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An effective fractional-spin correction is developed to describe
static/strong correlation in density functional theory. Combined
with the fractional-charge correction from recently developed
localized orbital scaling correction (LOSC), a functional, the frac-
tional-spin LOSC (FSLOSC), is proposed. FSLOSC, a correction
to commonly used functional approximations, introduces the
explicit derivative discontinuity and largely restores the flat-
plane behavior of electronic energy at fractional charges and
fractional spins. In addition to improving results from conven-
tional functionals for the prediction of ionization potentials, elec-
tron affinities, quasiparticle spectra, and reaction barrier heights,
FSLOSC properly describes the dissociation of ionic species, sin-
gle bonds, and multiple bonds without breaking space or spin
symmetry and corrects the spurious fractional-charge dissocia-
tion of heteroatom molecules of conventional functionals. Thus,
FSLOSC demonstrates success in reducing delocalization error and
including strong correlation, within low-cost density functional
approximation.
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Density functional theory (DFT) (1–3) is now the lead-
ing electronic structure method in chemistry, physics, and

material science. This success should be attributed to the eas-
ily calculated energy functional of 3D electron density, which
avoids solving the 3N -dimensional Schrödinger equation (N
being the electron number). Being exact in principle, DFT has
to rely on approximations to the unknown exchange-correlation
(XC) functional in practical applications. Therefore, better den-
sity functional approximations (DFAs) have been the constant
pursuit in DFT.

The incorrect treatment of static/strong correlation is among
the most challenging problems in DFT (4–6). It is generally rec-
ognized that static correlation arises from the (near-)degeneracy
of the reference Slater determinant with other low-energy con-
figurations, while dynamic correlation is from the mixing of
higher-energy excited configurations. Unlike the short-range fea-
ture of dynamic correlation, being multicenter in range (7)
makes it difficult to model static correlation with (semi)local
functionals.

To understand the systematic errors in existing DFAs and to
guide the construction of better approximations, knowledge of
the conditions satisfied by the exact functional is essential. Of
particular interest here are the exact conditions of DFT on frac-
tional charges and fractional spins. For fractional charges, the
Perdew–Parr–Levy–Balduz (PPLB) condition (8–11) requires
the total energy, as a function of electron number, to be piece-
wise straight lines interpolating between adjacent integers. Con-
vex deviation from this piecewise linearity for fractional-charge
(FC) systems has been defined as the delocalization error (4,
12, 13), which is related to the earlier concept of many-electron
self-interaction error (14–17). For fractional spins, the con-
stancy condition (4, 13, 18) requires the energy of a system
with fractional-spin (FS) states to equate that of the compris-
ing degenerate pure-spin states, which is a special case of the

conditions for general degenerate states derived in ref. 9. Vio-
lation of this constancy requirement is the static correlation
error inherent in approximate functionals (18). The FC and FS
conditions were unified and extended to a more general and
stringent condition, the flat-plane condition (19). The flat-plane
condition requires the energy of systems with fractional charges
and spins to be two flat planes intersecting in a seam defined
by the line of integer electron number. It is this requirement
that a discontinuous behavior comes out automatically when
total electron number passes through an integer for any frac-
tional spins, revealing the explicitly discontinuous nature of the
derivative of the XC functional (19). Its satisfaction requires
that the exact XC functional is not a continuously differentiable
functional of either the electron density or the (generalized)
Kohn–Sham [(G)KS] density matrix for strongly correlated sys-
tems (19). In comparison, the derivative discontinuity require-
ment derived from the PPLB condition for fractional charges
is only a subset—it only requires that the exact XC functional
is not a continuously differentiable functional of the electron
density (20, 21).

