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The representation of nonlinear subgrid processes, especially
clouds, has been a major source of uncertainty in climate mod-
els for decades. Cloud-resolving models better represent many of
these processes and can now be run globally but only for short-
term simulations of at most a few years because of computational
limitations. Here we demonstrate that deep learning can be used
to capture many advantages of cloud-resolving modeling at a
fraction of the computational cost. We train a deep neural net-
work to represent all atmospheric subgrid processes in a climate
model by learning from a multiscale model in which convection
is treated explicitly. The trained neural network then replaces the
traditional subgrid parameterizations in a global general circula-
tion model in which it freely interacts with the resolved dynamics
and the surface-flux scheme. The prognostic multiyear simulations
are stable and closely reproduce not only the mean climate of
the cloud-resolving simulation but also key aspects of variability,
including precipitation extremes and the equatorial wave spec-
trum. Furthermore, the neural network approximately conserves
energy despite not being explicitly instructed to. Finally, we show
that the neural network parameterization generalizes to new sur-
face forcing patterns but struggles to cope with temperatures
far outside its training manifold. Our results show the feasibil-
ity of using deep learning for climate model parameterization.
In a broader context, we anticipate that data-driven Earth sys-
tem model development could play a key role in reducing climate
prediction uncertainty in the coming decade.
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Many of the atmosphere’s most important processes occur
on scales smaller than the grid resolution of current

climate models, around 50–100 km horizontally. Clouds, for
example, can be as small as a few hundred meters; yet they
play a crucial role in determining the Earth’s climate by trans-
porting heat and moisture, reflecting and absorbing radiation,
and producing rain. Climate change simulations at such fine
resolutions are still many decades away (1). To represent the
effects of such subgrid processes on the resolved scales, physical
approximations—called parameterizations—have been heuristi-
cally developed and tuned to observations over the last decades
(2). However, owing to the sheer complexity of the underlying
physical system, significant inaccuracies persist in the parame-
terization of clouds and their interaction with other processes,
such as boundary-layer turbulence and radiation (1, 3, 4). These
inaccuracies manifest themselves in stubborn model biases (5–
7) and large uncertainties about how much the Earth will
warm as a response to increased greenhouse gas concentra-
tions (1, 8, 9). To improve climate predictions, therefore, novel,
objective, and computationally efficient approaches to subgrid
parameterization development are urgently needed.

Cloud-resolving models (CRMs) alleviate many of the issues
related to parameterized convection. At horizontal resolutions of
at least 4 km deep convection can be explicitly treated (10), which
substantially improves the representation of land–atmosphere
coupling (11, 12), convective organization (13), and weather

extremes. Further increasing the resolution to a few hundred
meters allows for the direct representation of the most important
boundary-layer eddies, which form shallow cumuli and stra-
tocumuli. These low clouds are crucial for the Earth’s energy
balance and the cloud–radiation feedback (14). CRMs come with
their own set of tuning and parameterization decisions but the
advantages over coarser models are substantial. Unfortunately,
global CRMs will be too computationally expensive for climate
change simulations for many decades (1). Short-range simula-
tions covering periods of months or even a few years, however,
are beginning to be feasible and are in development at modeling
centers around the world (15–18).

In this study, we explore whether deep learning can provide an
objective, data-driven approach to using high-resolution model-
ing data for climate model parameterization. The paradigm shift
from heuristic reasoning to machine learning has transformed
computer vision and natural language processing over the last
few years (19) and is starting to impact more traditional fields
of science. The basic building blocks of deep learning are deep
neural networks which consist of several interconnected layers of
nonlinear nodes (20). They are capable of approximating arbi-
trary nonlinear functions (21) and can easily be adapted to novel
problems. Furthermore, they can handle large datasets during
training and provide fast predictions at inference time. All of

Significance

Current climate models are too coarse to resolve many of the
atmosphere’s most important processes. Traditionally, these
subgrid processes are heuristically approximated in so-called
parameterizations. However, imperfections in these param-
eterizations, especially for clouds, have impeded progress
toward more accurate climate predictions for decades. Cloud-
resolving models alleviate many of the gravest issues of
their coarse counterparts but will remain too computationally
demanding for climate change predictions for the foreseeable
future. Here we use deep learning to leverage the power of
short-term cloud-resolving simulations for climate modeling.
Our data-driven model is fast and accurate, thereby show-
ing the potential of machine-learning–based approaches to
climate model development.

