
Ciliary neurotrophic factor (CNTF) protects retinal cone and
rod photoreceptors by suppressing excessive formation of
the visual pigments
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The retinal pigment epithelium (RPE)-dependent visual cycle
provides 11-cis-retinal to opsins in the photoreceptor outer seg-
ments to generate functional visual pigments that initiate pho-
totransduction in response to light stimuli. Both RPE65 isomer-
ase of the visual cycle and the rhodopsin visual pigment have
recently been identified as critical players in mediating light-
induced retinal degeneration. These findings suggest that the
expression and function of RPE65 and rhodopsin need to be
coordinately controlled to sustain normal vision and to protect
the retina from photodamage. However, the mechanism con-
trolling the development of the retinal visual system remains
poorly understood. Here, we show that deficiency in ciliary neu-
rotrophic factor (CNTF) up-regulates the levels of rod and cone
opsins accompanied by an increase in the thickness of the outer
nuclear layers and the lengths of cone and rod outer segments in
the mouse retina. Moreover, retinoid isomerase activity, expres-
sion levels of RPE65 and lecithin:retinol acyltransferase (LRAT),
which synthesizes the RPE65 substrate, were also significantly
increased in the Cntf�/� RPE. Rod a-wave and cone b-wave
amplitudes of electroretinograms were increased in Cntf�/�

mice, but rod b-wave amplitudes were unchanged compared
with those in WT mice. Up-regulated RPE65 and LRAT levels
accelerated both the visual cycle rate and recovery rate of rod
light sensitivity in Cntf�/� mice. Of note, rods and cones in
Cntf�/� mice exhibited hypersusceptibility to light-induced
degeneration. These results indicate that CNTF is a common
extracellular factor that prevents excessive production of
opsins, the photoreceptor outer segments, and 11-cis-retinal to
protect rods and cones from photodamage.

Phototransduction that converts light energy into electrical
impulse in the retina begins with photoisomerization of 11-cis-

retinal (11cRAL)2 to all-trans-retinal in the opsin visual pig-
ments localized to the outer segments (OS), the light-sensing
organelles, of rod and cone photoreceptors (1, 2). Because apo-
opsins without the 11cRAL chromophore are not responsive to
light, 11cRAL must be regenerated and recombined with apo-
opsins to form light-sensitive visual pigments in the photore-
ceptor OS. RPE65 is a key retinoid isomerase in the RPE-depen-
dent visual cycle responsible regenerating 11cRAL (3–5). It
catalyzes synthesis of 11-cis-retinol, the reduced form of
11cRAL, from all-trans-retinyl esters synthesized by LRAT and
other enzymes in the RPE (6 –8).

Although rhodopsin is essential for initiating rod photo-
transduction it is also the mediator of rod degeneration induced
by intense light (9). In addition, higher expression level and
activity of RPE65 are associated with an increase in susceptibil-
ity of the photoreceptors to light-induced degeneration (10 –
12). These findings suggest that the expression levels and func-
tion of rhodopsin and RPE65 need to be controlled to maintain
normal vision and to protect photoreceptors from light-in-
duced degeneration. However, the molecular mechanisms that
coordinately control expressions of both opsin and RPE65 dur-
ing the development and maturation of the retinal light-sensing
system remain largely unknown.

Expressed by Muller and RPE cells (13–15), CNTF is an
extracellular signaling protein in the neuroretinal and the inter-
photoreceptor matrix, which is associated with the membranes
of the RPE, Muller, and photoreceptor cells (16). CNTF initiates
its signaling by interacting with its receptor-�, which then
recruits the leukemia inhibitory factor (LIF) receptor-� and
gp130 to form a functional receptor complex in the cell mem-
brane (17). All of these receptor subunits are expressed in the
RPE and photoreceptors (14, 18 –20). Exogenous CNTF has
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been shown to inhibit rhodopsin expression in the rodent ret-
ina (21–23), but it induced expression of rod and cone opsins in
the chick retina (24, 25). In addition, CNTF increased RPE cell
survival and mitotic activity (26).

In animal models of retinal degeneration, CNTF treatment
promoted photoreceptor survival (27–31) and regeneration of
cone outer segments (32). Furthermore, recent clinical trials in
patients with retinitis pigmentosa, Usher syndrome type 2, or
geographic atrophy showed that CNTF treatment increased
retinal thickness and slowed the progression of vision loss (33–
35), although in some animal studies and human clinical trials
CNTF treatment had no therapeutic benefit (36 –38). Despite
the neuroprotective effect in some clinical trials and animal
studies, CNTF treatment significantly suppressed visual func-
tion, as determined by electroretinography (ERG) (29, 37, 39,
40). Intraocular CNTF administration also suppressed ERG
responses in wildtype (WT) animals (23, 40 – 42).

A gene profiling study showed that intravitreal injection of
CNTF induced numerous genes associated with inflammation
and gliosis in the Muller cells (43). In addition, CNTF increased
secretion of neurotrophin-3 and decreased secretion of vascu-
lar endothelial growth factor, interleukin-8, and transforming
growth factor-�2 in the RPE cells (14). These altered gene
expression and protein secretion might cause many secondary
effects in the CNTF-treated patients and animals, and there-
fore, increased difficulty in defining the primary role and mech-
anism of CNTF function in regulating development, function,
and protection of the retinal photoreceptors and RPE. In this
study, we analyzed neuroretinal and RPE phenotypes in
Cntf�/� mice, and identified CNTF as a common extracellular
signal that down-regulates expression of opsins in rod and cone
photoreceptors, as well as RPE65 and LRAT in the RPE, to avoid

excessive formation of both light-sensing organelles and light-
sensitive visual pigments, which mediate phototransduction or
photoreceptor degeneration, depending on the light intensity
they have captured.