The behavior of semilocal functionals exemplified by BLYP
(22, 23) is shown in Fig. 1A. As can be seen, the correct piece-
wise flat-plane behavior is erroneously smoothed out into a
continuous shape. This poor performance indicates that severe
delocalization and static correlation errors exist in the functional,
which thus cause the spectacular failures in practical calculations
(4, 11–19, 24). In particular, the erroneous dissociation limits of
H+

2 and H2, resulting, respectively, from the large deviations of
the FC point, H ( 1

2
, 0), from linearity and the FS point, H ( 1

2
, 1
2

),
from constancy, are simple examples of the delocalization and
static correlation errors (4, 13, 18).

Significance

The static correlation error inherent in commonly used den-
sity functional approximations (DFAs) has seriously hindered
the application of density functional theory (DFT) to strongly
correlated systems. Here, an effective fractional-spin correc-
tion against the important issue of static/strong correlation in
DFT is developed. With this, the flat-plane behavior of various
DFAs is largely restored, and the potential energy curves of
dissociation of ionic species, single bonds, and multiple bonds
are properly described, which demonstrates great improve-
ment in the treatment of strong correlation. This work should
have a significant impact on the development and application
of DFT.

Author contributions: N.Q.S., C.L., and W.Y. designed research; N.Q.S. performed
research; N.Q.S and W.Y. analyzed data; and N.Q.S, C.L., and W.Y. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1 To whom correspondence should be addressed. Email: weitao.yang@duke.edu.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1807095115/-/DCSupplemental.

Published online September 10, 2018.

9678–9683 | PNAS | September 25, 2018 | vol. 115 | no. 39 www.pnas.org/cgi/doi/10.1073/pnas.1807095115

http://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:weitao.yang@duke.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807095115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807095115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1807095115
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1807095115&domain=pdf


CH
EM

IS
TR

Y

0 1 2 3 4 5 6 7 8
-0.4

-0.2

0.0

0.2

DC

R(Å)

Full CI LOSC-BLYP
BLYP FSLOSC-BLYP

BA

Fig. 1. Total energy of hydrogen atom with fractional charges and frac-
tional spins, H (nα, nβ ). (A–C) BLYP (A), LOSC-BLYP (B), and FSLOSC-BLYP (C)
are examined. (D) Potential energy curve for H–H bond dissociation in H2.
The total energy of two isolated doublet H atoms is set to zero in D. All
energies are in a.u.

Intensive efforts have been made to eliminate the FC (14–
17, 24–55) and FS (7, 18, 24, 26, 50–59) errors. In contrast
to the great progresses made to improve the FC-error-related
calculations, such as better prediction of ionization potentials
and electron affinities (26–33, 46, 48, 52), and proper descrip-
tion of dissociation of cationic species (16, 17, 34, 47–52),
etc., the FS error is still an outstanding issue. More precisely,
to properly take into account the necessary static correlation
without involving multideterminantal reference states remains
a major challenge in DFT. Work from Becke showed some
promise of describing static correlation with XC hole model-
ing (7, 60, 61), based on which Johnson and Contreras-Garćıa
constructed strong-correlation models that improve the descrip-
tion of atoms with fractional charges and spins (58, 59). Recent
works on recovering the flat-plane condition include the judi-
ciously modified DFT approach (62) and the density matrix
minimization model (63). We aim to develop general correc-
tions to common DFAs by imposing the flat-plane condition on
global and local regions, to systematically reduce the delocal-
ization and static correlation errors for mainstream DFAs, all
within the (G)KS single-determinant description of the electron
density.

In this work, an effective FS correction is developed for the
static correlation in DFT. Paired with the FC correction, i.e., the
localized orbital scaling correction (LOSC) (48), our model of
XC functional takes the form (see SI Appendix, section 1 for the
expression of the total electronic energy):

EXC[ρ] =EDFA
XC [ρ] + ∆EFC[ρ] + ∆EFS[ρ], [1]

where EDFA
XC [ρ] can be any functional of local density approxima-

tion (LDA), generalized gradient approximation (GGA), hybrid
GGA, etc. Both spin-restricted and -unrestricted (G)KS methods
are available (64, 65). Spin-restricted self-consistent field (SCF)
(3, 66, 67) is used here to ensure that the systems possess the
correct spin symmetry. In principle, the exact functional can give
unrestricted solutions and degenerate restricted solutions which
are with integer occupations in closed-shell systems and can be
with fractional spins in open-shell systems (18, 19). A restricted
solution with integer occupations for open-shell systems is a
constrained solution (65) for correct spin symmetry. Before pro-
ceeding to derive the FS correction, the FC corrections will be
first revisited below.