Author contributions: M.S.P. and P.G. designed research; S.R. and M.S.P. performed
research; S.R. analyzed data; and S.R., M.S.P., and P.G. wrote the paper.y

The authors declare no conflict of interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: All code can be found in the following repositories: https://doi.org/
10.5281/zenodo.1402384 and https://gitlab.com/mspritch/spcam3.0-neural-net/tree/nn
fbp engy ess.y
1 To whom correspondence should be addressed. Email: s.rasp@lmu.de.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1810286115/-/DCSupplemental.y

Published online September 6, 2018.

9684–9689 | PNAS | September 25, 2018 | vol. 115 | no. 39 www.pnas.org/cgi/doi/10.1073/pnas.1810286115

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.5281/zenodo.1402384
https://doi.org/10.5281/zenodo.1402384
https://gitlab.com/mspritch/spcam3.0-neural-net/tree/nn_fbp_engy_ess
https://gitlab.com/mspritch/spcam3.0-neural-net/tree/nn_fbp_engy_ess
mailto:s.rasp@lmu.de
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810286115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810286115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1810286115
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1810286115&domain=pdf


EA
RT

H
,A

TM
O

SP
H

ER
IC

,
A

N
D

PL
A

N
ET

A
RY

SC
IE

N
CE

S

these traits make deep learning an attractive approach for the
problem of subgrid parameterization.

Extending on previous offline or single-column neural net-
work cumulus parameterization studies (22–24), here we take the
essential step of implementing the trained neural network in a
global climate model and running a stable, prognostic multiyear
simulation. To show the potential of this approach we compare
key climate statistics between the deep learning-powered model
and its training simulation. Furthermore, we tackle two crucial
questions for a climate model implementation: First, does the
neural network parameterization conserve energy? And second,
to what degree can the network generalize outside of its train-
ing climate? We conclude by highlighting crucial challenges for
future data-driven parameterization development.

Climate Model and Neural Network Setup
Our base model is the superparameterized Community Atmo-
sphere Model v3.0 (SPCAM) (25) in an aquaplanet setup (see SI
Appendix for details). The sea surface temperatures (SSTs) are
fixed and zonally invariant with a realistic equator-to-pole gra-
dient (26). The model has a full diurnal cycle but no seasonal
variation. The horizontal grid spacing of the global circula-
tion model (GCM) is approximately 2◦ with 30 vertical levels.
The GCM time step is 30 min. In superparameterization, a
2D CRM is embedded in each GCM grid column (27). This
CRM explicitly resolves deep convective clouds and includes
parameterizations for small-scale turbulence and cloud micro-
physics. In our setup, we use 84-km–wide columns with a CRM
time step of 20 s, as in ref. 28. For comparison, we also run
a control simulation with the traditional parameterization suite
(CTRLCAM) that is based on an undilute plume parameteri-
zation of moist convection. CTRLCAM exhibits many typical
problems associated with traditional subgrid cloud parameter-
izations: a double intertropical convergence zone (ITCZ) (5),
too much drizzle and missing precipitation extremes, and an
unrealistic equatorial wave spectrum with a missing Madden–
Julian oscillation (MJO). In contrast, SPCAM captures the key
benefits of full 3D CRMs in improving the realism all of these
issues with respect to observations (29–31). In this context, a key
test for a neural network parameterization is whether it learns
sufficiently from the explicitly resolved convection in SPCAM
to remedy such problems while being computationally more
affordable.

Analogous to a traditional parameterization, the task of the
neural network is to predict the subgrid tendencies as a func-
tion of the atmospheric state at every time step and grid column
(SI Appendix, Table S1). Specifically, we selected the following
input variables: the temperature T (z ), specific humidity Q(z )
and wind profiles V (z ), surface pressure Ps , incoming solar radi-
ation Sin, and the sensible H and latent heat fluxes E . These
variables mirror the information received by the CRM and radi-
ation scheme with a few omissions (SI Appendix). The output
variables are the sum of the CRM and radiative heating rates
∆Tphy, the CRM moistening rate ∆Qphy, the net radiative
fluxes at the top of atmosphere and surface Frad, and precipi-
tation P . The input and output variables are stacked to vectors
x = [T (z ),Q(z ),V (z ),Ps ,Sin,H ,E ]T with length 94 and y =
[∆Tphy(z ), ∆Qphy(z ),Frad,P ]T with length 65 and normalized
to have similar orders of magnitude (SI Appendix). We omit
condensed water to reduce the complexity of the problem (Dis-
cussion). Furthermore, there is no momentum transport in our
version of SPCAM. Informed by our previous sensitivity tests
(24), we use 1 y of SPCAM simulation as training data for
the neural network, amounting to around 140 million training
samples.