Results

Rod excessive development is associated with up-regulation of
rhodopsin in the Cntf�/� retina

CNTF added into retinal cultures displayed distinct effects
on rod development depending on species: it promoted chick
rod development and rod-opsin expression (24), but it inhibited
rat rod differentiation and rod-opsin expression (21). To define
the effect of CNTF deficiency on rod development and rod-
opsin expression, we first compared expression levels of rho-
dopsin in WT and Cntf�/� mice. As shown in Fig. 1A, expres-
sion levels of rhodopsin (Rho) in 3- and 5-week-old Cntf�/�

mice were 45–50% higher than those in age-matched WT mice.
Rho mRNA expression levels in 3-week-old Cntf�/� retina
were increased by �53% as compared with those in the same
age WT retina (Fig. 1B).

To confirm these results, we analyzed morphology of WT
and Cntf�/� retinas. Immunohistochemistry showed that
length of the rod outer segments (ROS) in a 3-week-old Cntf�/�

mouse was 15% longer than that of WT mouse (Fig. 1C). Dif-
ferential interference contrast microscopy of retinal sections
confirmed that both ROS length and thickness of the outer
nuclear layer (ONL) in 3-week-old Cntf�/� retina are clearly
greater than those in age-matched WT retina (Fig. 1D). To
know if numbers of rods are increased in the Cntf�/� mouse, we
counted nuclear numbers in a 400-�m wide region of the supe-
rior ONL that is 600 �m away from the optic nerve head. As

Figure 1. Increase in rhodopsin (Rho) expression, thickness of the ONL, and length of rod OS in Cntf�/� mouse. A, immunoblot analysis of Rho and IRBP
in 3- and 5-week-old WT and Cntf�/� retinas. Actin was detected to normalize sample loading. The histogram shows percentages of the immunoblot intensities
of Rho from Cntf�/� retinas relative to the Rho immunoblot intensities of WT retinas. Asterisks in this figure indicate significant differences between WT and
Cntf�/� mice (p � 0.05); error bars indicate S.D. (n � 3). B, transcription level of Rho mRNA in 3-week-old Cntf�/� retina was determined by quantitative RT-PCR
and expressed as fold of Rho mRNA in age-matched WT retina. C, immunohistochemistry showing localization of Rho (red) to the rod OS in the superior retinas
of 3-week-old WT and Cntf�/� mice. Nuclei were stained with DAPI (blue). Histogram shows Rho-positive OS lengths in the sections. D, differential interference
contrast (DIC) images of retinal sections from 3-week-old WT and Cntf�/� mice. All scale bars denote 20 �m. E, rod nuclear numbers counted in a 400-�m wide
superior ONL area that is 600 �m away from the optic nerve head. F, TUNEL-positive cell numbers in the ONL-OPL and inner nuclear layer (INL)-inner plexiform
layer (IPL) of retinal sections from WT and Cntf�/� mice at postnatal day 8.
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shown in Fig. 1E, numbers of rods in the region of the Cntf�/�

retina were 11% greater than those in WT retina. Numbers of
TUNEL-positive cells in the ONL and the outer plexiform layer
(OPL) of the Cntf�/� retina at postnatal day 8 were significantly
smaller than those in age-matched WT retinal ONL-OPL
(Fig. 1F).

Increase of cone-specific proteins in over-elongated OS of
Cntf�/� cones

Exogenous CNTF has been shown to promote cone differen-
tiation in the developing chick retina (24, 25), suggesting that
CNTF deficiency may reduce expression of cone-specific pro-
teins. Unexpectedly, quantitative immunoblot analysis showed
that cone arrestin (CAR), which expresses in both M- and
S-cones (44), was increased �50% in 3- and 5-week-old
Cntf�/� mouse retinas, as compared with age-matched WT
mouse retinas (Fig. 2A). In agreement with this result, immu-
nohistochemistry showed that length and numbers of CAR-
positive outer segments in 3-week-old Cntf�/� retina were
clearly greater than those in WT retina (Fig. 2, B and G).

To know whether M- and S-opsins are also increased in the
Cntf�/� retina, we performed quantitative immunoblot analy-

sis for cone opsins. As shown in Fig. 2, C and E, expression levels
of M- and S-opsins in 3- and 5-week-old Cntf�/� retinas are
significantly higher than those in age-matched WT retinas.
This increase in expression of cone opsins is associated with an
increase in M- and S-cone numbers as well as length of cone
outer segments in the Cntf�/� retina (Fig. 2, D and F–H). Quan-
titative RT-PCR revealed that transcripts for M- and S-opsins
were increased by 60�70% in 3-week-old Cntf�/� retina, as
compared with those in age-matched WT retina (Fig. 2I).

Up-regulation of visual cycle enzymes in Cntf�/� RPE

Increased rod and cone opsins may need an increase in
11cRAL synthesis to form functional visual pigments. We
therefore tested whether the visual cycle enzymes are changed
in the Cntf�/� RPE. Immunoblot analysis showed that protein
levels of RPE65 in 3- and 5-week-old Cntf�/� RPE were
40 – 60% higher than those in age-matched WT RPE (Fig. 3A).
Similarly, expression levels of LRAT are also significantly
increased in the Cntf�/� RPE, as compared with WT RPE (Fig.
3B). In agreement with these results, activities of the retinoid
isomerase in the 3- and 5-week-old Cntf�/� RPE were at least
45% higher than those in age-matched WT RPE (Fig. 3C).