FC Correction Revisited
The scaling correction (SC) method (46) provides a simple and
direct way to fix the incorrect FC behavior of mainstream DFAs.
The correction is derived from the energy deviation of each
component from linearity to second order, which leads to

∆EFC
CO =

∑
σ

1

2
nσf (1−nσf )κFC[ρf , ρf ]. [2]

Here, we assume all canonical orbitals (COs) are occupied by
integer (0/1) α and β electrons except orbital f whose occupa-
tions are nαf and nβf . ρf (r) is orbital density |ϕf (r)|2; and κFC,
here termed FC curvature matrix, takes the form of (with the
extension from ref. 48)

κFC[ρp , ρq ] = (1− dHF
X )

[∫∫
ρp(r)ρq(r′)
|r− r′| drdr′

− 2CX

3

∫
[ρp(r)ρq(r)]2/3dr

]
, [3]

where CX = 3
4
( 6
π

)1/3, dHF
X is the amount of HF exchange energy

in the parent functional. As only the corrections to the Coulomb
and exchange energies were treated in the SC method, Eq. 3 only
encompasses curvatures for these two parts. With the integer
points kept intact, Eq. 2 mainly restores the linear FC behav-
ior; thus, it greatly improves the prediction of vertical ionization
potentials (Ive) and electron affinities (Ave) from energies of the
highest occupied molecular orbitals (HOMOs) and the lowest
unoccupied molecular orbitals (LUMOs) for small sized systems.

To bring in correction for systems with integer electrons in a
size-consistent manner, the local SC (LSC) (47) was proposed by
imposing the PPLB condition to local regions of a system. More
recently, the LSC scheme was further generalized and LOSC
was developed to use localized orbitals (LOs) and LO occupa-
tions to capture local FC information in the energy correction
(48). LOSC is capable of correcting the total energy and orbital
energies in a size-consistent manner; therefore, it improves the
descriptions of dissociation of cationic species, the small-sized
molecular and polymer band gaps. The LOSC correction to total
energy is calculated via

∆EFC
LO =

∑
pq

∑
σ

1

2
λσpq(δpq −λσpq)κFC[ρp , ρq ]. [4]

Here, LOs are obtained by unitary transformation upon COs,
φp(r) =

∑
q Upqϕq(r), with U defining the mixing of COs. The

local occupation matrix λσ is computed via λσpq = 〈φp |ρσs |φq〉.
Each diagonal element, λσpp , represents the occupation of an
LO. Note that each off-diagonal element, λσpq , relates to an LO
pair, with the magnitude indicating how much the pair of LOs
formed from the mixing of the same occupied COs. κFC[ρp , ρq ]
is the FC curvature associated with LOs, obtained by inserting
LO densities, ρp(r) = |φp(r)|2, into Eq. 3.

The desired LOs are optimized through a special localization
procedure (48), with the following objective function

F =
∑
p

[
〈φp |r2|φp〉− 〈φp |r|φp〉2

]
+
∑
pq

ωpq |〈φp |ϕq〉|2. [5]

