. However, under this
type of condition, nitric oxide produced in islets may cause
temporary inhibition of f cell function and cellular damage,
but may also provide a beneficial and protective function by
maintaining the viability of f§ cells in the infected islet. It is
possible that prolonged elevation of IL-1 levels for multiple
days may result in direct f§ cell damage due to extended
production of nitric oxide and diabetes could develop [as
evidenced in mice expressing iNOS under control of the in-
sulin promoter, (133)], although this is an extreme case.
Under most infection conditions, the ability of f cells to re-
spond to cytokines likely plays a physiologically relevant
role in host defense and metabolic control.

Conclusions

This review highlights the damaging and protective ac-
tions of nitric oxide in the /3 cell. This free radical is produced
by cytokine-treated f cells in all species tested to date (105).
While there has been speculation that human f cells respond
differently to cytokines than rodent islets, many reports have
shown similar response with the only difference being the
concentrations of cytokines required to stimulate iNOS by f
cells (105). Nitric oxide is the primary mediator of cytokine-
induced changes in gene expression, protein synthesis, oxi-
dative metabolism, DNA damage, and ER stress in f cells
(14). While many of these responses have been described as
damaging, nitric oxide plays numerous protective roles, and
the ability of nitric oxide to inhibit DDR-dependent apoptotic
pathways in response to DNA damage highlighted in this
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review is one example. Based on these protective responses,
it may be time to rethink the role of cytokines as potential
mediators of f§ cell damage in the context of diabetes devel-
opment, and begin to consider the physiological roles played
by f cells when they respond to cytokines to produce nitric
oxide. We look forward to continuing to identify and charac-
terize the mechanisms by which nitric oxide controls pathways
that limit damage and protect f§ cells from damaging insults.
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Abbreviations Used

AMPK = AMP-activated protein kinase
ATM = ataxia telangiectasia mutated
ATP = adenosine triphosphate
ATR = ataxia telangiectasia and Rad3-related protein
ATRIP = ataxia telangiectasia-and-RAD3-related-ATR-
interacting protein
Bad = Bcl-2-associated death promoter
BER =base excision repair
Bim = Bcl-2-like protein 11
CHK1 = checkpoint kinase-1
DDR =DNA damage response
DEA/NO = Diethylamine NONOate
DNA-PK = DNA-dependent protein kinase
DPTA/NO = Dipropylenetriamine NONOate
DSB = double-strand break
ER = endoplasmic reticulum
FOXO1 =forkhead box O1
GADDA450 = growth arrest and DNA damage 450
H2AX =histone H2A.X
IFNy = interferon-y
IL-1 =interleukin-1
iNOS =isoform of nitric oxide synthase
JNK = c-Jun N-terminal kinase
KAP1 =KRAB-associated protein-1
MRN =MRE11-Rad50-Nbs1
NF-kB = nuclear factor kappa B
NOS =nitric oxide synthase
PARP =poly ADP-ribose polymerase
PUMA = p53-upregulated modulator of apoptosis
RPA =replication protein A
T1D =type-1 diabetes
TNFo = tumor necrosis factor-o