The neural network itself ŷ =N (x) is a nine-layer deep, fully
connected network with 256 nodes in each layer. In total, the

network has around 0.5 million parameters that are optimized
to minimize the mean-squared error between the network’s pre-
dictions ŷ and the training targets y (SI Appendix). This neural
network architecture is informed by our previous sensitivity tests
(24). Using deep rather than shallow networks has two main
advantages: First, deeper, larger networks achieve lower train-
ing losses; and second, deep networks proved more stable in
the prognostic simulations (for details see SI Appendix and SI
Appendix, Fig. S1). Unstable modes and unrealistic artifacts
have been the main issue in previous studies that used shallow
architectures (22, 23).

Once trained, the neural network replaces the superparame-
terization’s CRM as well as the radiation scheme in CAM. This
neural network version of CAM is called NNCAM. In our prog-
nostic global simulations, the neural network parameterization
interacts freely with the resolved dynamics as well as with the sur-
face flux scheme. The neural network parameterization speeds
up the model significantly: NNCAM’s physical parameterization
is around 20 times faster than SPCAM’s and even 8 times faster
than NNCAM’s, in which the radiation scheme is particularly
expensive. The key fact to keep in mind is that the neural net-
work does not become more expensive at prediction time even
when trained with higher-resolution training data. The approach
laid out here should, therefore, scale easily to neural networks
trained with vastly more expensive 3D global CRM simulations.

The subsequent analyses are computed from 5-y prognostic
simulations after a 1-y spin-up. All neural network, model, and
analysis code is available in SI Appendix.

Results
Mean Climate. To assess NNCAM’s ability to reproduce
SPCAM’s climate we start by comparing the mean subgrid
tendencies and the resulting mean state. The mean subgrid heat-
ing (Fig. 1A) and moistening rates (SI Appendix, Fig. S2) of
SPCAM and NNCAM are in close agreement with a single latent
heating tower at the ITCZ and secondary free-tropospheric
heating maxima at the midlatitude storm tracks. The ITCZ
peak, which is colocated with the maximum SSTs at 5◦ N, is
slightly sharper in NNCAM compared with SPCAM. In contrast,
CTRLCAM exhibits a double ITCZ signal, a common issue
of traditional convection parameterizations (5). The resulting
mean state in temperature (Fig. 1B), humidity, and wind (SI
Appendix, Fig. S2 B and C) of NNCAM also closely resembles
that of SPCAM throughout the troposphere. The only larger
deviations are temperature biases in the stratosphere. Since the
mean heating rate bias there is small, the temperature anoma-
lies most likely have a secondary cause—for instance, differences
in circulation or internal variability. In any case, these devia-
tions are not of obvious concern because the upper atmosphere
is poorly resolved in our setup and highly sensitive to changes
in the model setup (SI Appendix, Fig. S5 C and D). In fact,
CTRLCAM has even larger differences compared with SPCAM
in the stratosphere but also throughout the troposphere for all
variables.

The radiative fluxes predicted by the neural network param-
eterization also closely match those of SPCAM for most of the
globe, whereas CTRLCAM has large differences in the tropics
and subtropics caused by its double-ITCZ bias (Fig. 1C and SI
Appendix, Fig. S2D). Toward the poles NNCAM’s fluxes diverge
slightly, the reasons for which are yet unclear. The mean pre-
cipitation of NNCAM and SPCAM follows the latent heating
maxima with a peak at the ITCZ, which again is slightly sharper
for NNCAM.

In general, the neural network parameterization, freely inter-
acting with the resolved dynamics, reproduces the most impor-
tant aspects of its training model’s mean climate to a remarkable
degree, especially compared with the standard parameterization.
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B

Fig. 1. (A–C) Longitudinal and 5-y temporal averages. (A) Mean convective and radiative subgrid heating rates ∆Tphy. (B) Mean temperature T of SPCAM
and biases of NNCAM and CTRLCAM relative to SPCAM. The dashed black line denotes the approximate position of the tropopause, determined by a ∂pθ
contour. (C) Mean shortwave (solar) and longwave (thermal) net fluxes at the top of the atmosphere and precipitation. Note that the latitude axis is area
weighted.