Figure 2. Increase in expression of cone-specific proteins and length of cone OS in Cntf�/� mouse. A, immunoblot analysis of CAR in the retinas of 3- or
5-week-old WT and Cntf�/� mice. The histogram shows percentages of immunoblot intensities of CAR from Cntf�/� retinas relative to the CAR immunoblot
intensities of WT retinas. B, immunohistochemistry showing CAR immunoreactivity in the superior (sup) retinas of 3-week-old WT and Cntf�/� mice (upper
panels). ON, optic nerve. The areas of the rectangles are shown in the higher magnification images (bottom panels). C and E, immunoblot analysis of M-opsin (C)
and S-opsin (E) from 3- or 5-week-old WT and Cntf�/� retinas. Histograms show percentages of immunoblot intensities of M-opsin (C) or S-opsin (E) in the
Cntf�/� retinas relative to M-opsin or S-opsin intensities in WT retinas. D and F, immunohistochemistry for M-opsin (D) and S-opsin (F) in the superior (D) or
inferior (F) retinas of 3-week-old WT and Cntf�/� mice. G, numbers of CAR- or cone opsin-positive cells in the superior (sup) or inferior (inf) retinas of 3-week-old
WT and Cntf�/� mouse retinal sections taken from the dorsal-ventral midline of the eye. H, lengths of M- and S-cone OS in 3-week-old WT and Cntf�/� mouse
retinal sections. I, relative mRNA levels of cone opsins in 3-week-old WT and Cntf�/� retinas were determined by quantitative RT-PCR. All asterisks indicate
significant differences between WT and Cntf�/� mice (p � 0.05); error bars denote S.D. (n � 3�4).
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To know if the number of RPE cells is increased in Cntf�/�

mouse, we counted DAPI-positive RPE nuclear numbers in sec-
tions taken from the dorsal-ventral midline of the eye. We then
calculated RPE cell density by dividing RPE nuclear numbers
with arc length of retina in the sections. RPE cell densities in
Cntf�/� sections (28.6 � 2.0 nuclei/mm, n � 4) were similar to
those in WT sections (27.8 � 1.8 nuclei/mm, n � 4). RPE mor-
phology in the Cntf�/� retinal section was similar to that in WT
retinal section (Fig. 3D). Distribution patterns of RPE65 and
LRAT in the Cntf�/� RPE were also similar to those in WT RPE
(Fig. 3E). Consistent with these results, expression levels of the
RPE microvilli protein Ezrin in the Cntf�/� RPE were similar to
those in WT RPE (Fig. 3F).

To determine whether CNTF up-regulates RPE65 expres-
sion at the transcription level we performed quantitative RT-
PCR. As shown in Fig. 3G, mRNA expression levels of RPE65
were increased �30% in the Cntf�/� mouse, as compared with

WT mouse. To confirm this result, we incubated Cntf�/� eye-
cup RPE with media of 293T-LC cells transfected with pRK5 or
pRK-CNTF. Quantitative RT-PCR and immunoblot analysis
showed that both mRNA and protein levels of RPE65 were
reduced in the eyecup RPE incubated with media containing
CNTF (Fig. 3, H and I).

Rod hyperpolarization, but not rod ON bipolar depolarization,
was increased in Cntf�/� mouse

Because rod-opsin is up-regulated in the Cntf�/� retina, we
tested whether the Cntf�/� rods display an increased photo-
transduction. We recorded scotopic ERG responses of dark-
adapted WT and Cntf�/� mice to a series of increasing light
flashes. Representative ERG responses elicited with 0�2 log
candelas � s/m2 (cd � s/m2) flashes are shown in Fig. 4A.
Amplitudes of a-waves elicited with 1�2 log cd � s/m2 flashes
were significantly greater in Cntf�/� mice, as compared with

Figure 3. Up-regulation of the visual cycle enzymes in the Cntf�/� RPE. A and B, immunoblot analysis of RPE65 (A) and LRAT (B) in the RPE of 3- or 5-week-old
WT and Cntf�/� mice. Histograms show immunoblot intensities of RPE65 or LRAT from the Cntf�/� RPE relative to RPE65 or LRAT intensities in WT mouse RPE.
C, retinoid isomerase (RI) activities determined by measuring synthesis of 11cROL from all-trans-retinol substrate incubated with RPE homogenates of 3- or
5-week-old WT and Cntf�/� mice. D, light microscopic images of RPE layers in the superior retinal sections of 5-week-old WT and Cntf�/� mice. E, immunohis-
tochemistry showing distribution patterns of RPE65 and LRAT in the superior retinal sections from 3-week-old WT or Cntf�/� mice. Scale bars in D and E denote
20 �m. F, immunoblot analysis of Ezrin in the eyecups of 3- or 5-week-old WT and Cntf�/� mice. The histogram shows relative immunoblot intensities of Ezrin
in WT and Cntf�/� eyecups. G, relative expression levels of RPE65 mRNA in WT and Cntf�/� RPE were determined by quantitative RT-PCR. H, quantitative RT-PCR
showing relative expression levels of RPE65 mRNA in Cntf�/� mouse eyecup RPE incubated with media with or without CNTF. I, immunoblot analysis of RPE65
in Cntf�/� mouse eyecup RPE in H. All asterisks indicate significant differences between WT and Cntf�/� mice or between test and control groups (p � 0.04);
error bars are S.D. (n � 3 or 4).
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those in WT mice (Fig. 4, A and B). Unexpectedly, b-wave
amplitudes in Cntf�/� mice were similar to those of WT mice
(Fig. 4, A and C).

To know if the synaptic function between rod and rod ON
bipolar cell (ON-BC) was altered in the Cntf�/� mouse, we
measured a- and b-wave implicit times (times from stimulus
onset to a- or b-wave peak). As shown in Fig. 4D, a-wave
implicit times of Cntf�/� rod ERG were similar to those of WT
rod ERG. The b-wave implicit times of Cntf�/� rod ERG were
also similar to those of WT rod ERG elicited with �4�0 log
cd � s/m2 flashes. When 0.7�1.7 log cd � s/m2 flashes applied,
the b-wave implicit times of Cntf�/� rod ERG were 10.5�12.2%
shorter than those of WT rods (p � 0.056, n � 6; Fig. 4D).
Immunoblot analyses showed that expression levels of the
ON-BC markers (mGluR6 and PKC�) in the Cntf�/� retina
were similar to those in WT retina (Fig. 4, E and F).