Here, the first term is the Foster–Boys objective function for
physical space localization (68), while the second term is to
restrict the mixing of COs with large energy difference. The LOs
so obtained are called orbitalets, with localization in both phys-
ical and energy spaces (48). We would like to make comparison
of LOSC with existing corrections using LOs, the generalized
transition state (GTS) method (69), the LDA+U method (70,
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71), and the Fermi–Lowdin orbital self-interaction correction
(FLOSIC) (72, 73). GTS improves the LDA calculation for
band gaps of solids, with an energy correction of ∆EGTS =∑

i
1
2
κii(λii −λ2

ii), where each κii is determined by separate
constrained LDA calculations. A scheme similar to GTS was
recently constructed by Ma and Wang (74). In these works, the
LOs come from mixing of only occupied or virtual COs; thus,
they do not change the total energies for physical systems with
integer number of electrons; hence, these energy functionals are
not size consistent (48) and can only correct orbital energies
(with failure, e.g., for H+

2 dissociation). In contrast, LOSC mixes
occupied and virtual COs in the localization and offers an explicit
form of Eq. 3 for the κ matrix. It corrects the DFA energies at
both integer and fractional electron numbers. Moreover, Eq. 4
involves off-diagonal κpq and λpq that are crucial to dispel the
unwanted interaction between LO pairs for the dissociation of
cationic species. In the case of H+

2 dissociation, it is only with
these off-diagonal terms that the correct asymptotic behavior as
R→∞ can be retrieved (SI Appendix, section 2.B). LDA+U
uses a quadratic energy correction, uses transition metal d atomic
orbitals as LOs, and determines the U parameters through lin-
ear response calculations or empirically. In contrast, LOSC uses
the explicit functional form for the curvatures, and the orbitalets
are dynamical because of energy localization, in that they can be
just the COs as in H+

2 at equilibrium bond length and become
localized like atomic orbitals at dissociation limit. The use of
orbitalets allows a different and appropriate amount of correc-
tions to the delocalization error in DFAs at different geometries,
which cannot be achieved with a fixed set of atomic orbitals
as in LDA+U. In a quite different manner, FLOSIC relies on
the elimination of self-interaction for each LO, which spans the
occupied space only.

To increase the ability of capturing the delocalization informa-
tion of reaction transition states, in this work we use a modified
ωpq of the form

ωpq =R2
0{exp[|εp − εq |/ε0 + erfc(η

√
dpdq)]− 1}, [6]

which depends not only on energy difference of COs, εp −
εq , but also on the spatial delocalization of two COs, dpdq .
Here, dp is called orbital delocalization factor, calculated via
dp =

∑
A<B Qp(A)|RA−RB |Qp(B), where A and B are atomic

indices, RA is the atomic position, and Qp(A) represents how
much the p-th CO localized on atom A (SI Appendix, sec-
tion 2.A). Importantly, to capture the local FS information
for FS correction, spin restriction is imposed during local-
ization. The three parameters in Eq. 6 are: R0 = 4.2Å, ε0 =

20eV , and η= 3.78Å
−1

. They are adjusted to obtain a balanced
behavior between reaction barrier heights in HTBH38/08 and
NHTBH38/08 (75) and the potential energy curve of H2.

With this choice for ωpq , the mixing between COs whose
orbital energies are far apart is suppressed. Furthermore, spa-
tially delocalized COs are more likely to mix with each other,
which is conducive to the characterization of transition states,
making use of the delocalized nature of these states.

FS Correction
The FC correction with LOSC only restores the linearity condi-
tion for fractional charges and largely eliminates the delocaliza-
tion error in common DFAs. Here, we develop an FS correction
to restore the flat-plane condition in DFAs and thus to properly
describe the static correlation. We first consider the correction
using COs. Based on the energy deviation of each compo-
nent from the corresponding flat-plane condition, the mixed-spin
terms form the CO-based FS correction (SI Appendix, section

1.D), taking the following quadratic form

∆EFS
CO =−Λ(nαf ,nβf )κFS[ρf , ρf ], [7]

with Λ(nαf ,nβf ) defined as

Λ(nαf ,nβf ) =

{
nαf n

β
f , nαf +nβf ≤ 1

(1−nαf )(1−nβf ), nαf +nβf > 1.
[8]