Variability. Next, we investigate NNCAM’s ability to capture
SPCAM’s higher-order statistics—a crucial test since climate
modeling is as much concerned about variability as it is about the
mean. One of the key statistics for end users is the precipitation
distribution (Fig. 2A). CTRLCAM shows the typical deficiencies
of traditional convection parameterizations—too much drizzle
and a lack of extremes. SPCAM remedies these biases and has
been shown to better fit to observations (31). The precipita-
tion distribution in NNCAM closely matches that of SPCAM,
including the tail. The rarest events are slightly more common in
NNCAM than in SPCAM, which is consistent with the narrower
and stronger ITCZ (Fig. 1 A and C).

We now focus on the variability of the heating and moistening
rates (Fig. 2B and SI Appendix, Fig. S3A). Here, NNCAM shows
reduced variance compared with SPCAM and even CTRLCAM,
mostly located at the shallow cloud level around 900 hPa and
in the boundary layer. Snapshots of instantaneous heating and
moistening rates (SI Appendix, Fig. S3 B and C) confirm that the
neural network’s predictions are much smoother; i.e., they lack
the vertical and horizontal variability of SPCAM and CTRL-
CAM. We hypothesize that this has two separate causes: First,
low training skill in the boundary layer (24) suggests that much
of SPCAM’s variability in this region is chaotic and, therefore,

has limited inherent predictability. Faced with such seemingly
random targets during training, the deterministic neural network
will opt to make predictions that are close to the mean to lower
its cost function across samples. Second, the omission of con-
densed water in our network inputs and outputs limits NNCAM’s
ability to produce sharp radiative heating gradients at the shallow
cloud tops. Because the circulation is mostly driven by midtro-
pospheric heating in tropical deep convection and midlatitude
storms, however, the lack of low-tropospheric variability does not
seem to negatively impact the mean state and precipitation pre-
dictions. This result is also of interest for climate prediction in
general.

The tropical wave spectrum (32) depends vitally on the inter-
play between convective heating and large-scale dynamics. This
makes it a demanding, indirect test of the neural network
parameterization’s ability to interact with the dynamical core.
Current-generation climate models are still plagued by issues
in representing tropical variability: In CTRLCAM, for instance,
moist kelvin waves are too active and propagate too fast while the
MJO is largely missing (Fig. 3). SPCAM drastically improves the
realism of the wave spectrum (29), including in our aquaplanet
setup (26). NNCAM captures the key improvements of SPCAM
relative to CTRLCAM: a damped kelvin wave spectrum, albeit

A B

Fig. 2. (A) Precipitation histogram of time-step (30 min) accumulation. The bin width is 3.9 mm·d−1. Solid lines denote simulations for reference SSTs.
Dashed lines denote simulations for +4-K SSTs (explanation in Generalization). The neural network in the +4-K case is NNCAM-ref + 4 K. (B) Zonally averaged
temporal SD of convective and radiative subgrid heating rates ∆Tphy.
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Fig. 3. Space–time spectrum of the equatorially symmetric component of
15S–15N daily precipitation anomalies divided by background spectrum as in
figure 3b in ref. 32. Negative (positive) values denote westward (eastward)
traveling waves.

slightly weaker and faster in NNCAM, and an MJO-like intrasea-
sonal, eastward traveling disturbance. The background spectra
also agree well with these results (SI Appendix, Fig. S6A).

Overall, NNCAM’s ability to capture key advantages of
the cloud-resolving training model—representing precipitation
extremes and producing realistic tropical waves—is to some
extent unexpected and represents a major advantage compared
with traditional parameterizations.

Energy Conservation. A necessary property of any climate model
parameterization is that it conserves energy. In our setup, energy
conservation is not prescribed during network training. Despite
this, NNCAM conserves column moist static energy to a remark-
able degree (Fig. 4A). Note that because of our omission of
condensed water, the balance shown is only approximately true
and exhibits some scatter even for SPCAM. The spread is slightly
larger for NNCAM, but all points lie within a reasonable range,
which shows that NNCAM never severely violates energy con-
servation. These results suggest that the neural network has
approximately learned the physical relation between the input
and output variables without being instructed to. This permits
a simple postprocessing of the neural network’s raw predictions
to enforce exact energy conservation. We tested this correction
without noticeable changes to the main results. Conservation of
total moisture is equally as important but the lack of condensed
water makes even an approximate version impossible.