Faster recovery rate of rod light sensitivity is underpinned by
accelerated visual cycle in Cntf�/� mouse

Because rod opsin and the visual cycle enzymes are increased
in the Cntf�/� mouse, we tested whether the recovery rate of
rod light sensitivity is accelerated in Cntf�/� mouse. We
exposed dark-adapted WT and Cntf�/� mice to 800 lux light
for 5 min, and then returned the mice to darkness. At different
times, we recorded scotopic ERG responses to three different
flash stimuli (10, 25, and 50 cd � s/m2). WT and Cntf�/� mice
kept in darkness for 5 min displayed similar a-wave amplitudes
(Fig. 5A). However, a-wave amplitudes of Cntf�/� mice kept in
darkness for 10 –30 min were higher than those in WT mice
under the same light conditions (Fig. 5A).

To know if this faster recovery of rod light sensitivity is sup-
ported by an accelerated visual cycle, we measured the regen-
eration rates of 11cRAL in WT and Cntf�/� mice kept in dark-
ness for different times after photobleaching the visual
pigments. Because both the ONL thickness and the OS length
are greater in Cntf�/� retina than those of WT retina, we

expressed the levels of 11cRAL in photobleached WT and
Cntf�/� eyes as 100%. After keeping the mice in darkness for 15
or 30 min, the amounts of 11cRAL were increased 55 or 83%,
respectively, in Cntf�/� mice, but only 15 or 30% in WT mice
(Fig. 5B). These data indicate that the regeneration rates of the
11cRAL in the Cntf�/� eyes are faster than those in the WT
eyes.

Hyper visual function of cones in Cntf�/� mouse

The up-regulation of cone opsins in the Cntf�/� retina (Fig.
2) prompted us to test if cone visual function was enhanced in
the Cntf�/� mouse. Under a rod-saturating background light,
we recorded photopic ERG responses of WT and Cntf�/� mice
to a series of increasing achromatic flashes. As shown in Fig. 6,
A–C, amplitudes of a- and b-waves elicited with a given inten-
sity of flash were significantly higher in Cntf�/� mice than WT
mice. Implicit times to photopic b-wave peaks elicited with
0.5�2 log cd � s/m2 flashes were markedly shorter in Cntf�/�

mice versus WT mice (Fig. 6D), suggesting that synaptic func-
tion between cone and cone ON-BC is normal or enhanced in
Cntf�/� mice. To confirm these results, we recorded photopic
flicker ERG. Consistent with the above results, amplitudes of
b-waves elicited with 10- and 20-Hz flashes at 10 cd � s/m2

intensity were significantly increased in Cntf�/� mice, as com-
pared with those in WT mice (Fig. 6, E and F). These results
indicate that CNTF deficiency causes a “super vision” mediated
by cones. These results also suggest that CNTF may have dif-
ferent roles in the development and/or function of cone ON-BC
versus rod ON-BC systems.

Rods and cones in Cntf�/� mouse exhibited hyper
susceptibility to photodamage

Because the photoresponsiveness of rods and cones is
increased in Cntf�/� mice, we investigated the effects of intense
light on the retinal function and structure of Cntf�/� mice. We
exposed mice to 12,000 lux light for different times (30�75

Figure 4. Enhanced rod phototransduction in Cntf�/� mice. A, representative raw scotopic ERG responses of dark-adapted WT and Cntf�/� mice to the
indicated flashes. B and C, amplitudes of scotopic ERG a-wave (B) and b-wave (C) elicited with the indicated flashes in dark-adapted WT and Cntf�/� mice.
Asterisks indicate significant differences between WT and Cntf�/� mice (*, p � 0.04; **, p � 0.01); error bars show S.D. (n � 6). D, times from stimulus onset to a-
or b-wave peaks of WT and Cntf�/� mouse rods. E, immunoblot analysis of mGluR6 in 3- or 5-week-old WT and Cntf�/� mouse retinas or RPE. Actin was used
as loading control. F, immunoblot analysis of PKC� in 3- or 5-week-old WT and Cntf�/� retinas.
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min), and then kept them in darkness for 5 days. Retinoid anal-
ysis showed that the contents of 11cRAL and the total retinoids
were significantly reduced in the Cntf�/� eyes exposed to the
intense light for 75 min, as compared with those in WT mice
under that same light conditions (Fig. 7A). Cntf�/�, but not
WT, mice under that same light conditions displayed a signifi-
cant reduction in rod visual function, as measured by scotopic
ERG (Fig. 7B). Notably, both a- and b-wave amplitudes are
markedly reduced in Cntf�/� mice (Fig. 7B). This reduction of
rod visual function is associated with a dramatic decrease in rod
OS length and contents of rhodopsin in the Cntf�/� retina (Fig.
7, C and D). Morphological analysis showed that 75 min expo-
sure of 12,000 lux light caused a severe retinal degeneration in
Cntf�/�, but not WT, mice (Fig. 8, B and C). The superior ONL
in Cntf�/� retina was reduced in thickness to 2– 8 nuclei versus
9 –10 nuclei in WT retina whereas the inferior ONL in the
Cntf�/� retina was reduced to 4 – 8 nuclei versus 10 –11 nuclei
in WT retina (Fig. 8D).