Here, the FS curvature matrix, κFS, is calculated by

κFS[ρp , ρq ] =

∫∫
ρp(r)ρq(r′)
|r− r′| drdr′+κC[

√
ρpρq ], [9]

where the first term is obtained from the Coulomb energy as
a quadratic function of nσf . As the exchange energy is between
same-spin electrons, it makes no contribution to the FS cor-
rection and curvature. Thus, the main problem is to derive the
curvature from the correlation energy, κC. Here, an approximate
κC has been derived by imposing the constancy condition of frac-
tional spins on the correlation energy (SI Appendix, section 1.D),
it takes the following general form:

κC[ρf ] =−4

∫
ρf (r)(ε1C[ρf ]− ε0C[ρf ])dr. [10]

ε0C and ε1C are the spin-compensated and fully spin-polarized
correlation energy densities. While different kinds of functional
approximations can be used in Eq. 10, the simple LDA forms of
ε0C and ε1C developed recently (76) are used presently.

Eq. 7 provides the necessary correction for systems with frac-
tional spins, combined with the FC correction of Eq. 2, a new
functional, FS corrected SC (FSSC), can be constructed through
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Fig. 2. (A) Calculated −εHOMO (−εLUMO) vs. reference Ive (Ave) for 64 (47)
molecules from the G2-97 set (77). Reference data are obtained by CCSD(T)
calculation and extrapolated to infinite basis limit. The solid line indicates
−εHOMO = Ive or −εLUMO = Ave. All data in A are in electronvolts. (B) Spec-
tra of fullerene C60 obtained with BLYP and FSLOSC-BLYP, broadened by a
0.25-eV Gaussian, compared with experimental photoemission spectrum
(78, 79). (C) Potential energy curve for C–C dissociation in C2H6. The total
energy of two isolated doublet ·CH3 is set to zero. MRCI+Q data (80) are
used as reference. (D) Potential energy curve for twisted ethylene as a
function of the HCCH torsion angle (θ). The energy at θ= 0 is set to zero.
MR-ccCA data (81) are used as reference. All energies in both C and D are
in a.u.
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zero for N2 and P2, respectively. MRCI+Q data (83) are used as reference. All
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Eq. 1. This functional can largely restore the flat-plane behavior,
so that it improves the behavior of mainstream DFAs for small-
sized systems with fractional charges and spins. However, this
functional provides no correction for calculations in physical sys-
tems without fractionally occupied COs. To address the issue of
static correlation in realistic systems with integer electrons and
spins, an effective FS correction based on fractionally occupied
LOs should be constructed, as was developed in LOSC (48) for
the delocalization error correction.

Similar to the extension of FC correction from Eq. 2 to Eq. 4,
the extension of the FS part can be performed by imposing a cor-
rection of Eq. 7 on each LO. The resulting FS correction works
well for a system with well-separated fragments, but not for a sys-
tem with overlapping LOs. Taking chemical-bond breaking as an
example, as a bond is gradually stretched, the static correlation
effect becomes increasingly pronounced. At the beginning of the
dissociation, the bonding orbital (an occupied CO) will mix with
the corresponding antibonding orbital (an unoccupied CO) into
a pair of overlapping LOs; at this point, the positive correction
provided by the FC correction is numerically much larger than
the magnitude of the negative correction provided by the FS cor-
rection, resulting in a positive overall correction (SI Appendix,
section 2.D). However, due to the lack of static correlation, the
total energy calculated by commonly used DFAs is already too
high; thus, the positive FC correction pushes the energy in the
wrong direction. Therefore, proper treatment of the interaction
between fragments with fractionally occupied LOs is essential
for constructing LO-based FS correction. Considering all factors,
the final FS correction takes the form

∆EFS
LO=−

∑
p

[
(1−Sp)Λ(λαpp ,λβpp) +SpΓ(λαpp ,λβpp)

]
κFS[ρp , ρp ]

+
∑
p 6=q

λαpqλ
β
pqκ

FS[ρp , ρq ], [11]

where κFS[ρp , ρq ] is the FS curvature matrix defined on LOs,
calculated by inserting LO densities into Eq. 9. When a set of
LOs is formed from the mixing of the same COs, Sp defines how
much the overlap between the p-th LO and other LOs in the set.
Sp approaches 0 when the p-th LO is well-separated from other
LOs; otherwise, Sp is large with a maximum of 1. The definition
of Sp will be given below.