The globally integrated total energy and moisture are also sta-
ble without noticeable drift or unreasonable scatter for multiyear
simulations (Fig. 4B). This is still true for a 50-y NNCAM simu-
lation that we ran as a test. The energy conservation properties
of the neural network parameterization are promising and show
that, to a certain degree, neural networks can learn higher-level
concepts and physical laws from the underlying dataset.

Generalization. A key question for the prediction of future cli-
mates is whether such a neural network parameterization can
generalize outside of its training manifold. To investigate this we
run a set of sensitivity tests with perturbed SSTs. We begin by
breaking the zonal symmetry of our reference state by adding a
wavenumber one SST perturbation with 3-K amplitude (Fig. 5A
and SI Appendix). Under such a perturbation SPCAM develops
a thermally direct Walker circulation within the tropics with con-
vective activity concentrated at the downwind sector of the warm
pool. The neural network trained with the zonally invariant ref-
erence SSTs only (NNCAM) is able to generate a similar heating
pattern even though the heating maximum is slightly weaker and
more spread out. The resulting mean temperature state in the
troposphere is also in close agreement, with biases of less than
1 K (SI Appendix, Fig. S4). Moreover, NNCAM runs stably
despite the fact that the introduced SST perturbations exceed
the training climate by as much as 3 K. CTRLCAM, for compar-
ison, has a drastically damped heating maximum and a double
ITCZ to the west of the warm pool.

Our next out-of-sample test is a global SST warming of up to
4 K in 1-K increments. We use the mass-weighted absolute tem-
perature differences relative to the SPCAM reference solution
at each SST increment as a proxy for the mean climate state dif-
ference (Fig. 5B). The neural network trained with the reference
climate only (NNCAM) is unable to generalize to much warmer
climates. A look at the mean heating rates for the +4-K SST sim-
ulation reveals that the ITCZ signal is washed out and unrealistic
patterns develop in and above the boundary layer (SI Appendix,
Fig. S5B). As a result the temperature bias is significant, partic-
ularly in the stratosphere (SI Appendix, Fig. S5D). This suggests
that the neural network cannot handle temperatures that exceed
the ones seen during training. To test the opposite case, we also
trained a neural network with data from the +4-K SST SPCAM
simulation only (NNCAM + 4 K). The respective prognostic sim-
ulation for the reference climate has a realistic heating rate and
temperature structure at the equator but fails at the poles, where
temperatures are lower than in the +4-K training dataset (SI
Appendix, Fig. S5 A and C).

Finally, we train a neural network using 0.5 y of data from the
reference and the +4-K simulations each, but not the interme-
diate increments (NNCAM-ref + 4 K). This version performs
well for the extreme climates and also in between (Fig. 5B and
SI Appendix, Fig. S5). Reassuringly, NNCAM-ref + 4 K is also
able to capture important aspects of global warming: an increase
in the precipitation extremes (Fig. 2A) and an amplification and
acceleration of the MJO and kelvin waves (SI Appendix, Fig.
S6B). These sensitivity tests suggest that the neural network is
unable to extrapolate much beyond its training climate but can
interpolate in between extremes.

A B

Fig. 4. (A) Scatter plots of vertically integrated column heating Cp/G
∫
∆Tphydp minus the sensible heat flux H and the sum of the radiative fluxes at

the boundaries
∑

Frad against the vertically integrated column moistening Lv /G
∫
∆Tphydp minus the latent heat flux H. Each solid circle represents a

single prediction at a single column. A total of 10 time steps are shown. Inset shows distribution of differences. (B) Globally integrated total energy (static,
potential, and kinetic; solid lines) and moisture (dashed lines) for the 5-y simulations after 1 y of spin-up.
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A B

Fig. 5. (A) Vertically integrated mean heating rate Cp/G
∫
∆Tphydp for zonally perturbed SSTs. Contour lines show SST perturbation in 1-K intervals starting

at 0.5 K. Dashed contours represent negative values. (B) Global mean mass-weighted absolute temperature difference relative to SPCAM reference at each
SST increment. The different NNCAM experiments are explained in the key.