Generally, cones are resistant to light-induced degeneration
(45, 46). To know if CNTF deficiency increases susceptibility of
cones to photodamage, we did immunohistochemistry for
cones in WT and Cntf�/� mice exposed to the intense light for

75 min. Lengths of both S-cone and M-cone OSs are signifi-
cantly shortened in Cntf�/� mice (Fig. 9, B and C). Consistent
with these observations, immunoblot analysis showed that
expression levels of S- and M-opsins were reduced at least 40%
in the Cntf�/� retinas, as compared with those in WT retinas
(Fig. 9, D and E).

Discussion

Phototransduction and the visual cycle are the most impor-
tant functions in sensing and converting light signal into bio-
chemical and electrical signals in the retina. Light sensitivities
of both rod and cone visual pigments rely on their 11cRAL
chromophore provided by the visual cycle. In this study, we
showed that CNTF deficiency resulted in up-regulation of
opsins and the visual cycle enzymes, leading to an increase in
thickness of ONL, length of rod and cone OSs, and the rates of
the 11cRAL regeneration. These molecular and morphological
changes led to 1) hyper phototransduction of rods and cones, 2)
faster recovery of rod light sensitivity, and 3) increase in suscep-
tibility of rods and cones to photodamage in Cntf�/� mouse.

Up-regulation of opsins and the visual cycle enzymes (Figs.
1–3) are the most important primary phenotypes in the

Figure 5. Faster recovery of rod light sensitivity in Cntf�/� mice. A, amplitudes of scotopic ERG a-waves elicited with the indicated flashes (10�50 cd �
s/m2) in WT and Cntf�/� mice, which were kept in darkness for the indicated minutes after photobleaching the visual pigments. Asterisks indicate significant
differences between WT and Cntf�/� mice (*, p � 0.04; **, p � 0.009; ***, p � 0.003); error bars show S.D. (n � 6). B, relative contents of 11cRAL in eyecups of mice
under the indicated light conditions: immediately after PB of the visual pigment or kept in darkness for the indicated minutes after PB. Error bars show S.D.
(n � 4).

Figure 6. Hyper cone phototransduction in Cntf�/� mice. A, representative raw photopic ERG responses of WT and Cntf�/� mice to the indicated flashes
under a rod saturating background light (32 cd/m2). B and C, amplitudes of a-wave (B) and b-wave (C) in photopic ERG responses elicited with the indicated flash
intensities in light (32 cd/m2)-adapted WT and Cntf�/� mice. Asterisks indicate significant differences between WT and Cntf�/� mice (*, p � 0.03; **, p � 0.001);
error bars show S.D. (n � 7). D, times from stimulus onset to photopic b-wave peaks of WT and Cntf�/� mouse cones. E, representative raw flicker ERG responses
of WT and Cntf�/� mice to 10 cd � s/m2 flashes with frequencies of 10 or 20 Hz on the rod saturating background light. F, amplitudes of b-wave in the flicker
ERG responses of WT and Cntf�/� mice. Error bars show S.D. (n � 5, **, p � 0.001).
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Cntf�/� visual system. CNTF might down-regulate these pro-
teins through the heterotrimeric receptor complex (17), which
can activate at least three distinct downstream pathways: Jak-
STAT3, Ras-MAPK, and PI3K-AKT pathways (22, 47). The Jak-
STAT3 pathway is the most studied pathway in CNTF/LIF
signaling. Exogenous LIF activated STAT3 in mouse photo-
receptors (48) and down-regulated rhodopsin (49), whereas
CNTF did not activate STAT3 in any photoreceptors but
down-regulated rhodopsin (23). CNTF might down-regulate
rhodopsin by acting on Muller cells (23) or through the Ras-
MAPK and/or PI3K-AKT pathways in rods.

Opsin up-regulation was accompanied by morphological
changes in the Cntf�/� retina. The ONL thickness and lengths
of rod and cone OSs were increased in Cntf�/� mice. The
increase in the ONL thickness might be associated with the
decrease in programed cell death in the ONL of postnatal
Cntf�/� mice (Fig. 1). CNTF has been shown to promote pro-
gramed death of postmitotic rod precursor cells; and blocking
the CNTF/LIF pathway reduced cell death during mouse reti-
nal development, resulting a thicker ONL (50).

CNTF deficiency also resulted in an increase in lengths of
both rod and cone OSs. This observation is consistent with

Figure 7. Reduction of retinoids, rod visual function, and rhodopsin contents in Cntf�/� mice exposed to intense light. A, contents of 11cRAL and total
retinoids in the eyecups of WT and Cntf�/� mice kept in darkness for 5 days after exposing to 12,000 lux light for the indicated time. All asterisks indicate a
significant difference between WT and Cntf�/� mice (p � 0.02); error bars show S.D. (n � 4). B, amplitudes of a-wave (upper panel) and b-wave (bottom panel)
in scotopic ERG responses of WT and Cntf�/� mice to the indicated flashes. Error bars show S.D. (n � 5). All data shown in B–D are from mice kept in darkness
for 5 days after exposing to 12,000 lux light for 75 min. C, immunohistochemistry for Rho in retinal sections of WT and Cntf�/� mice. Histograms show relative
lengths of Rho-positive OS in WT and Cntf�/� retinal sections. Scale bar denotes 20 �m. D, immunoblot analysis of Rho in WT and Cntf�/� retinas. Histogram
shows immunoblot intensities of Rho from Cntf�/� retinas relative to Rho intensity in WT retinas.