We now discuss the form of Eq. 11. The first sum of Eq. 11 is
about the correction for each lone LO with fractional spins. In
this part, the two terms in brackets correspond to the corrections
for well-separated and overlapping LOs, respectively. For a well-
separated LO, i.e., Sp = 0, only the first term is effective, and
this part of correction reduces to a form similar to Eq. 7, thus
providing a correct description for well-separated fragments; for
a large Sp , as stated above, the FC correction from Eq. 4 causes
a large positive correction that cannot be well neutralized by the
first term. To fix this, the second term in the bracket is brought
in, where Γ(λαpp ,λβpp) takes the form of

Γ(λαpp ,λβpp) = min(λαpp ,λβpp)min(1−λαpp , 1−λβpp), [12]

which properly compensates for the positive correction from Eq.
4 when Sp is large. Note that for any LO, Γ(λαpp ,λβpp) is nonzero
only when both λαpp and λβpp are fractional—thus, it takes effect
only for FS cases. The second sum of Eq. 11 is the correction
for each mixed-spin LO pair. Similar to the off-diagonal terms
in Eq. 4 for correcting asymptotic behavior of the ionic molecule
dissociation, this term further corrects the asymptotic behavior
for the dissociation of covalent bonds in neutral molecules (SI
Appendix, section 2).

The foregoing analysis thus suggests that Sp in Eq. 11 should
(i) allow the use of a set of LOs that are formed from the mixing
of the same COs, and (ii) evaluate the degree of overlap between
the p-th LO and other LOs in the set. As stated above, the off-
diagonal element, λσpq , indicates how much a pair of LOs formed
from the mixing of the same COs. Thus, the set of LOs (including
the p-th LO) is formed by those LOs with large [(λαpq)2 + (λβpq)2].
Here, the degree of overlap between the p-th LO and other LOs
in the set is evaluated by Sp = erf

(
γ
(∫ √

ρp(r)ρqpmax (r)dr
) 1

2

)
,

where qpmax = argmaxq [(λαpq)2 + (λβpq)2]. γ, a parameter for con-
trolling the change of Sp , is set at γ= 1.5, which was optimized
for a smooth dissociation curve for H2 (SI Appendix, Fig. S2).

With the FS correction described above, the new XC func-
tional, the FS-corrected LOSC (FSLOSC), can be constructed. It
should be noted that, because of the presence of Λ(λαpp ,λβpp) and
Γ(λαpp ,λβpp) in the FS correction, the new functional is no longer
a continuously differentiable functional of the (G)KS density
matrix everywhere, but, rather, a functional encoding the deriva-
tive discontinuity, necessary for strongly correlated systems (19).
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The orbital energies of FSLOSC can be obtained as

εFSLOSC,σ
s = 〈ϕs |hFSLOSC,σ|ϕs〉. [13]

Here, the FSLOSC effective Hamiltonian hFSLOSC,σ is calcu-
lated by hFSLOSC,σ = hDFA,σ + ∆hFC,σ + ∆hFS,σ , with hDFA,σ

from the parent DFA, ∆hFC,σ from the FC correction (48), and
∆hFS,σ from the FS correction (SI Appendix, section 2.F).