Discussion
In this study we have demonstrated that a deep neural net-
work can learn to represent subgrid processes in climate models
from cloud-resolving model data at a fraction of the com-
putational cost. Freely interacting with the resolved dynamics
globally, our deep learning-powered model produces a stable
mean climate that is close to its training climate, including pre-
cipitation extremes and tropical waves. Moreover, the neural
network learned to approximately conserve energy without being
told so explicitly. It manages to adapt to new surface forcing
patterns but struggles with out-of-sample climates. The ability
to interpolate between extremes suggests that short-term, high-
resolution simulations which target the edges of the climate
space can be used to build a comprehensive training dataset.
Our study shows a potential way for data-driven development of
climate and weather models. Opportunities but also challenges
abound.

An immediate follow-up task is to extend this methodology to
a less idealized model setup and incorporate more complexity
in the neural network parameterization. This requires ensur-
ing positive cloud water concentrations and stability which we
found challenging in first tests. Predicting the condensation rate,
which is not readily available in SPCAM, could provide a conve-
nient way to ensure conservation properties. Another intriguing
approach would be to predict subgrid fluxes instead of absolute
tendencies. However, computing the flux divergence to obtain
the tendencies amplifies any noise produced by the neural net-
work. Additional complexities like topography, aerosols, and
chemistry will present further challenges but none of those seem
insurmountable from our current vantage point.

Limitations of our method when confronted with out-of-
sample temperatures are related to the traditional problem of
overfitting in machine learning—the inability to make accu-
rate predictions for data unseen during training. Convolutional
neural networks and regularization techniques are commonly
used to fight overfitting. It may well be possible that a com-
bination of these and novel techniques improves the out-of-
sample predictions of a neural network parameterization. Note
also that our idealized training climate is much more homoge-
neous than the real world climate, for instance a lack of the
El Niño-Southern Oscillation, which probably exacerbated the
generalization issues.

Convolutional and recurrent neural networks could be used
to capture spatial and temporal dependencies, such as propagat-
ing mesoscale convective systems or convective memory across
time steps. Furthermore, generative adversarial networks (20)
could be one promising avenue toward creating a stochastic
machine-learning parameterization that captures the variability
of the training data. Random forests (33) have also recently been
applied to learn and model subgrid convection in a global cli-
mate model (34). Compared with neural networks, they have the

advantage that conservation properties are automatically obeyed
but suffer from computational limitations.

Recently, it has been argued (35) that machine learning
should be used to learn the parameters or parametric func-
tions within a traditional parameterization framework rather
than the full parameterization as we have done. Because the
known physics are hard coded, this could lead to better gener-
alization capabilities, a reduction of the required data amount,
and the ability to isolate individual components of the climate
system for process studies. On the flip side, it still leaves the
burden of heuristically finding the framework equations, which
requires splitting a coherent physical system into subprocesses.
In this regard, our method of using a single network natu-
rally unifies all subgrid processes without the need to prescribe
interactions.

Regardless of the exact type of learned algorithm, once imple-
mented in the prognostic model some biases will be unavoidable.
In our current methodology there is no way of tuning after
the training stage. We argue, therefore, that an online learn-
ing approach, where the machine-learning algorithm runs and
learns in parallel with a CRM, is required for further develop-
ment. Superparameterization presents a natural fit for such a
technique. For full global CRMs this likely is more technically
challenging.

A grand challenge is how to learn directly from observations—
our closest knowledge of the truth—rather than high-resolution
simulations which come with their own baggage of tuning and
parameterization (turbulence and microphysics) (35). Complica-
tions arise because observations are sparse in time and space and
often only of indirect quantities, for example satellite observa-
tions. Until data assimilation algorithms for parameter estima-
tion advance, learning from high-resolution simulations seems
the more promising route toward tangible progress in subgrid
parameterization.

Our study presents a paradigm shift from the manual design of
subgrid parameterizations to a data-driven approach that lever-
ages the advantages of high-resolution modeling. This general
methodology is not limited to the atmosphere but can equally
as well be applied to other components of the Earth system
and beyond. Challenges must still be overcome, but advances in
computing capabilities and deep learning in recent years present
novel opportunities that are just beginning to be investigated.
We believe that machine-learning approaches offer great poten-
tial that should be explored in concert with traditional model
development.

Materials and Methods
Detailed explanations of the model and neural network setup can be found
in SI Appendix. SI Appendix also contains links to the online code reposi-
tories. The raw model output data amount to several TB and are available
from the authors upon request.
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