Figure 8. Retinal photodamage in Cntf�/� mice. A, light microscopic images of WT and Cntf�/� superior retinas before photodamage. Scale bar denotes 20
�m. B, light microscopy showing severe retinal degeneration in Cntf�/�, but not WT, mice kept in darkness for 5 days after exposing to 12,000 lux light for 75
min. C, higher magnification images of the superior retinas of WT and Cntf�/� mice exposed to the intense light. D, thickness of the retinal outer nuclear layers
in WT and Cntf�/� mice in B. Numbers on the x-axis indicate distance from optic nerve head. Error bars show S.D. (n � 4).
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three previous studies: 1) CNTF induced a reversible rod OS
shortening in WT rat (23), 2) CNTF reduced cone OS length in
the rds mouse (51), and 3) transgenic LIF inhibited rod and cone
OS maturation and/or elongation (52). In a rat line carrying a
rhodopsin mutation, however, CNTF promoted regeneration
of cone OS (32). The different effects of CNTF on cone OS
morphology may depend on the presence or absence of strong
inflammatory stimulation (53), which produce numerous sig-
naling proteins in the retina (54).

11cRAL bound with opsins functions as a molecular switch
for initiating phototransduction in response to light stimuli.
Light-mediated isomerization of 11cRAL to all-trans-retinal
induces opsin activation and phototransduction. To restore
light sensitivity to opsins that have lost 11cRAL, 11cRAL must
be regenerated and recombined with apo-opsins. RPE65 and
LRAT are critical enzymes in the visual cycle that generates
11cRAL. We found that the synthesis rate of 11-cis-retinol in
the Cntf�/� RPE was increased due to up-regulation of RPE65

Figure 9. Light-induced degeneration of cones in Cntf�/� mice. A, immunohistochemistry showing cone opsin-positive OS in WT and Cntf�/� mice before
photodamage. B and C, immunohistochemistry for S-opsin (B) or M-opsin (C) in retinal sections of WT and Cntf�/� mice kept in darkness for 5 days after
exposing to 12,000 lux for 75 min. Nuclei were counterstained with DAPI (blue). The areas of the rectangles are shown in the higher magnification images
(bottom panels). Inf, inferior; sup, superior; ON, optic nerve. All data shown in this figure are from mice exposed to 12,000 lux light for 75 min. D and E,
immunoblot analysis of S-opsin (D) or M-opsin (E) in WT and Cntf�/� retinas. Actin was detected as sample loading control. Histograms show relative
immunoblot intensities of S-opsin (D) or M-opsin (E) in WT versus Cntf�/� retinas. Asterisks indicate significant differences between WT and Cntf�/� mice (p �
0.02); error bars show S.D. (n � 3).
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and LRAT. RPE65 and LRAT might be up-regulated in part
through the gp130-STAT3 pathway in the RPE (49). We further
found that recovery of rod light sensitivity was accelerated due
to an increase in 11cRAL synthesis in the Cntf�/� RPE (Fig. 5).

Increase in opsin expression and 11cRAL synthesis suggest
that the Cntf�/� rods and cones contain more light-sensitive
visual pigments. This might cause the enhanced responses of
Cntf�/� rods and cones to light stimuli (Figs. 4 – 6). The hyper
phototransduction led to greater hyperpolarization of rods and
cones, reflected in elevation of a-wave amplitudes in both sco-
topic and photopic ERGs of Cntf�/� mice.

Although scotopic a-wave amplitudes were increased in
Cntf�/� mice b-wave amplitudes, implicit times were similar to
those in WT mice. In addition, expression levels of mGluR6 and
PKC� in the Cntf�/� retina were also similar to those in WT
retina. These results suggest that synaptic function between rod
and rod ON-BC, which produce b-wave responses (55, 56), is
not significantly changed or may be slightly reduced in Cntf�/�

mice. Overexpression of CNTF or LIF has been shown to cause
BC disorganization (51, 57). Exogenous CNTF has also been
shown to promote BC differentiation (21, 51) through increas-
ing Ath3 expression and pleiotrophin secretion (58, 59). These
studies and the similar b-wave amplitudes in Cntf�/� and WT
mice suggest that CNTF plays an important role in the devel-
opment, differentiation, and function of rod ON-BCs.

Interestingly, cone b-wave amplitudes and implicit times in
photopic ERG elicited with certain flash intensities were signif-
icantly higher or shorter in Cntf�/� mice versus WT mice.
These results are consistent with the previous studies that show
significant reduction of photopic b-waves in WT animals over-
expressing CNTF (41, 42). Because b-waves of photopic and
flicker ERGs are mainly from depolarizing cone ON-BCs (60,
61), our results suggest that the synaptic function between cone
and cone ON-BC, as well as cone-induced depolarization of
cone ON-BCs are enhanced in Cntf�/� mouse.

One of the pathological consequences of CNTF deficiency
was retinal photodamage. Cntf�/� rods exhibited hyper sus-
ceptibilitytolight-induceddegeneration.Thisphenotypeiscon-
sistent with the well-known phenomenon: the rodent superior
retina has much higher susceptibility to photodamage, as com-
pared with the inferior retina. Length of photoreceptor OS in
the superior retina is �30% longer than that in the inferior
retina (62). The longer OSs in the Cntf�/� and the rodent supe-
rior retinas may contain more rhodopsin, the primary mediator
of retinal degeneration induced by light (9). Activated rhodop-
sin may increase the DNA-binding activity of the transcription
factor AP-1 to promote light-induced apoptosis of photorecep-
tors (9, 63). In Drosophila, activated rhodopsin induced photo-
receptor apoptosis by promoting clathrin-dependent endocy-
tosis of rhodopsin-arrestin complexes (64).

It has been known that the higher expression level and activ-
ity of RPE65 cause an increase in susceptibility of retina to pho-
todamage (10 –12). Conversely, decrease in the visual cycle rate
or RPE65 activity reduce retinal photodamage (65–67). RPE65
promotes retinal photodamage by facilitating the visual cycle
that provides 11cRAL to generate light-sensitive visual pig-
ments. Up-regulated RPE65 and LRAT have accelerated the
synthesis rate of 11cRAL in the Cntf�/� mouse. This acceler-

ated visual cycle plus increased expression of opsins resulted in
an increase in the formation of light-sensitive visual pigment,
therefore promoted retinal photodamage in Cntf�/� mice.