FSLOSC calculation can be performed in two ways. One
is post-SCF, indicated as FSLOSC-DFA, in which FSLOSC
corrections to the total energy and orbital energies are calcu-
lated after the SCF calculation of a parent DFA. The second
is self-consistent calculation of FSLOSC, i.e., scFSLOSC-DFA.
With the FSLOSC effective Hamiltonian, the routine SCF cal-
culation or some gradient optimization algorithm can be applied
to obtain a set of optimized orbitals, which improves the energy
and density simultaneously. Since the effective Hamiltonian used
here is derived based on the frozen-orbital assumption, we used
the gradient-based optimization algorithm in combination with
line search for better convergence.

Results and Conclusion
FSLOSC is examined on a variety of properties. The tests based
on HTBH38/08, NHTBH38/08 (75), and G2-97 (77) test sets
indicate that FSLOSC-DFAs show obvious improvement on
reaction barrier heights while nearly keeping the thermochem-
istry unchanged (SI Appendix, Tables S1 and S2). In particular,
dissociation of molecules without breaking space or spin symme-
try is tested, which is one of the most demanding challenges in
DFT since it requires a balanced treatment of dynamical and
static correlation. In the following, the results of BLYP and
(sc)FSLOSC-BLYP will be discussed; CCSD (86–88) results are
also included for comparison. More calculation details and test
results can be found in SI Appendix, section 3.

For the flat-plane test on the H atom, Fig. 1 shows that LOSC
has corrected the convex FC behavior of BLYP, but enlarges the
FS error. With FS correction, FSLOSC restores the flat-plane
behavior, and consequently both dissociation limits of H+

2 and
H2 are corrected.

In addition to the simple H–H bond breaking in H2, the excel-
lent description of potential energy curves of σ bond breaking in
ethane and π bond breaking in twisted ethene again shows that
FSLOSC is able to handle strongly correlated systems without
involving multideterminantal reference states; Fig. 2 C and D.

Furthermore, the improved prediction of Ive, Ave, and quasipar-
ticle spectra by orbital energies of FSLOSC demonstrates that
the delocalization error is greatly reduced, which is similar to
LOSC (48); Fig. 2 A and B.

Moreover, FSLOSC can correctly dissociate multiple bonds.
The dissociation curves of C2, N2, and P2 can be found in
Fig. 3. These systems are not only a challenge to DFT, but
also to wave-function methods. Because of the lack of static
correlation, the CCSD level of correlation method is still insuf-
ficient to correctly describe multiple bond breaking. BLYP per-
forms well at equilibrium distance, but its energies become too
high as the bonds are stretched. FSLOSC, with the energies
of BLYP around equilibrium kept unchanged, repairs the dis-
sociation limits of BLYP, thus yielding good potential energy
curves.

It has been found that semilocal DFAs can dramatically under-
estimate the energy of dissociating neutral heteroatom molecules
into fractionally charged fragments in unrestricted (G)KS cal-
culations with broken symmetry (14, 15, 89). The symmetry-
preserved restricted calculations of such systems, however, lead
to much too high energies at dissociation limits because of static
correlation error as shown in FS behavior (18). Here, we test
two molecules, single-bond HF and multiple-bond CO; Fig. 4.
Restricted BLYP gives too high energies at dissociation limits
and incorrectly predicts the charge distribution, showing frac-
tional positive charge on H and C atoms at dissociation limits.
Based on this erroneous charge distribution, FSLOSC in post-
SCF application cannot improve the energies of BLYP. Through
the self-consistent calculations, i.e., scFSLOSC, the charge dis-
tributions as well as the energies at dissociation limits are both
improved. Therefore, scFSLOSC is necessary when the density
of the parent DFA is incorrect.

To conclude, an effective FS correction has been developed to
restore the flat-plane behavior and correct the static correlation
error in existing DFAs. Based on this, the FSLOSC functional
developed in this work shows significant improvement in the
treatment of strongly correlated systems. All of the tests demon-
strate that FSLOSC greatly reduces the delocalization and static
correlation errors in mainstream DFAs.
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