In general, cones are resistant to photodamage (45, 46). In
this study, however, we observed that intense light caused a
severe degeneration of both M- and S-cones in the Cntf�/�

mouse. This result suggests that CNTF deficiency itself and
increased formation of cone visual pigments contributed to
cone photodamage in Cntf�/� mouse. In addition, increased
visual cycle and phototransduction rates may result in elevation
of oxidative stress in cones due to an increase in contents of
11cRAL and all-trans-retinal in the Cntf�/� cones. Retinalde-
hydes have been shown to play a critical role in retinal photo-
oxidative damage (68 –70). Cones are known to have high sus-
ceptibility to oxidative stress (71–74). Overexpression of NRF2,
a master antioxidant transcription factor, effectively protected
cones from degeneration in animal models of retinal degener-
ation (75). These studies and our results suggest that reduction
of neuroprotective signals and increase in oxidative stress
promoted light-induced cone degeneration in Cntf�/� mice.
In summary, we identified CNTF as a critical signal that
down-regulates rod and cone opsins, as well as RPE65 and
LRAT, to suppress visual pigment over formation and retinal
photodamage.

Experimental procedures

Animals

We crossed Cntf�/� mice (76) with WT 129S2/Sv mice
(Charles River Laboratories), then intercrossed the heterozy-
gous offspring to yield Cntf�/� mice homozygous for the Leu-
450 allele of the Rpe65 gene. The homologous Cntf knockout
mutation and the Leu-450 alleles were confirmed by PCR and
DNA sequencing, as described previously (12, 76). Except
where noted, mice were maintained in 12 h cyclic light at �30
lux. All animal experiments were performed on both sexes of
WT and Cntf�/� mice at 3, 5, or 6 weeks of age in accordance
with the Association for Research of Vision and Ophthalmol-
ogy statement for the use of animals in ophthalmic and vision
research and the protocols approved by the Institutional Ani-
mal Care and Use Committee for LSU Health Sciences Center.

Eyecup RPE, cell culture, and transfection

After removal of the anterior section and neural retina, the
RPE in 3-week-old Cntf�/� mouse eyecups were maintained in
DMEM/F-12 medium (Thermo Fisher Scientific Inc.) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS) and
antibiotics (77). The 293T-LC cells maintained in DMEM
(Invitrogen) with 10% FBS (78) were transfected with pRK5 or
pRK5-CNTF plasmid DNA using the PolyJet transfection re-
agent (SignaGen Laboratories). After transfection, the cells
were maintained overnight in DMEM/F-12 medium contain-
ing 5% FBS. These media with or without CNTF were incubated
with the eyecup RPE for 6 h. All cultures were maintained in an
incubator containing 5% CO2.

Immunoblot analysis

Protein samples in the Laemmli buffer containing 50 mM

DTT were incubated for 10 min at 70 °C (or room temperature
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for opsins), separated by SDS-PAGE in a 10, 12, or 4 –12% gra-
dient polyacrylamide gel, and transferred to an Immobilon-P
membrane (MilliporeSigma). The membrane was incubated in
blocking buffer, primary antibody, and horseradish peroxidase-
conjugated secondary antibody against rabbit, mouse, or goat
IgG. Antibodies against RPE65 (79), LRAT (80, 81), CNTF
(Santa Cruz Biotechnology), Ezrin (ProteinTech), interphoto-
receptor retinoid-binding protein (IRBP) (82), mGluR6 (Gene-
Tex), PKC�, rhodopsin, CAR, M-opsin (MilliporeSigma), S-op-
sin (MilliporeSigma, Santa Cruz Biotechnology), or �-actin
(MilliporeSigma) were used as the primary antibodies. Immu-
noblots were visualized with the enhanced ECL-Prime and
quantified (82).

Immunohistochemistry

Retinal cryosections were prepared from the dorsal-ventral
midline of mouse eye as described previously (83). Briefly, enu-
cleated mouse eyeballs were fixed overnight with 4% parafor-
maldehyde in 0.1 M phosphate buffer (PB). After removing cor-
nea and lens, eyecups were immersed in 15% sucrose in 0.1 M PB
for 2 h, in 30% sucrose in 0.1 M PB for 2 h, and then in a 1:1
mixture of 30% sucrose and optimal cutting temperature
(OCT) medium (Sakura Finetechnical) overnight at 4 °C. After
embedding eyecups in OCT, 15-�m thick sections were cut on
a Shandon Cryotome SME cryostat (Thermo Scientific). The
sections were immunostained with the primary antibodies
listed in the method of immunoblot analysis and secondary
antibodies, as described previously (82). Nuclei were counter-
stained with DAPI (Sigma). Images were captured with a Zeiss
LSM710 Meta confocal microscope with a �20 objective lens
or �40 oil-immersion lens. Lengths of rod and cone OS as well
as numbers of cells were measured using ImageJ software
(National Institutes of Health).

TUNEL assay

This assay was performed using the in situ cell death detec-
tion kit (Roche Applied Science) following the manufacturer’s
protocol. Briefly, retinal cryosections washed with 0.1% sodium
citrate in 0.1% Triton X-100, PBS were incubated with terminal
deoxynucleotidyl transferase (TdT) and fluorescein-dUTP for
1 h at 37 °C. After rinsing three times in PBS containing 0.05%
Tween 20, nuclei were counterstained with DAPI. Numbers of
TUNEL-positive nuclear in the ONL-outer plexiform layer and
in the inner nuclear layer-inner plexiform layer of whole retinal
sections were counted separately using an Olympus BX61VS
microscope equipped with a digital camera and VS-ASW FL
software.

Quantitative RT-PCR

Total RNA was extracted from mouse retina or RPE using a
PureLink RNA mini kit (Invitrogen), and was reverse-tran-
scribed to cDNA using SuperScript III (Invitrogen). Quantita-
tive PCR was performed on an iCylcer iQTM Real-Time PCR
Detection System (Bio-Rad) using a two-step qRT-PCR kit with
SYBR Green (Invitrogen) and primer sets specific for mouse
RPE65, opsin, and 18S rRNA. Three mice of each genotype
were analyzed and all samples were run in duplicates. Starting
templates were normalized after determining 18S rRNA Ct val-

ues for each sample (84). Relative mRNA levels of RPE65 were
determined from the 	Ct values.

Electroretinography (ERG)

Overnight dark-adapted 6-week-old mice were anesthetized
with an intraperitoneal injection of 100 mg/kg of ketamine and
10 mg/kg of xylazine. The pupils were dilated with 1% tropic-
amide. ERG was recorded from the corneal surface using a sil-
ver-silver chloride wire electrode referenced to a subcutaneous
electrode in the mouth. A needle electrode in the tail served as
the ground. A drop of 2.5% methylcellulose was placed on the
cornea to ensure good electrical contact and to prevent corneal
desiccation during the entire procedure. Single-flash ERG
recordings were performed in a Ganzfield dome (Espion e2,
Diagnosys LLC) under dark-adapted (scotopic) and light-
adapted (photopic) conditions. For scotopic ERG, single flash
stimuli were presented with various intensities, reaching from
�4 log cd � s/m2 to 2.5 log cd � s/m2, in interstimulus intervals
of 0.5�2 min (depending on the stimulus intensity). Three to
four responses were averaged for each step. For photopic ERG,
animals were light adapted for 10 min by exposing to a white 32
cd/m2 light, and ERG responses were obtained with white
flashes (�0.3�2.4 log cd � s/m2) on the rod-saturating back-
ground light (32 cd/m2). Five responses to 10-s interval flashes
were averaged for each step. Intensity-response amplitude data
were displayed on log-linear coordinates using SigmaPlot 11
software. Flicker ERG responses were recorded in light-adapted
mice with flicker flashes on the rod-saturating background. The
flicker stimuli had an intensity of 10 cd � s/m2 with frequencies
of 10 or 20 Hz.

Retinoid isomerase assay

RPE homogenates in 20 mM HEPES buffer (pH 7.4) contain-
ing protease inhibitor mixture were prepared from mouse eye-
cups without the neural retina. The homogenates were irradi-
ated for 10 min on ice with 365-nm light from a Spectroline
Model EN-140L UV light source to destroy endogenous reti-
noids. Each assay mixture contained 200 �g of cell homogenate,
10 �M all-trans-retinol, and 6% BSA. After incubating for 2 h in
darkness at 37 °C, retinoids were extracted with hexane and
analyzed by HPLC, as described below.

Analysis of retinoids

Retinoids in mouse ocular tissues or in vitro enzyme assays
were extracted with hexane and analyzed by normal-phase
HPLC (84). In brief, retinoids in hexane extractions were evap-
orated, dissolved in 100 �l of hexane, and separated on a silica
column (Zorbax-Sil 5 �m, 250 � 4.6 mm, Agilent Technolo-
gies) by gradient (0.2–10% dioxane in hexane at 2.0 ml/min flow
rate) or nongradient (10% dioxane in hexane at 1.0 ml/min flow
rate) elution of mobile phase on an Agilent 1100 HPLC system
equipped with a photodiode array detector (Agilent Technolo-
gies). Spectral data were acquired for all eluted peaks. Quanti-
tation was performed by comparison of peak areas to calibra-
tion curves established with authentic retinoid standards.

Light microscopy

Mouse retinal sections were prepared as described previ-
ously (84). In brief, mice were fixed by intracardiac perfusion
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with a mixture of 2% paraformaldehyde and 2.5% glutaralde-
hyde in 0.1 M PB (pH 7.4). Light cautery was applied at the
superior pole of the cornea to mark the orientation before enu-
cleation of the eyeball. A window was cut in the cornea, and the
eye was immersed in primary fixative and rotated at room tem-
perature for 2 h. The anterior segment was removed, and the
remaining eyecup was refrigerated overnight in primary fixa-
tive. The eyecup was trimmed into temporal and nasal hemi-
spheres and immersed in 1% osmium tetroxide in 0.1 M PB (pH
7.2) for 1 h. Following dehydration in a graded series of alco-
hols, the hemispheres were embedded in an Epon/Araldite
mixture (5:3, v/v). Care was taken to orient the eyecups so that
sections were obtained through the vertical meridian to ensure
sampling of both the superior, green-sensitive cones and the
inferior, blue-sensitive cones. Sections were cut at 1 �m and
stained with 1% toluidine blue and 1% sodium borate, then pho-
tographed using a �20 objective lens or a �60 oil-immersion
lens in the Olympus BX61VS microscope mentioned above.
Except for whole retinal images, all images were obtained from
retinal sections at a distance of 600 �m superior or inferior to
the optic nerve.

Light-induced retinal degeneration

WT and Cntf�/� mice were dark-adapted for 3 days. After
dilation of the pupils under dim red light (Kodak Wratten 1A),
mice were exposed to 12,000 lux of white fluorescent light for
30, 60, and 75 min and then kept in darkness for 5 days. Retinoid
contents, visual function, and retinal structures of these mice
were analyzed as described above.

Statistical analysis

SigmaPlot Version 11 (Systat Software, Inc.) was used for
statistical analyses. Data were expressed as the mean � S.D. of
three or more independent experiments indicated in the figure
legends. Differences between WT and Cntf�/� mice were
determined by single comparisons with an unpaired two-tailed
Student’s t test. The significance threshold was set at 0.05 for all
statistical tests.
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